
Citation: Chih, H.-C.; Lin, W.-C.;

Huang, W.-T.; Yao, K.-C.

Implementation of EDGE Computing

Platform in Feeder Terminal Unit for

Smart Applications in Distribution

Networks with Distributed

Renewable Energies. Sustainability

2022, 14, 13042. https://doi.org/

10.3390/su142013042

Academic Editor: Luis

Hernández-Callejo

Received: 18 September 2022

Accepted: 9 October 2022

Published: 12 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Implementation of EDGE Computing Platform in Feeder
Terminal Unit for Smart Applications in Distribution Networks
with Distributed Renewable Energies
Hsin-Ching Chih, Wei-Chen Lin, Wei-Tzer Huang * and Kai-Chao Yao *

Department of Industrial Education and Technology, Bao-Shan Campus, National Changhua University of
Education, No. 2, Shi-Da Road, Changhua 500, Taiwan
* Correspondence: vichuang@cc.ncue.edu.tw (W.-T.H.); kcyao@cc.ncue.edu.tw (K.-C.Y.);

Tel.: +886-939-828-628 (W.-T.H.); +886-931-559-369 (K.-C.Y.)

Abstract: Under the plan of net-zero carbon emissions in 2050, the high penetration of distributed
renewable energies in distribution networks will cause the operation of more complicated distribution
networks. The development of edge computing platforms will help the operator to monitor and
compute the system status timely and locally, and it can ensure the security operation of the system.
In this paper, a novel EDGE computing platform that is implemented by a graphics processing unit
in the existing feeder terminal unit (FTU) is proposed for smart applications in distribution networks
with distributed renewable energies and loads. This platform makes timely forecasts of the feeder
status for the next seven days in accordance with historical weather, sun, and loading data. The
forecast solver uses the machine learning long short-term memory (LSTM) method. Thereafter, the
power calculation analyzers transform feeder topology into the circuit model for transient-state,
steady-state, and symmetrical component analyses. An important-factor explainer parses the LSTM
model into the concise value of each historical datum. All information transports to remote devices
via the internet for the real-time monitor feature. The software stack of the EDGE platform consists
of the database archive file system, time-series forecast solver, power flow analyzers, important-
factor explainer, and message queuing telemetry transport (MQTT) protocol communication. All
open-source software packages, such as SQLite, LSTM, ngspyce, Shapley Additive Explanations,
and Paho-MQTT, form the aforementioned function. The developed EDGE forecast and power flow
computing platform are helpful for achieving FTU becoming an Internet of Things component for
smart operation in active distribution networks.

Keywords: edge computing; feeder terminal unit; long short-term memory; message queuing
telemetry transport; renewable energies forecasting; load forecasting

1. Introduction

The feeder terminal unit (FTU), which is the distribution automation for smart opera-
tions of active distribution networks (ADNs) that are composed of distributed renewable
energies and loads, measures the manner of power flow and sends it back to the Feeder
Dispatch Control Center (FDCC) without further manipulation. Nowadays, the underlying
standard functions of FTU are measurement, control, and fault detection [1]. However,
the lack of analysis and computing capability is limited to ADN smart operations. In
Figure 1, we present a novel EDGE with functions in a timely feeder status forecast, power
flow analysis, important-factor explainer, and secured communication features inside a
system-level platform.

The system is named EDGE because it works inside the FTUs, which are next to
subscribers. FDCC collects and sends data to the Distribute Dispatch and Control Centre
(DDCC) afterward. The results are shown on a mobile phone for localizing monitoring.
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Figure 1. Proposed EDGE platform and relations.

Some edge computation platforms of the hybrid renewal energy ADNs are discussed
as follows. Kulkarni announced a similar concept, funded by the United States Department
of Energy, to establish a situational awareness system [2]. This framework is named Global
Asset Monitoring Management and Analytics. It contains functions of the power quality
sensor, the Advanced Metering Infrastructure network, and the transformer sensor. After
communicating data to a cloud server, mobile phones show their computation results. Its
intelligence feature relieves the on-demand connectivity burden to centralized computa-
tion. Unfortunately, it is a low-cost platform, costing $4, without sufficient computation
resource information.

