
Citation: Shin, J.; Seo, J.-T.

Verification of Privacy Protection

Reliability through Mobile Forensic

Approach Regarding iOS-Based

Instant Messenger. Sustainability 2022,

14, 13281. https://doi.org/10.3390/

su142013281

Academic Editors: Marc A. Rosen

and Aniello Castiglione

Received: 17 August 2022

Accepted: 13 October 2022

Published: 15 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Verification of Privacy Protection Reliability through Mobile
Forensic Approach Regarding iOS-Based Instant Messenger
Jiho Shin 1 and Jung Taek Seo 2,*

1 Police Science Institute, Korea National Police University, Asan 31539, Korea
2 Department of Computer Engineering, Gachon University, Seongnam 13120, Korea
* Correspondence: seojt@gachon.ac.kr; Tel.: +82-10-6358-1337

Abstract: With the diffusion of mobile devices and Internet hyperconnectivity technology, all daily
living records of individuals are being recorded on mobile devices in real time. However, from the
user’s point of view, the reliability of privacy protection, that is, whether the user’s data on the mobile
device completely disappears when it is deleted, is critical. This is because, for the sustainability of
social growth, it is necessary to control the digitalization and technology that heightens the risks
of the future society. Therefore, this study aims to check the traces of the SQLite database to see if
instant messenger messages deleted by the user can be recovered. When the SQLite database record
is deleted, if the database shrink function or other application-level deletion does not work, it is
possible to recover the deleted record. We chose two iOS-based instant messengers, WhatsApp and
WeChat, and analyzed the SQLite DB file and Table Schema where messages are stored. As a result of
the experiment in this study, it was verified that the area where the deleted message was stored in the
SQLite DB file was overwritten with 0 × 00 or updated with a NULL value, making it impossible to
recover the deleted message. This process operates at the app level, and user data is safely protected.

Keywords: privacy protection reliability; mobile forensic; SQLite database; message deletion event

1. Introduction

With the diffusion of mobile devices and Internet hyperconnectivity technology, all
daily living records of individuals are being recorded on mobile devices in real-time. In
particular, the wider distribution of smartphones, which have become a necessity in modern
times, has enabled individuals to access various online services more easily, and more
user data are being accumulated as smartphone specifications, such as the storage capacity,
processor, and memory, are expanding. Moreover, the hyperconnectivity that allows access
to the Internet from anywhere also provides an environment that enables easy access to
various social network services (SNS) and instant messenger (IM) services, so collecting
and analyzing the related data has significantly contributed to the solving of criminal cases.
Since most smartphone users have access to IM, the IM data is a very important clue that
can prove a suspect’s guilt or innocence in a criminal investigation. For this reason, mobile
forensics, which involves an examination of suspects’ smartphones, has become one of the
essential investigative procedures during criminal investigations.

However, from the user’s point of view, the reliability of privacy protection, that is,
whether the user’s data on the mobile device completely disappeared when it is deleted,
is very important. This is because, for the sustainability of social growth, it is necessary
to control the digitalization and technological innovation that heightens the risks of the
future society. Law enforcement agencies must conduct investigations according to due
process, and control of technology must be carried out within the scope of guaranteeing
individual privacy even during forensic work permitted by law enforcement agencies. In
other words, we need to consider the reliability of protection for personal privacy due to
rapid changes in technology and digitalization. Therefore, this study aims to check the

Sustainability 2022, 14, 13281. https://doi.org/10.3390/su142013281 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142013281
https://doi.org/10.3390/su142013281
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-2697-8221
https://orcid.org/0000-0003-0971-8548
https://doi.org/10.3390/su142013281
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142013281?type=check_update&version=2

Sustainability 2022, 14, 13281 2 of 15

traces of the SQLite database to see if instant messenger messages deleted by the user can
be recovered.

Excluding the industry-wide discussion that the closeness of flash memory itself, the
storage device for smartphones, has gradually increased, and code obfuscation to protect
data in software [1], this problem starts from acquiring and analyzing data in Apple’s
iPhone. From the digital forensic perspective, most of the relevant data are in the private
storage area of the app, which is only accessible in a rooted smartphone such as an Android
device [2]. The iOS provided by Apple sets the user-accessible area quite restrictively by
default compared to Android. Data must first be obtained from a smartphone for data
analysis, yet it is virtually impossible to obtain the data unless the lock password is obtained
from the owner. On 2 December 2015, a mass shooting occurred in San Bernardino in eastern
Los Angeles, California [3]. However, the FBI had difficulties with the investigation because
it could not unlock the main suspect’s iPhone 5C [4]. In Korea, there was also a case in
which the iPhone possessed by the main suspect identified by the investigative agency in a
criminal case could not be unlocked, and the relevant evidence could not be collected [5].

