Flood Disaster Risk Assessment Based on DEA Model in Southeast Asia along “The Belt and Road”
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Research Methods
3. Results and Analysis
3.1. Status of Meteorological Disasters and Floods
3.2. Analysis Based on DEA Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, A.Y.; Fabinyi, M. China’s 21st century maritime silk road: Challenges and opportunities to coastal livelihoods in ASEAN countries. Marine Policy 2022, 136, 104923. [Google Scholar] [CrossRef]
- Yu, L.; Peng, C.; Regmi, A.D.; Murray, V.; Pasuto, A.; Titti, G.; Shafique, M.; Priyadarshana, D.G.T. An international program on Silk Road Disaster Risk Reduction–a Belt and Road initiative (2016–2020). J. Mt. Sci. 2018, 15, 1383–1396. [Google Scholar] [CrossRef] [Green Version]
- Chai, D.; Wang, M.; Liu, K. Driving factors of natural disasters in belt and road countries. Int. J. Disaster Risk Reduct. 2020, 51, 101774. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, K.; Wang, M.; Koks, E.E. A River Flood and Earthquake Risk Assessment of Railway Assets along the Belt and Road. Int. J. Disaster Risk Sci. 2021, 12, 553–567. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Q.; Shi, P.; Chen, B.; Fang, J. Flood-induced mortality across the globe: Spatiotemporal pattern and influencing factors. Sci. Total Environ. 2018, 643, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 2018, 563, 975–986. [Google Scholar] [CrossRef]
- Deng, M.; Li, Z.; Tao, F. Rainstorm Disaster Risk Assessment and Influence Factors Analysis in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2022, 19, 9497. [Google Scholar] [CrossRef]
- An, Y.; Tan, X.; Gu, B.; Zhu, K. Flood risk assessment using the CV-TOPSIS method for the Belt and Road Initiative: An empirical study of Southeast Asia. Ecosyst. Health Sustain. 2020, 6, 1765703. [Google Scholar] [CrossRef]
- Kimuli, J.B.; Di, B.; Zhang, R.; Wu, S.; Li, J.; Yin, W. A multisource trend analysis of floods in Asia-Pacific 1990–2018: Implications for climate change in sustainable development goals. Int. J. Disaster Risk Reduct. 2021, 59, 102237. [Google Scholar] [CrossRef]
- Kazakis, N.; Kougias, I.; Patsialis, T. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope–Evros region, Greece. Sci. Total Environ. 2015, 538, 555–563. [Google Scholar] [CrossRef]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Sun, R.; Gong, Z.; Guo, W.; Shah, A.A.; Wu, J.; Xu, H. Flood disaster risk assessment of and countermeasures toward Yangtze River Delta by considering index interaction. Nat. Hazards 2022, 112, 475–500. [Google Scholar] [CrossRef]
- Liu, Y.; You, M.; Zhu, J.; Wang, F.; Ran, R. Integrated risk assessment for agricultural drought and flood disasters based on entropy information diffusion theory in the middle and lower reaches of the Yangtze River, China. Int. J. Disaster Risk Reduct. 2019, 38, 101194. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, L.; Chen, L.; Wu, J.; Li, J. Risk assessment and validation of flood disaster based on fuzzy mathematics. Prog. Nat. Sci. 2009, 19, 1419–1425. [Google Scholar] [CrossRef]
- Ahamed, A.; Bolten, J.D. A MODIS-based automated flood monitoring system for southeast asia. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 104–117. [Google Scholar] [CrossRef] [Green Version]
- Laeni, N.; van den Brink, M.; Arts, J. Is Bangkok becoming more resilient to flooding? A framing analysis of Bangkok’s flood resilience policy combining insights from both insiders and outsiders. Cities 2019, 90, 157–167. [Google Scholar] [CrossRef]