Another study dispatched the reactive power control of the service-transformer by
Moghe and Tholomier [3,4]. They presented the Edge of Network Grid Optimizer (ENGO)
platform, attached next to the transformer chassis, that regulates the voltage by switched
swarm capacitors. The cost and complexity of collecting all renewal energy utility situations
and reporting to the FDCC become a challenge for rapid dispatch. A swarm of ENGO
platforms, on the Omega feeder, inject the reactive power from the fixed capacitor bank to
regulate the voltage variation.

Thus, the proposed EDGE platform improves these features by using the new silicon
technology chip and popular machine learning concepts. The platform has enhanced the
function of the existing FTU, and offloads the FDCC computation work. Information on raw
subscribers limits sharing to power generation and transmission companies by regulations.
DDCCs or Area Dispatch and Control Centers may process the subscribers’ forecast work
from many FTU terminals. This EDGE platform is designed to be handy in installation,
and shares a centralized system risk. This paper presents a lab prototype concept allocated
inside the FTU chassis in Figure 2.

Figure 2. The desired EDGE platform inside the TPC’s FTU chassis.

Generally, in Taipower, each feeder has three FTUs, one distribution substation bur-
den, and typically more than fifteen feeders. Therefore, more than 45 FTUs may serve in a
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distribution substation. This is not to mention that more than three distribution substations
are in each DDCC or FDCC management district. If all these load data are sent to a local
server in DDCC or FDCC to conduct an hour-ahead or 15-min-ahead forecast and compute
the factors, the computing load becomes too heavy to complete within the allotted time.
Consequently, EDGE is necessary to forecast the FTU [5] load data individually and to
merely send the forecast results to FDCC to integrate all the information, and to make
the correct or optimal decision. Furthermore, according to IEEE Std 1547.4-, distribution
systems can be clustered into a number of microgrids to facilitate powerful control and
operation infrastructure. Consequently, each FTU measurement area is planned as a micro-
grid, a feeder is divided into three microgrids in this paper for additional smart operations
during normal operations or contingencies in the near future, and the multi-microgrid
operation needs real-time computing without data transmission delay [5]. Accordingly, the
development of edge computing in FTU is indispensable. The corresponding research is
conducted in this paper.

Compared with a traditional microprocessor-based platform, the newly announced
EDGE platform installs the machine learning package in the computer language, Python,
and the corresponding acceleration circuit in its silicon chip. The cross-platform strength
migrates high-level software stacks from personal computers (PCs) to EDGE without
recompiling efforts. Thus, many available open-source software functions and researchers
associate the work in different locations and different programming machines.

The long short-term memory (LSTM) method predicts power consumption [6]. Wang [7]
proposed an EMD-PCA-RF-LSTM wind power forecasting model to improve the accuracy
of wind power forecasting, and the experiment result indicates this model provides the
most accurate results. Nevertheless, the trained model has no explanation of its important-
factors association. A game-theory-based method, SHAP, parsed the LSTM models and
arranged them in the graphical expression in this study. The Ngspice simulator is the power
flow analyzer, and runs on EDGE’s distinctive CPU processor architecture [8]. Zhang [9]
and Huang [10] investigated the transient analysis of the railway traction application in
terms of the integration circuit elements under the personal computer environment. This
concept inspires leverage of the Ngspice simulator as the power flow analyzer, and runs on
the EDGE’s distinctive CPU processor architecture [8] and Linux operation system.

In communication, the message queuing telemetry transport (MQTT) protocol forms
the parties of the EDGE, broker, and mobile phone applications. Finally, the SQLite system
is the database archive that manipulates the real-time, historic, forecast, and analyzed data
and images during service time. Accordingly, the significant blocks of the EDGE platform,
which comprise the feeder forecast, power flow analyzer, important factor explainer, com-
munication protocol, and database archive (SQLite), are proposed and shown in Figure 3.

Figure 3. Significant blocks in the proposed EDGE platform.