Therefore, this study aimed to obtain smartphone data by generating backup data
from a locked iPhone and then verify the possibility of data recovery by checking the traces
of instant messenger messages deleted by the user. In other words, it is intended to verify
whether the user’s privacy is being protected by analyzing the traces of deleted messages
by the user through mobile forensics. Most instant messengers use SQLite for storing
and managing exchanged messages. When the SQLite database record is deleted, if the
database shrink function or other application-level deletion does not work, it is possible to
recover the deleted record. We will choose two popular iOS-based instant messengers to
analyze if deleted messages are recovered.

According to the market share surveyed by Statista, the most popular mobile messen-
ger in the global market is WhatsApp, followed by WeChat [6]. The statistics are based on
an estimation of the number of monthly messenger apps activated by mobile messenger
users, and according to this statistic, WhatsApp has been activated 2 billion times and
WeChat 1.263 billion times (see Figure 1). This study has verified the possibility of recov-
ering deleted data through an experiment targeting the top two most widely used apps
among various global messenger apps.

Sustainability 2022, 14, x FOR PEER REVIEW 2 of 15

other words, we need to consider the reliability of protection for personal privacy due to
rapid changes in technology and digitalization. Therefore, this study aims to check the
traces of the SQLite database to see if instant messenger messages deleted by the user can
be recovered.

Excluding the industry-wide discussion that the closeness of flash memory itself, the
storage device for smartphones, has gradually increased, and code obfuscation to protect
data in software [1], this problem starts from acquiring and analyzing data in Apple’s
iPhone. From the digital forensic perspective, most of the relevant data are in the private
storage area of the app, which is only accessible in a rooted smartphone such as an An-
droid device [2]. The iOS provided by Apple sets the user-accessible area quite restric-
tively by default compared to Android. Data must first be obtained from a smartphone
for data analysis, yet it is virtually impossible to obtain the data unless the lock password
is obtained from the owner. On 2 December 2015, a mass shooting occurred in San Ber-
nardino in eastern Los Angeles, California [3]. However, the FBI had difficulties with the
investigation because it could not unlock the main suspect’s iPhone 5C [4]. In Korea, there
was also a case in which the iPhone possessed by the main suspect identified by the in-
vestigative agency in a criminal case could not be unlocked, and the relevant evidence
could not be collected [5].

Therefore, this study aimed to obtain smartphone data by generating backup data
from a locked iPhone and then verify the possibility of data recovery by checking the
traces of instant messenger messages deleted by the user. In other words, it is intended to
verify whether the user’s privacy is being protected by analyzing the traces of deleted
messages by the user through mobile forensics. Most instant messengers use SQLite for
storing and managing exchanged messages. When the SQLite database record is deleted,
if the database shrink function or other application-level deletion does not work, it is pos-
sible to recover the deleted record. We will choose two popular iOS-based instant mes-
sengers to analyze if deleted messages are recovered.

According to the market share surveyed by Statista, the most popular mobile mes-
senger in the global market is WhatsApp, followed by WeChat [6]. The statistics are based
on an estimation of the number of monthly messenger apps activated by mobile messen-
ger users, and according to this statistic, WhatsApp has been activated 2 billion times and
WeChat 1.263 billion times (see Figure 1). This study has verified the possibility of recov-
ering deleted data through an experiment targeting the top two most widely used apps
among various global messenger apps.

Figure 1. Most popular global mobile messenger apps as of January 2022 from Statista (Based on the
number of monthly active users).

Figure 1. Most popular global mobile messenger apps as of January 2022 from Statista (Based on the
number of monthly active users).

This study contributes to digital forensics as follows.

• It presents a method of investigating the structure of the SQLite database, which stores
chat messages in most instant messengers, and the verification of privacy protection
reliability from a digital forensic point of view.