- Zou, Q.; Zhou, J.; Zhou, C.; Guo, J.; Deng, W.; Yang, M.; Liao, L. Fuzzy risk analysis of flood disasters based on diffused-interior-outer-set model. Expert Syst. Appl. 2012, 39, 6213–6220. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, J.; Xu, J.; Guo, Q.; Hang, Q.; Chen, Y. Risk assessment of flood disaster and forewarning model at different spatial-temporal scales. Theor. Appl. Climatol. 2017, 132, 791–808. [Google Scholar] [CrossRef]
- Plate, E.J. Flood risk and flood management. J. Hydrol. 2005, 267, 2–11. [Google Scholar] [CrossRef]
- Feng, L.; Mao, Z.; Zhao, X. Risk Analysis of Meteorological Factor Based on Information Diffusion Theory. In Proceedings of the 2010 International Conference on Intelligent Computation Technology and Automation, Changsha, China, 11–12 May 2010; pp. 214–216. [Google Scholar]
- Li, Q.; Zhou, J.; Liu, D.; Jiang, X. Research on flood risk analysis and evaluation method based on variable fuzzy sets and information diffusion. Saf. Sci. 2012, 50, 1275–1283. [Google Scholar] [CrossRef]
- McCallum, I.; Liu, W.; See, L.; Mechler, R.; Keating, A.; Hochrainer-Stigler, S.; Mochizuki, J.; Fritz, S.; Dugar, S.; Arestegui, M.; et al. Technologies to Support Community Flood Disaster Risk Reduction. Int. J. Disaster Risk Sci. 2016, 7, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Marcouiller, D.W. Considering disaster vulnerability and resiliency: The case of hurricane effects on tourism-based economies. Ann. Reg. Sci. 2015, 54, 945–971. [Google Scholar] [CrossRef]
- Du, Y.; Ding, Y.; Li, Z.; Cao, G. The role of hazard vulnerability assessments in disaster preparedness and prevention in China. Mil. Med. Res. 2015, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Nasiri, H.; Mohd Yusof, M.J.; Mohammad Ali, T.A. An overview to flood vulnerability assessment methods. Sustain. Water Resour. Manag. 2016, 2, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Cooper, W.W.; Seiford, L.M.; Zhu, J. Data Envelopment Analysis: History, Models, and Interpretations. In Handbook on Data Envelopment Analysis; Springer: Boston, MA, USA, 2011; pp. 1–39. Available online: https://link.springer.com/chapter/10.1007/978-1-4419-6151-8_1 (accessed on 10 July 2022).
- Charnes, A. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Arocena, P. Cost and quality gains from diversification and vertical integration in the electricity industry: A DEA approach. Energy Econ. 2008, 30, 39–58. [Google Scholar] [CrossRef]
- Zhou, P.; Poh, K.L.; Ang, B.W. A non-radial DEA approach to measuring environmental performance. Eur. J. Oper. Res. 2007, 178, 1–9. [Google Scholar] [CrossRef]
- Kohl, S.; Schoenfelder, J.; Fügener, A.; Brunner, J.O. The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals. Health Care Manag. Sci. 2018, 22, 245–286. [Google Scholar] [CrossRef]
- Sexton, T.R.; Lewis, H.F. Two-Stage DEA: An Application to Major League Baseball. J. Product. Anal. 2003, 19, 227–249. [Google Scholar] [CrossRef]
- Camanho, A.S.; Dyson, R.G. Cost efficiency measurement with price uncertainty: A DEA application to bank branch assessments. Eur. J. Oper. Res. 2005, 161, 432–446. [Google Scholar] [CrossRef]
- Nazarko, J.; Šaparauskas, J. Application of DEA method in efficiency evaluation of public higher education institutions. Technol. Econ. Dev. Econ. 2014, 20, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Zhang, R.; Huo, Z.; Mao, F.; Zheng, W. An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method. Nat. Hazards 2012, 64, 1575–1586. [Google Scholar] [CrossRef]
Factor | Variable of Input | Variable of Output |
---|---|---|
Frequency | Number of total disasters | Number of flood disasters |