Section 2 briefly presents the system design concepts with designated modules, includ-
ing the LSTM model, power flow analyzers, and important-factor explainer functionalities.
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Section 3 exhibits the detail of each associated function in Section 4. Finally, the discussion
and conclusion of each experiment are presented in Section 5.

2. System Design Concepts

This section presents the proposed system’s strengths, design constraints, and perfor-
mance considerations.

2.1. Platform Introduction

The new Nvidia™ Jetson Nano (Santa Clara, CA, USA) device is chosen because of the
low cost, Ubuntu operating system, 4 GB memory, 128 GB secure digital memory card (SD
card), machine learning optimization package, and graphics processing unit (GPU) core
features. The functions on the EDGE platform, which consist of different Python computer
language (Python) packages for associating the five blue blocks, are seen in Figure 4. In
this paper, we reconfigured and compiled several source files implemented into the EDGE
platform as a computation engine. The complete computation platform software stack is
shown in Figure 4.

Figure 4. Proposed EDGE platform, Nvidia® Jetson nano-device, and its software stacks.

2.2. Data Assimilation

The data assimilation process arranges the forecast data from the public weather
service and power company. A government facility, Central Weather Bureau, offers weather
information through the Opendata API mechanism. The operation information is obtained
via DNP 3.0 [11,12] and IEC61850 [1] protocol using 4G or fiber media. Unfortunately,
data sample time variation or missing content may cause the forecast solver to have
trouble. Thus, the data assimilation process plays the role of compensation above practical
drawbacks in some manners.

2.3. Forecast Solver

Information on the calendar, weather, and feeder operation act as the forecast solver’s
input source and validation target. In contrast, the solver’s output build up the forecast
model and the future feeder status, such as the voltage, current, and power. In the platform,
the 128 numbers of the Maxwell® cores host this forecasting work using the TensorFlow



Sustainability 2022, 14, 13042 5 of 17

package. Under the limited memory space, the solver’s parameters and spending time are
the major consideration during the development, which may impact its performance.

Newly announced time-series forecasting methods, such as the Arima [13], GlunoTS [14],
and Fbprophet [15], simplify the forecast work on its merits. However, the method mixes
all the time information into one data series, but not in the separated factors view. Two
deep learning methods and a decision tree method are the Vanilla LSTM, and Multi-
Layer Perceptron Model (MLP), and the eXtreme gradient boosting (XGBoost) as another
forecasting approach. The XGBoost method is excellent due to its short model training time.
However, it has the drawback of exhibiting slightly poor performance in terms of important-
factor explanation accuracy from our test. MLP is good due to its short computation time
and weight accuracy. However, the inherent vanishing gradient problem [1] resulted in the
LSTM model being selected in this study.

In recent studies, the LSTM model for long-term, system-level load forecast has
excellent performance [7,16,17]. In addition, the prediction error is acceptable for system
operation. Dong investigated the LSTM and another popular machine learning method for
long-term load forecast, demonstrating superior performance and great practicality [18].
Moreover, the LSTM model can be explained and can obtain its important factor. Pal
applied the SHAP method for occupancy detection from energy consumption data [19].
The LSTM forecast solver, power flow analyzer, and important-factor explainer background
are shown below.

As shown in Figure 5, a Vanilla LSTM network model has three gates: the forget gate,
ft; the input gate, it; and the output gate, ot. The set of weight vectors, w, includes the
independent weights in the w f , wc, wi, and wo notation [20,21]. The trained model includes
the set of tuned weight vectors, w, which the important-factor block investigates afterward.

Figure 5. A Vanilla LSTM network model.

The mathematical equations for the LSTM model are in Equations (1)–(6). Bias vectors
are represented by the bi, bf, bo, and b symbols. The additional memory cell candidate, ct, is
used to add long-term memory via the activation function. The states, Ct−1 and Ht−1, refer
to the previous state cell memory and the output, respectively.

it = σ(wi Ht−1 + UiXt + bi) (1)

ft = σ
(

w f Ht−1 + U f Xt + b f

)
(2)

ot = σ(wo Ht−1 + UoXt + bo) (3)

ct = tanh(wc Ht−1 + UXt + b) (4)

Ct = ftCt−1 + itct (5)

Ht = ottanh(Ct) (6)
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2.4. Important-Factor Explainer

The important-factor explainer extracts the input forecast model, and demystifies
the impact concerning the calendar and weather factors as the output. For example, the
high-loading condition in the industrial area during the off-hours would be a safety issue
or something else. A significant amount of computation work evaluates its contribution
according to the factors’ permutation on the game theory concept. Hence, the four cores of
the ARM CPU are responsible for this work, and deliver it to the next phase.