Sustainability 2022, 14, 13281 3 of 15

• Since this study presents a method of creating backup data for the iPhone without
unlocking it, even if the mobile phone is locked, the possibility of leakage of personal
information inside the mobile was technically confirmed.

• Since this study includes experimental results on data traces targeting the two mes-
sengers with the highest usage rates in the global instant messenger market, it is of
practical use in mobile forensics.

This paper is organized as follows. Section 2 introduces reviews of prior related
studies. Section 3 discusses a method of acquiring data by creating a backup in a locked
iPhone and the structure of the SQLite database, and how to detect deleted data. Section 4
configures the experimental environment and a deletion event to check the recoverability
of deleted messages. Section 5, following on from the deletion event presented in Section 3,
deals with the detection of data, observation of the data change in SQLite, and derivation
of the experimental results. Lastly, Section 6 presents the conclusion.

2. Related Works

Until very recently, the greater part of digital forensic analysis of iPhones was largely
based on backup files, because it is very difficult to obtain all data in the physical area
from the iPhone. Unlike open source-based Android, iOS is very limited in terms of the
areas that a user of the leading closed OS platform can access. Since Android users can
access the systems area using the ADB (Android Debug Bridge) protocol, previous studies
mainly focused on acquiring and analyzing the data in the physical area. On the other hand,
studies on iOS mainly focused on extracting the data in the logical area, i.e., the backup file,
and analyzing the related artifacts. Anglano (2014) presented a forensic analysis of artifacts
left on Android mobile devices by WhatsApp Messenger [7]. The study was notable in that
it presented the correlation of various artifacts to infer user behavior and reconstruct the
time sequence of messages exchanged by users. However, there is a limitation in that study
that cannot be used in this study as it was based on Android OS. Han (2016) discussed
the methods of acquiring and analyzing smartphone backup data [8]. It can be considered
a prior study on the data acquisition method proposed in this study, as it suggests the
use of the lockdown key file (Escrow Keybag) in iOS. As discussed above, the file makes
it easy to obtain backup data from a locked iPhone. Shimmi (2020) emphasized that an
iOS device’s backup file was a potential source of main evidential data and explained the
process of changing the SQLite table schema related to the analysis of the iOS backup file
obtained through logical collection technology [9]. The study showed a good result that
can confirm the direction in which Apple changed the configuration information related to
backup files. However, there are some differences from this study as these previous studies
mainly focused on the method of acquiring backup data.

SQLite database has been widely used to store and utilize data in smartphones. It
is used for data storage and management and input/output in embedded systems such
as smartphones because it is light in operation and has a high input/output speed and
a simple platform configuration file for running the database. Existing studies related to
SQLite have mainly focused on the forensic recovery of deleted data. Joen (2011) proposed
a technique for recovering deleted records remaining in an unallocated area of an SQLite
database [10]. The study suggested a method of recovering deleted SQLite records, but the
corresponding area was not overwritten. Part of the study will be discussed on the SQLite
record structure below. Jung (2018) studied the possibility of recovering deleted messages
through SQLite Journal analysis in messenger applications [11]. As SQLite manages the
journal file separately to manage input/output efficiently, the study proposes a method of
restoring messenger conversation by analyzing the deleted data fragments recorded in the
journal file. However, since most studies have targeted the SQLite journal in Android OS,
there is a difference in the subject of analysis of this study.

Sustainability 2022, 14, 13281 4 of 15

3. Background
3.1. Acquisition Method of Locked iPhone

It is necessary to check Unique Device ID.plist to acquire logical data from a locked
iPhone. Additionally, called the escrow Keybag file, it is generated when connecting an
iPhone to a PC on which iTunes is installed and uses the plist format [12,13]. It configures
encrypted information related to authentication and creates UDID.plist, of which UDID
denotes the iPhone’s unique device ID, to prove that it is a computer that has established
trust with the iPhone, and saves it in %SystemDrive%\ProgramData\Apple\LockDown\ of
the PC (based on Windows OS) [14] (see Figure 2).

Sustainability 2022, 14, x FOR PEER REVIEW 4 of 15

the journal file. However, since most studies have targeted the SQLite journal in Android
OS, there is a difference in the subject of analysis of this study.