Victims | Victims of total disasters | Victims of flood disasters |
Death | Death toll of total disasters | Death toll of flood disasters |
Economic loss | Economic loss caused by total disasters | Financial loss caused by flood disasters |
Disasters | Frequency | Victims/Million | Death Toll | Economic Loss/Million Dollars |
---|---|---|---|---|
Meteorological disasters | 739 | 260.959 | 173,753 (35,387) | 100,023.176 |
Floods | 420 | 185.776 | 28,182 | 71,860.141 |
Vulnerability | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Country | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | ||||
Vietnam | 0.682 | 0.421 | 0.563 | 0.398 | 0.175 | 0.274 | ||||
The Philippines | 0.597 | 0.401 | 0.460 | 0.986 | 0.716 | 0.617 | ||||
Thailand | 0.792 | 0.726 | 0.716 | 0.469 | 0.301 | 1.000 | ||||
Cambodia | 1.000 | 0.655 | 1.000 | 1.000 | 1.000 | |||||
Myanmar | 1.000 | 1.000 | 0.220 | 0.278 | 0.529 | |||||
Malaysia | 1.000 | 0.100 | 1.000 | 0.564 | 1.000 | 0.965 | ||||
Indonesia | 0.675 | 0.637 | 0.753 | 0.140 | 0.486 | 0.617 | ||||
Laos | 1.000 | 1.000 | ||||||||
Vulnerability | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Country | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | ||||
Vietnam | 0.628 | 0.291 | 0.129 | 0.785 | 1.000 | 0.529 | ||||
The Philippines | 0.715 | 0.528 | 0.584 | 0.231 | 0.476 | 0.642 | ||||
Thailand | 0.983 | 0.495 | 1.000 | 1.000 | 1.000 | 0.783 | ||||
Cambodia | 0.954 | 0.050 | 1.000 | 1.000 | 1.000 | |||||
Myanmar | 1.000 | 0.075 | 0.100 | 0.038 | 1.000 | 1.000 | ||||
Malaysia | 0.795 | 1.000 | 1.000 | 0.998 | ||||||
Indonesia | 0.696 | 0.918 | 1.000 | 0.916 | 1.000 | 0.631 | ||||
Laos | 1.000 | 0.381 | 1.000 | |||||||
Vulnerability | ||||||||
---|---|---|---|---|---|---|---|---|
Country | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | ||
Vietnam | 0.332 | 1.000 | 0.016 | 0.301 | 0.444 | 0.013 | ||
The Philippines | 1.000 | 0.848 | 0.545 | 0.645 | 0.410 | 0.136 | ||
Thailand | 1.000 | 0.505 | 0.220 | 0.649 | 0.663 | |||
Cambodia | 0.993 | 1.000 | 0.777 | 0.267 | 1.000 | |||
Myanmar | 1.000 | 1.000 | 0.461 | 0.706 | 0.999 | 1.000 | ||
Malaysia | 0.914 | 0.448 | 1.000 | 1.000 | 1.000 | 1.000 | ||
Indonesia | 0.688 | 0.573 | 0.456 | 0.628 | 0.562 | 0.405 | ||
Laos | 0.847 | 1.000 | 0.954 | 0.997 | 0.306 | 1.000 |
Country | Relative Efficiency Value | Average Relative Efficiency | Number of Meteorological Disasters | |
---|---|---|---|---|
More Than 0.8 | Reach 1 | |||
Laos | 8 | 7 | 0.862 | 11 |
Malaysia | 12 | 7 | 0.861 | 16 |
Cambodia | 11 | 9 | 0.846 | 15 |
Thailand | 6 | 5 | 0.724 | 17 |
Myanmar | 9 | 8 | 0.671 | 17 |
Indonesia | 4 | 2 | 0.655 | 18 |
The Philippines | 2 | 1 | 0.585 | 18 |
Vietnam | 2 | 2 | 0.433 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yu, X.; Yu, X. Flood Disaster Risk Assessment Based on DEA Model in Southeast Asia along “The Belt and Road”. Sustainability 2022, 14, 13145. https://doi.org/10.3390/su142013145
Wang X, Yu X, Yu X. Flood Disaster Risk Assessment Based on DEA Model in Southeast Asia along “The Belt and Road”. Sustainability. 2022; 14(20):13145. https://doi.org/10.3390/su142013145
Chicago/Turabian StyleWang, Xuming, Xianrui Yu, and Xiaobing Yu. 2022. "Flood Disaster Risk Assessment Based on DEA Model in Southeast Asia along “The Belt and Road”" Sustainability 14, no. 20: 13145. https://doi.org/10.3390/su142013145
APA StyleWang, X., Yu, X., & Yu, X. (2022). Flood Disaster Risk Assessment Based on DEA Model in Southeast Asia along “The Belt and Road”. Sustainability, 14(20), 13145. https://doi.org/10.3390/su142013145