This feature elucidates the machine learning model into conceptual ideas regarding
values for an explanation. Shawi [22] showed that the SHAP method is better than the
Local Interpretable Model-agnostic Explanations (LIME) method and the Anchors method,
with shorter computation time and proper identity disclosure. Thus, Lundberg [8–10] used
the SHAP method in explaining the medical LSTM model in a graphical illustration.

From (1)–(6), it is a challenge to explain the important factor in the trained LSTM
model. Therefore, a local and simplified model, f (z), approaches the LSTM model, which
tries to explain the factors under the forecast input case. A single unique solution to
this explanation, proved by Lundberg [23], requires satisfaction with the three desirable
properties in local accuracy, missingness, and consistency. A mapping linear regression
model, g(z′), represents to f (z) by associating φo and all φi factors in (7) [23,24].

f (z) = g
(
z′
)
= φo +

k

∑
i=1

φiz′i (7)

Each factor, φi, contributes its individual merits, and satisfies the local accuracy prop-
erty. In (7), where z′ ∈ {0, 1}k for the simplified input information, φi ∈ R is the real
numbers, and k equals to the 14 factors in this paper. The symbol, φo, denotes the model
output when no inputs are available. In this paper, the symbol, φi, consists of the hourly
important-factors result every 168 h. After normalizing the vector, φi, the important-factor
value in each factor under the hourly forecast work.

Fair evaluation is a complex problem when the forecast model owns many factors.
The Shapley value [25] aims to understand the cost or gain between collaborating factors
based on the contribution term in the cooperation action. In other words, the factor with
the higher Shapely value dominates the coalition-winning possibility. For example, more
gold components inside the same alloy volume would be heavier than others. From
the Narahari [26] and Kolker [25] press, the (8) Shapley value, Shk, for each factor (not
important factor), is shown as the following:

Shk = ∑
s⊂n

(s− 1)!(s− n)!
n!

(V(s)−V(s− k)) (8)

The symbol, s, denotes the number of a factor in the coalition, s; k denotes the coop-
eration members in a group. The symbol, n, represents the group number. Multiplying
all of the possible coalitions (s− 1)!(s− n)! and marginal contributions (V(s)−V(s− k))
with a summation of them together, the Shapley value vector is obtained by dividing the
permutation number, n!.

Later, the Shapley value vector is transferred into the SHAP format to obtain the
important-factor data in the format of the (7) [23]. Further discussion of the properties in
terms of local accuracy, missingness, and consistency stands for the intuitive view of the
SHAP result.

2.5. Power Flow Analyser

Regardless of the forecast solver accuracy, the result cannot satisfy electrical theory
and cover all nodes’ data. Thus, analyzers initially convert equivalent loading parameters
from the forecast results, and then compute the feeder behavior with practical parameters.
The expected items include line loss, neutral line voltage, and loading status.
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Available power flow computation packages are listed in Thurner [27]. After evalua-
tion, the pandapower (2.1.0) and pydgrid (0.5.2) packages cannot complete the test routine
in the EDGE environment. The PYPOWER (5.1.4) package runs perfectly, but does not
support several scenarios in the transient analysis. Finally, the analyzers’ computation
engine is built by ngspyce (0.1), and re-compiled by the Ngspice engine. Python renders
the user-interface images from Ngspice’s result in floating number matrices. This tool,
Ngspice, is involved in the very large-scale integration clock signaling simulation [28] and
the new CPU accelerator design [29] to prove its correctness.