3. Background
3.1. Acquisition Method of Locked iPhone

It is necessary to check Unique Device ID.plist to acquire logical data from a locked
iPhone. Additionally, called the escrow Keybag file, it is generated when connecting an
iPhone to a PC on which iTunes is installed and uses the plist format [12,13]. It configures
encrypted information related to authentication and creates UDID.plist, of which UDID
denotes the iPhone’s unique device ID, to prove that it is a computer that has established
trust with the iPhone, and saves it in %SystemDrive%\ProgramData\Apple\LockDown\ of
the PC (based on Windows OS) [14] (see Figure 2).

Figure 2. Example of Escrow Keybag (UDID.plist) and its properties in iTunes-installed PC.

Therefore, it is necessary to investigate intensively the computer that has been con-
nected to the analyzed iPhone processed as Trust This Computer to generate the locked
iPhone’s backup file using iTunes, by collecting the UDID.plist file [15]. If it is not feasible
to obtain the password from the user who used the iPhone (e.g., the user is dead or does
not disclose it on purpose), it will be necessary to collect the UDID.plist file stored in the
desktop or notebook PC. This is because securing the UDID.plist file is a way to get a
bypass connection without the trust process. After copying the collected UDID.plist file
to a forensic workstation and connecting the PC, it can create a backup file from the locked
iPhone without an additional authentication process (see Figure 3). In other words, the
iPhone and the forensic workstation are recognized as mutually trusted devices, and
iTunes can create a backup file for the connected iPhone.

Figure 2. Example of Escrow Keybag (UDID.plist) and its properties in iTunes-installed PC.

Therefore, it is necessary to investigate intensively the computer that has been con-
nected to the analyzed iPhone processed as Trust This Computer to generate the locked
iPhone’s backup file using iTunes, by collecting the UDID.plist file [15]. If it is not feasible
to obtain the password from the user who used the iPhone (e.g., the user is dead or does
not disclose it on purpose), it will be necessary to collect the UDID.plist file stored in the
desktop or notebook PC. This is because securing the UDID.plist file is a way to get a
bypass connection without the trust process. After copying the collected UDID.plist file to
a forensic workstation and connecting the PC, it can create a backup file from the locked
iPhone without an additional authentication process (see Figure 3). In other words, the
iPhone and the forensic workstation are recognized as mutually trusted devices, and iTunes
can create a backup file for the connected iPhone.

In this study, an experiment is conducted on the obtained backup file. It detects the
tables and columns of the SQLite database, where the messages are stored, from the backup
file collected under the constrained environment of the locked iPhone and checks the
possibility of recovering the deleted messages through an experiment.

3.2. SQLite Logical Structure

The SQLite DB file is composed of contiguous pages. The pages are largely composed
of a header page and a b-tree page, of which the latter is further composed of an internal
b-tree page and a leaf b-tree page. Furthermore, a leaf b-tree page is composed of a leaf
index b-tree page and a leaf table b-tree page. The database records are stored in the leaf
table b-tree pages. The types of pages will be explained again later in the paper.

Sustainability 2022, 14, 13281 5 of 15Sustainability 2022, 14, x FOR PEER REVIEW 5 of 15

Figure 3. iTunes recognizes locked iPhone using UDID.plist from the user’s PC (see the activated
button in red box).

In this study, an experiment is conducted on the obtained backup file. It detects the
tables and columns of the SQLite database, where the messages are stored, from the
backup file collected under the constrained environment of the locked iPhone and checks
the possibility of recovering the deleted messages through an experiment.

3.2. SQLite Logical Structure
The SQLite DB file is composed of contiguous pages. The pages are largely composed

of a header page and a b-tree page, of which the latter is further composed of an internal
b-tree page and a leaf b-tree page. Furthermore, a leaf b-tree page is composed of a leaf
index b-tree page and a leaf table b-tree page. The database records are stored in the leaf
table b-tree pages. The types of pages will be explained again later in the paper.

The SQLite header page is the start of the DB file [16] and typically begins with a
header string that starts with “SQLite format”. After that, it specifies the page size using
2 bytes. Various setting values and status information for running the SQLite DB file are
managed using headers.

B-tree pages are created with the page size specified in the SQLite’s database file
header. Pages are composed of a page header, cell offset, free space, and cell data in that
order (see Figure 4). The page header consists of information such as the page type, free-
block information on the page, the number of cells on the page, and the cell offset [17] (see
Table 1).

Figure 3. iTunes recognizes locked iPhone using UDID.plist from the user’s PC (see the activated
button in red box).