The time-step value settings define the voltage node memory consumption in the
transient state simulation. In a 138.89 µs time-step case, each voltage vector occupies
46,144 bytes within an 800 ms simulation period, consisting of the 5768 elements in the
float64 data format of Python (92,288 bytes). Thus, a large-scale fault case simulation is not
suitable for placing in the EDGE process, but rather the workstation machine.

2.6. Database Archive System and Communication to Remote Device

The important-factor explainer and power flow analyzer blocks generate the numerical
data and images from the trained LSTM model. Later, real-time data are saved into the
database first and fetched to the forecast solver to update the LSTM model. By moving
the time window, it periodically publishes information to the broker. A comprehensive
and secure database archiving file system offloads the design effort and supports the
encryption function, as shown by Wang [30]. The EDGE uses the open-source SQLite
database controller to store the values, strings, and images. During the operation, both
the Maxwell® and ARM core access the SQLite database simultaneously, and leave the
low-level control work by the Python package.

Next, we propose quality and low-cost methods for communicating the EDGE, broker,
and user’s remote devices. A private MQTT broker on a regular PC, which is a prod-
uct of HiveMQ®, handles all the subscribed and published events via the internet. The
MQTT method supports Quality of Service to ensure communication integrity [31,32]. The
transport layer security (TLS) communication protocol ensures security requirements. The
application, MQTT Dash®, is available for download on Android mobile phones to monitor
feeder status anytime and anywhere.

3. Implementation

This section introduces the systematic implementation of the aforementioned blocks
on EDGE, MQTT broker server, and mobile users. To inhibit real subscribers’ information,
Equation (9) simulated its power factor, p f ∗a,b,c, concerning the load current, iload, trend
in Figure 6:

p f ∗a,b,c = 0.75−
(

88iload − 10.7i2load + 0.075i3load

)
× 10−5 (9)

Figure 6. Equivalent simplified feeder model for the end voltage or line loss calculations.
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3.1. Forecast Solver

A forecast solver sequentially runs the LSTM network and cascaded processes (Figure 7).
The forecast models of the input sources, such as date, atmosphere, and sunshine, are pro-
vided in historical and real-time views. From the power company, ten items of historical
data predict the feeder voltage, va,b,c; current, ia,b,c,n; and assumed power factor, p f ∗a,b,c.
Thus, the forecast feeder voltage, v̂a,b,c; current, îa,b,c,n; and the power factor, p̂ f a,b,c, are
determined at the end.

Figure 7. Forecast solver process blocks and flow.

The data sources of the identified factors are listed as follows: year (2019–present),
month (1–12), day (1–31), weekday (1–7), hour (0–23), station pressure (hPa), temperature
(◦C), relative humidity (%), wind speed (m/s), wind direction (360◦), sunshine hour (h),
global radiation (MJ/m2), visibility (km), ultraviolet index (none), and cloud amount (0–10).

The normalized process compresses all data into the range of 0–1 to unify the variables’
inherent magnitudes. After that, the reshape to tensor block packs the 2D data into the
tensor format following the batch size setting, and then copies them to the important-factor
explainer. A validation process verifies the trained model’s performance in terms of the
loss function with the training dataset, which evaluates the batch size, LSTM unit weight,
and epoch number setting. The denormalization process obtains the forecast result from
the introduced estimation estimated model and external forecast data. Thus, in every epoch
routine, the entire dataset is driven forward and backward through the LSTM network to
update the weighted vectors. Lastly, the trained models save the files. This LSTM network
repetitively updates the trained model in the next forecast slot. Finally, six images of the
voltage, current, and power flow estimation are stored in the database archive for the
mobile device application.

3.2. Important-Factor Explainer

As the previous section discussed, the SHAP package explains the important factor,
φi., of the LSTM model. This process consumes the most resources, computation time, and
memory due to the LSTM input tensor size. If the batch size parameter is 12, then the size
of the input tensor is 6,756,480 bytes in this study. Only 40% of the input tensor data is
used to meet EDGE memory space limitations in this work.

Temporally, the hourly forecast model contains the updated LSTM model, calendar,
and weather information in the 168 h time length. Later, the important-factor explainer
elucidates this model and carries on the local survey. For example, the effect of the
unregistered and photovoltaic cell facility apparatus may be coherent with the cloud
amount factor from the explanation work. Then, EDGE communicates to the feeder
dispatch control center for the corresponding strategy.
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3.3. Power Flow Analyzers

As shown in Figure 8, the Ngspice program is configured by following the instructions
in the user’s manual [33]. Then, to convert the Ngspice as a shared library (.so) file for Linux
kernel assertion, a parameter adjustment process computes the load model, Zload, values
and adjusts the SPICE model. By converting the loading’s passive component values from
the forecast power, P; reactive power, Q; and currents, transient-state simulation is executed
to derive the concerned neutral line voltage and current in vector format. Thereafter,
a few trigonometric functions are converted to symmetrical components. Fast Fourier
transform analysis is conducted to compute the harmonics of any vector and compose
them into images. Another steady-state analysis provides the node voltage or current in the
designed frequency point. This analysis saves memory and computation time compared
with transient-state analysis. The P and Q values in each hour are computed and presented
in the image file format.

Figure 8. Power flow computing process flow chart.

The topology of DNs is generally complicated. Therefore, the simplified feeder model,
which is composed of an equivalent feeder, is connected with its load. Consequently, a
complicated feeder with various types of load and renewable energy can be simplified, as
shown in Figure 9.

Figure 9. Simplified feeder topology with three FTUs.

This was proposed due to the fast calculation of the feeder voltage profiles and
losses [34]. Furthermore, three FTU units typically measure phase voltage, va,b,c, and
line current, ia,b,c,n, in the feeder. The known primitive impedance Z-matrix [Z1,2,3] of an
equivalent feeder section is determined from its operation. Some power system elements
are converted into the SPICE model [35,36], and others are converted into the simplified
model. The neutral line resistance, RZ3, and inductance, LZ3, are added to evaluate the
concerned current.

Figure 10 shows the single-line diagram of a real distribution feeder of Taiwan Power
Company (TPC). The simplified feeder models proposed in [22] represent the end voltage
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and line loss calculations of each line section. First, the transformers with their loads or
distributed renewable energies (DREs) in each lateral were lumped to the bus of a three-
phase, four-wire feeder main, and then the transformers and their loads can be integrated
and simply represented by their equivalent loads, as shown in Figure 11 [28]. The partial
feeder in each FTU measurement area can be represented, as shown in Figure 12. Finally, the
equivalent length and loads of the simplified feeder model for the end voltage or line loss
calculations can be obtained by the formula derived in [22]. The simplified feeder models
have been applied for simplified power flow computing to obtain bus voltage profiles
and line losses with negligible error in unbalanced distribution feeders. Therefore, the
simplified feeder models are used in this paper to build the circuit model in the simulation
program with the integrated circuit emphasis (SPICE) model for fast calculation with a
doubtless convergence problem.

Figure 10. Single-line diagram of a real distribution feeder of TPC.

Figure 11. Equivalent individual phase loads of various transformer connections with loads or DREs.

Figure 12. Equivalent feeder in each FTU measurement area.



Sustainability 2022, 14, 13042 11 of 17

3.4. Database and MQTT-Communication

In general, the database stores the number of hours of data (5448) in three dedicated
SQLite tables for the different feeder line conditions. The SQLite package handles most
low-level work in negotiating the Linux file system. The rich database commands achieve
the requirement in the merits of its database characteristic. SQLite can also be updated to
the encrypted version using CryptSQLite, as demonstrated by Wang [30].

The MQTT system demonstrates the EDGE features. The interoperability of the SQLite
and MQTT packages was implemented by Kodali [37]. The installation guide and software
code are available on the HiveMQ® website. The MQTT protocol features the quality-of-
service levels, guaranteeing data transaction integrity. The broker supports the TLS/secure
socket layer feature [15] to protect the secret with a private key. In EDGE, a software timer
periodically publishes image files to the broker every 30 s.

The MQTT broker setup is straightforward concerning its instructions. The private key
to enable TLS security is necessary, but not the central scope of this study. Protecting this
broker machine in a secured location is highly recommended. Thereafter, the MQTT-Dash
application would provide the landscape view of the important-factor image in Section 4.3.