The SQLite header page is the start of the DB file [16] and typically begins with a
header string that starts with “SQLite format”. After that, it specifies the page size using
2 bytes. Various setting values and status information for running the SQLite DB file are
managed using headers.

B-tree pages are created with the page size specified in the SQLite’s database file
header. Pages are composed of a page header, cell offset, free space, and cell data in that
order (see Figure 4). The page header consists of information such as the page type, free-
block information on the page, the number of cells on the page, and the cell offset [17] (see
Table 1).

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 15

Figure 3. iTunes recognizes locked iPhone using UDID.plist from the user’s PC (see the activated
button in red box).

In this study, an experiment is conducted on the obtained backup file. It detects the
tables and columns of the SQLite database, where the messages are stored, from the
backup file collected under the constrained environment of the locked iPhone and checks
the possibility of recovering the deleted messages through an experiment.

3.2. SQLite Logical Structure
The SQLite DB file is composed of contiguous pages. The pages are largely composed

of a header page and a b-tree page, of which the latter is further composed of an internal
b-tree page and a leaf b-tree page. Furthermore, a leaf b-tree page is composed of a leaf
index b-tree page and a leaf table b-tree page. The database records are stored in the leaf
table b-tree pages. The types of pages will be explained again later in the paper.

The SQLite header page is the start of the DB file [16] and typically begins with a
header string that starts with “SQLite format”. After that, it specifies the page size using
2 bytes. Various setting values and status information for running the SQLite DB file are
managed using headers.

B-tree pages are created with the page size specified in the SQLite’s database file
header. Pages are composed of a page header, cell offset, free space, and cell data in that
order (see Figure 4). The page header consists of information such as the page type, free-
block information on the page, the number of cells on the page, and the cell offset [17] (see
Table 1).

Figure 4. B-tree page structure 16.

The cell offset stores the offset information, which indicates where the cell data in
the page starts in a 2-byte array and is stored downward sequentially from the position
after the page header. The cell data are stored upward sequentially from the end of the
page. The page header contains the page type, which is important information for data
detection in SQLite files. There are four types of pages, and the page where the cell data
is stored starts with the 0 × 0D value. The page header also contains a value for quickly
detecting the first data on the page and the offset value that indicates where the actual data
start on the page. Such information is used to quickly detect the last data position for data
input/output. Figure 5 below shows an example of analyzing the hexadecimal value of the
page containing the actual cell data. It shows that the cell offset array is positioned after the
header, which is composed of 8 or 12 bytes.

Sustainability 2022, 14, 13281 6 of 15

Table 1. Description of page header 17.

Offset Size Description

0 1

A flag indicating the b-tree page type
0 × 02: interior index B-tree page (Internal)
0 × 05: interior table B-tree page (Internal)
0 × 0A: leaf index B-tree page (Leaf)
0 × 0D: leaf table B-tree page (Leaf)
Any other value for the b-tree page type is an error.

1 2 Byte offset into the page of the first freeblock

3 2 Number of cells on this page

5 2
Offset to the first byte of the cell content area. A zero value is
used to represent an offset of 65,536, which occurs on an empty
root page when using a 65,536-byte page size.

7 1 Number of fragmented free bytes within the cell content area

8 4 The right-most pointer (interior b-tree pages only)

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 15

Figure 4. B-tree page structure 16.

Table 1. Description of page header 17.

Offset Size Description

0 1

A flag indicating the b-tree page type
0x02: interior index B-tree page (Internal)
0x05: interior table B-tree page (Internal)
0x0A: leaf index B-tree page (Leaf)
0x0D: leaf table B-tree page (Leaf)
Any other value for the b-tree page type is an error.

1 2 Byte offset into the page of the first freeblock
3 2 Number of cells on this page

5 2
Offset to the first byte of the cell content area. A zero value is used to
represent an offset of 65,536, which occurs on an empty root page when
using a 65,536-byte page size.

7 1 Number of fragmented free bytes within the cell content area
8 4 The right-most pointer (interior b-tree pages only)

The cell offset stores the offset information, which indicates where the cell data in the
page starts in a 2-byte array and is stored downward sequentially from the position after
the page header. The cell data are stored upward sequentially from the end of the page.
The page header contains the page type, which is important information for data detection
in SQLite files. There are four types of pages, and the page where the cell data is stored
starts with the 0x0D value. The page header also contains a value for quickly detecting the
first data on the page and the offset value that indicates where the actual data start on the
page. Such information is used to quickly detect the last data position for data input/out-
put. Figure 5 below shows an example of analyzing the hexadecimal value of the page
containing the actual cell data. It shows that the cell offset array is positioned after the
header, which is composed of 8 or 12 bytes.