4. Experiment and Discussion

The associated blocks of the forecast solver and important-factor explainer are exam-
ined. These blocks are the cornerstone in conducting a system-level experiment. Thereafter,
a running EDGE device, a private MQTT broker server (Figure 13), and a few mobile
phone devices from the system are utilized. Software performance indices and hardware
operation characteristics present the results in this section.

Figure 13. Prototype EDGE platform and private MQTT server.

4.1. Forecast Solver Performance Examination and Comparison

A total of 4704 rows (27 weeks) of historical data are used to predict the result of
168 sets (1 week). Each row and set contain 20 inputs and 10 outputs, respectively. A basic
Vanilla LSTM model performs each forecast routine within 236 s with a batch size of 12, an
LSTM unit of 64, and epoch times of 15. The mean absolute percentage error (MAPE) value
verifies the work in (10):

MAPE(%) =
1

168

168

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (10)

The consumption times and MAPE values are summarized in Table 1. The consump-
tion time takes an average of 488.6 s in LSTM training. The average MAPE values of voltage;
current; real power, P; and reactive power, Q, are 0.46, 16.47, 20.52, and 7.56, respectively.
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Table 1. Forecast solver’s MAPE result in each FTU.

FTU FTU1 FTU2 FTU3

Phase A B C A B C A B C

voltage 0.4 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5
current 17.0 21.3 24.5 12.1 14.6 15.9 13.1 14.3 15.4

P 21.3 26.8 31.6 14.9 18.0 19.6 16.1 17.5 18.9
Q 9.6 13.4 13.3 4.5 5.8 5.3 4.9 5.4 5.8

LSTM training time 495.9 484.4 485.7

Forecast period: 13 h (2184 time-series data), unit: % and sec.

A forecast waveform in the FTU3 (phase A current) is presented in Figure 14. From
the waveform view, the predicted and real are similar in the 168 h. The average MAPE
values are 12.81%.

Figure 14. Forecast results include the real and predicted waveforms of the phase A current.

Next, we compare the important-factor performance under the LSTM, XGBoost, and
MLP forecast solver. Equation (11) generates data value in every d number following the
randomized value, Rn, multiplying the preset weight values, wn. From the preset weight,
wn, and randomized values, continuous serial data are adopted to examine the important-
factor explainers’ performance. The candidate explainers involved two works: predict the
data value (Figure 15), and benchmark the computed important factors (Table 2).

f (d) =
5

∑
i=1

Rn · wn (11)

Figure 15. Comparison of the important-factor performance under the LSTM, XGBoost, and MLP
forecast solver.
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Table 2. Important-factor explainer performance comparison of the LSTM, XGBoost, and MLP.

Nominal Weight wn LSTM MLP XGBoost

w1 0.02 0.02 0.01 0.00
w2 0.12 0.12 0.10 0.04
w3 0.20 0.18 0.19 0.11
w4 0.29 0.31 0.32 0.26
w5 0.37 0.37 0.38 0.59

run time
(sec) - 46.90 1.22 46.23

Preset weight values, wn are 0.05, 0.30, 0.50, 0.75, and 0.95.

4.2. Important-Factor Explainer in the Polynomial Equation Case

In a trained model, the important-factor explainer identifies the important factors, φi,
and compresses them into a per-unit level. The parameters of this test LSTM model are
identical, to review its settings. As shown in Table 3, the comparison between the nominal
weight, wn, and important factor, φi, are shown in the 10 steps in the 4704 input data rate.

Table 3. Important-factor explainer performance in the polynomial equation case.

Nominal Weight wn LSTM φi

w1/φ1 0.02 0.02
w2/φ2 0.04 0.04
w3/φ3 0.05 0.05
w4/φ4 0.07 0.08
w5/φ5 0.09 0.07
w6/φ6 0.11 0.12
w7/φ7 0.13 0.12
w8/φ8 0.15 0.15
w9/φ9 0.16 0.16

w10/φ10 0.18 0.18

4.3. System Manipulation

Table 4 summarizes the computation time in the EDGE and PC environments. The
different FP16 performance indices hint at the reasonable computation time in the selection
of the new tensor processing unit (TPU) platforms. The proposed EDGE, with a score of
0.472, spends 4743.5 s in one routine. The PC platform is faster with richer resources.