Figure 5. Cell offset example in page header on leaf table B-tree page cell pointer.

3.3. Cell Structure
An SQLite cell is divided into the header and data areas. The header area consists of

a payload, which is the size of the cell, and a Row ID, which is a unique cell number. The
data area is divided into a cell data header and cell data. The cell data header contains the
size information of the column data in an array type and is followed by the actual data
(see Figure 6).

Figure 5. Cell offset example in page header on leaf table B-tree page cell pointer.

3.3. Cell Structure

An SQLite cell is divided into the header and data areas. The header area consists of a
payload, which is the size of the cell, and a Row ID, which is a unique cell number. The
data area is divided into a cell data header and cell data. The cell data header contains the
size information of the column data in an array type and is followed by the actual data (see
Figure 6).

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 15

Figure 6. SQLite cell structure.

The data in each cell column can be carved by carving the actual data by as much as
the data size of each column stored in the cell data header (see Figure 7).

Figure 7. Cell data carving example by each column size.

3.4. Existing Method Detection and Recovery of Deleted Cell
Jeon et al. (2011) explained that it is necessary to check the page header first to detect

deleted data because the first freeblock information is stored in 2 bytes from the header
byte offset 0x01 in the page header [10]. If the offset information is stored, it means that
the deleted cell is present on the page [18]. Another way to detect deleted data is to per-
form a keyword search in the database file. It directly searches and checks whether the
data to be found exists in the database file. If the keyword search result is found on the
data page (0xD), the data can be recovered through additional detailed investigation and
data carving. Figure 8 shows the header of the page containing the deleted cell. It shows
that two cells have been deleted, and the pointer information of the first cell on the page
is stored in the page header.

For example, 2 bytes from page offset 0xC01 in Figure 8a are first freeblocks and
empty (0x0000). However, as shown in Figure 8b, when a record (cell) on the page is de-
leted, the SQLite engine stores the page offset value where the deleted record starts in the

Figure 6. SQLite cell structure.

Sustainability 2022, 14, 13281 7 of 15

The data in each cell column can be carved by carving the actual data by as much as
the data size of each column stored in the cell data header (see Figure 7).

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 15

Figure 6. SQLite cell structure.

The data in each cell column can be carved by carving the actual data by as much as
the data size of each column stored in the cell data header (see Figure 7).

Figure 7. Cell data carving example by each column size.

3.4. Existing Method Detection and Recovery of Deleted Cell
Jeon et al. (2011) explained that it is necessary to check the page header first to detect

deleted data because the first freeblock information is stored in 2 bytes from the header
byte offset 0x01 in the page header [10]. If the offset information is stored, it means that
the deleted cell is present on the page [18]. Another way to detect deleted data is to per-
form a keyword search in the database file. It directly searches and checks whether the
data to be found exists in the database file. If the keyword search result is found on the
data page (0xD), the data can be recovered through additional detailed investigation and
data carving. Figure 8 shows the header of the page containing the deleted cell. It shows
that two cells have been deleted, and the pointer information of the first cell on the page
is stored in the page header.

For example, 2 bytes from page offset 0xC01 in Figure 8a are first freeblocks and
empty (0x0000). However, as shown in Figure 8b, when a record (cell) on the page is de-
leted, the SQLite engine stores the page offset value where the deleted record starts in the

Figure 7. Cell data carving example by each column size.

3.4. Existing Method Detection and Recovery of Deleted Cell

Jeon et al. (2011) explained that it is necessary to check the page header first to detect
deleted data because the first freeblock information is stored in 2 bytes from the header
byte offset 0 × 01 in the page header [10]. If the offset information is stored, it means that
the deleted cell is present on the page [18]. Another way to detect deleted data is to perform
a keyword search in the database file. It directly searches and checks whether the data
to be found exists in the database file. If the keyword search result is found on the data
page (0 × D), the data can be recovered through additional detailed investigation and data
carving. Figure 8 shows the header of the page containing the deleted cell. It shows that
two cells have been deleted, and the pointer information of the first cell on the page is
stored in the page header.

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 15

first freeblock. In this way we can analyze whether there is any deleted data on that page
and where the deleted data is.

(a) (b)

Figure 8. Comparison of page header according to cell deletion. (a) is normal and (b) is deleted.

After analyzing the start offset of the deleted cell using the page header, the next step
is to analyze the cell. According to the cell structure discussed in Section 3.2, the size of
each column can be calculated and carved sequentially (see Figure 8). However, in this
study, we adopted Keyword Search for detecting deleted cells instead of existed method.
Although Keyword Search takes a long time, it is the most sophisticated way to find the
data you want to find with the raw level.

3.5. Summary
In Section 3, we discussed how easy it is to get backup data from a locked iPhone.

Without app-level software data protection, unencrypted data could easily be leaked,
leading to privacy breaches. We also discussed the basic structure of SQLite and how to
recover deleted cells. As discussed above, it was found that generally deleted data remains
as it is unless it is completely deleted. Additionally, after finding the data page (It starts
with 0x0D) and checking the deleted offset, it was confirmed that the deleted cell can be
recovered. In the next chapter, we will analyze how deleted messages are managed by
two popular mobile messengers through an experiment.

4. Experimental Environments
4.1. Message Deletion Events of Target Messengers

There are three main ways to delete an instant message from a mobile device. The
first method consists of deleting a specific chat log from the chat room. Both WhatsApp
and WeChat offer the ability to delete specific conversations from chat rooms. The second
is to delete the chat room. When a chat room is deleted, all users’ messages in the chat
room are also deleted, and the chat room’s users must be searched to begin messaging
again. The third is to delete the instant messaging app. When the instant messages app is
deleted, all chatting records using the app are also deleted. This study experimented with
deleting the chat log and deleting the chatroom. The related detailed deletion method will
be discussed again in Experimental Environments.

4.2. Tools and Experiment Environment
For this study, an experiment was conducted to detect deleted data in each mobile

messenger based on the SQLite logical structure and the deleted data detection method,
the results of which are summarized below. The backup data from Apple iPhone XS of
the sender was created using iTunes, and the experiment was conducted on messenger
app data acquired from it. The reason for using the backup data is that there is virtually
no way of physically acquiring data (acquiring the entire storage area as a bitstream) for
a digital forensic investigation performed on Apple iPhones. Therefore, it is reasonable to
acquire data in the most similar way to the environment performed in actual practice and
conduct digital forensic experiments on it. This study used the latest version of the mobile
messenger that could be downloaded from the Apps Store at the time of the experiment.
The detailed experimental environment is presented in the table below (see Table 2).

Figure 8. Comparison of page header according to cell deletion. (a) is normal and (b) is deleted.

For example, 2 bytes from page offset 0 × C01 in Figure 8a are first freeblocks and
empty (0 × 0000). However, as shown in Figure 8b, when a record (cell) on the page is
deleted, the SQLite engine stores the page offset value where the deleted record starts in
the first freeblock. In this way we can analyze whether there is any deleted data on that
page and where the deleted data is.

After analyzing the start offset of the deleted cell using the page header, the next step
is to analyze the cell. According to the cell structure discussed in Section 3.2, the size of
each column can be calculated and carved sequentially (see Figure 8). However, in this
study, we adopted Keyword Search for detecting deleted cells instead of existed method.
Although Keyword Search takes a long time, it is the most sophisticated way to find the data
you want to find with the raw level.

Sustainability 2022, 14, 13281 8 of 15

3.5. Summary

In Section 3, we discussed how easy it is to get backup data from a locked iPhone.
Without app-level software data protection, unencrypted data could easily be leaked,
leading to privacy breaches. We also discussed the basic structure of SQLite and how to
recover deleted cells. As discussed above, it was found that generally deleted data remains
as it is unless it is completely deleted. Additionally, after finding the data page (It starts
with 0 × 0D) and checking the deleted offset, it was confirmed that the deleted cell can
be recovered. In the next chapter, we will analyze how deleted messages are managed by
two popular mobile messengers through an experiment.