Table 4. Computation time comparison on EDGE and PC.

Platform
(FP16 Performance (TFLOPs))

EDGE
Nano Jetson (0.472)

PC
i7-5820K CPU

P2000 GPU (3.0)

LSTM forecast LSTM networks 1679.6 413.5
LSTM forecast estimation 92.2 22.0

Symmetric component analysis 6.8 1.3
Steady-state analysis—line loss 17.1 3.1

Important-factor explainers 2932.4 530.1
MQTT publish 15.4 3.0

Total (seconds) 4743.5 963.0
The term, FP16, refers to the “16-bit floating point”.

Another result is the communication burden breakdown list in all classifications, as
presented in Table 5. Taiwan’s Central Weather Bureau (CWB) offers free weather and solar
observation data hourly via the web application programming interface (API) in 2.58 kB.
Each analysis result from EDGE converts to the images in 467 kB. The MQTT protocol is
divided into many transmission control protocol layer packages in 1494 bytes. The daily
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CWB forecast data are 56 kB. Historical data and FTU measurement data are still from the
TPC and CWB database in this study.

Table 5. Communication burden review.

Data Source Classification Protocol Burden

feeder FTU historical database –
weather/solar CWB historical database –
weather/solar CWB observation web API 2.58 k/h

feeder FTU measurement database
(IEC61850) –

analysis result EDGE forecast MQTT 467 k/h
weather/solar CWB forecast web API 56 k/day

Unit: bytes; web API: the open weather data service from the Central Weather Bureau in Taiwan.

Figure 16 contains 15 importance factor analyses in the FTU3 current mode analysis;
the hour and cloud importance factors are dominants. The high cloud, low wind speed,
and low wind direction factors prove that the FTU3 feeder connects some PVs, but no wind
energy generators are shown in the illustrations in Figure 6. Three-phase loading is almost
in balance, except the B-phase is slightly higher.

Figure 16. Importance-factor explainer result displayed on the mobile device screen.

The forecast result example is illustrated in Figure 17, which contains the PQ power,
voltage, current, and transmission line loss manners. The white and gray color areas
represent the day and nighttime, respectively. The dual vertical axes, start and end time,
and legend form the necessary references from the small mobile phone screen view. A user
client refers to a mobile phone and monitors feeder operation. The MQTT-Dash application
subscribes to the desired topics and receives the latest images.

A running EDGE, MQTT broker, and mobile phone device form the proposed service.
At a room temperature of 20 ◦C, EDGE and its system on a chip (SOC) consume power
at approximately 17.6 and 9.0 W, respectively. The semiconductor’s junction temperature
increases to 25 ◦C from the report on the Linux kernel [38]. Deploying EDGE outdoors
may have a suitable thermal design margin during summer at 45 ◦C, but may not reach the
operation limitation of 97 ◦C.
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Figure 17. FTU3 phase A forecast in the PQ (top), voltage and current (middle), and transmission
line (bottom).

5. Conclusions

This study demonstrated an FTU-based feeder power forecast using the EDGE plat-
form. This platform consists of data collection, forecast solver, important-factor explainer,
power flow calculation, MQTT publisher, MQTT broker, and MQTT-Dash application.
Theories were introduced from the algorithm equations to implement strategies to build up
the system.

The forecast solver result indicated the waveform comparison between the real and
forecast outcomes in approximately 488.6 s. The important-factor explainer examined the
design concept, and its normalized factors exhibited a 6.54% error.

In the system experiment, the values of surface temperature, junction temperature,
and power consumption performed well within the Jetson Nano SOC IC specification. The
user client application displayed EDGE’s published images from the MQTT broker service.
All of the images, forecast data, analyzer output, and loss tables were stored in an SQLite
format file in an SD card for further application. The developed prototype platform could
be implemented in FTU in the laboratory to enhance the intelligence function in smart
ADN operations.
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