4. Experimental Environments
4.1. Message Deletion Events of Target Messengers

There are three main ways to delete an instant message from a mobile device. The first
method consists of deleting a specific chat log from the chat room. Both WhatsApp and
WeChat offer the ability to delete specific conversations from chat rooms. The second is to
delete the chat room. When a chat room is deleted, all users’ messages in the chat room are
also deleted, and the chat room’s users must be searched to begin messaging again. The
third is to delete the instant messaging app. When the instant messages app is deleted, all
chatting records using the app are also deleted. This study experimented with deleting the
chat log and deleting the chatroom. The related detailed deletion method will be discussed
again in Experimental Environments.

4.2. Tools and Experiment Environment

For this study, an experiment was conducted to detect deleted data in each mobile
messenger based on the SQLite logical structure and the deleted data detection method,
the results of which are summarized below. The backup data from Apple iPhone XS of the
sender was created using iTunes, and the experiment was conducted on messenger app
data acquired from it. The reason for using the backup data is that there is virtually no
way of physically acquiring data (acquiring the entire storage area as a bitstream) for a
digital forensic investigation performed on Apple iPhones. Therefore, it is reasonable to
acquire data in the most similar way to the environment performed in actual practice and
conduct digital forensic experiments on it. This study used the latest version of the mobile
messenger that could be downloaded from the Apps Store at the time of the experiment.
The detailed experimental environment is presented in the table below (see Table 2).

The scenario for experimenting is as follows. First, it is assumed that the acquisition
target device is an iPhone turned on but cannot be unlocked because the password is
unknown. As previously discussed, if the iPhone is locked and the password is unknown,
the backup file should be analyzed as the next best solution. A laptop computer used
by the user was found, and UDID.plist generated from the suspect’s iPhone information
was collected from the laptop computer. The analyst copied and moved UDID.plist to the
analyst’s forensic workstation, connected the user’s iPhone, acquired backup data using
iTunes, and analyzed it.

4.3. Experimental Method

For this study, the keyword ajVVicFO09 was used to experiment with deleting part of
the chat log in the chatroom, and qWMLuPMX6h was used to experiment with deleting the
chatroom (see Figures 9 and 10).

Sustainability 2022, 14, 13281 9 of 15

Table 2. Properties of the experimental environment.

Category Property Value

Forensic Workstation

OS Microsoft Windows 11

Platform INTEL X64

File system NTFS

Target Device
(Evidence)

Model Apple iPhone XS

Capacity 64 GB

Software Version iOS 15.4.1

File system APFS

Instant Messenger
WhatsApp Version v2.22.6.74

WeChat Version v8.0.18

Data Acquisition
Method Logical (Backup File)

Tool iTunes v12.12.3.5

Experiment
Keyword

For deleting part of the chat Message ajVVicFO09

For deleting chatroom qWMLuPMX6h

Forensics Tools for
Analysis

SQLite DB Browser DB Browser for SQLite v3.12.2

Backup Reconstructor iMazing v2.14.8

Hexadecimal Comparison Beyond Compare4 v4.4.2

Keyword Search dnGrep v3.0.42.0

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 15

Table 2. Properties of the experimental environment.

Category Property Value

Forensic Work-
station

OS Microsoft Windows 11
Platform INTEL X64

File system NTFS

Target Device
(Evidence)

Model Apple iPhone XS
Capacity 64 GB

Software Version iOS 15.4.1
File system APFS

Instant Messenger
WhatsApp Version v2.22.6.74

WeChat Version v8.0.18

Data Acquisition
Method Logical (Backup File)

Tool iTunes v12.12.3.5

Experiment
Keyword

For deleting part of the chat Mes-
sage ajVVicFO09

For deleting chatroom qWMLuPMX6h

Forensics Tools for
Analysis

SQLite DB Browser DB Browser for SQLite v3.12.2
Backup Reconstructor iMazing v2.14.8

Hexadecimal Comparison Beyond Compare4 v4.4.2
Keyword Search dnGrep v3.0.42.0

The scenario for experimenting is as follows. First, it is assumed that the acquisition
target device is an iPhone turned on but cannot be unlocked because the password is un-
known. As previously discussed, if the iPhone is locked and the password is unknown,
the backup file should be analyzed as the next best solution. A laptop computer used by
the user was found, and UDID.plist generated from the suspect’s iPhone information was
collected from the laptop computer. The analyst copied and moved UDID.plist to the an-
alyst’s forensic workstation, connected the user’s iPhone, acquired backup data using
iTunes, and analyzed it.

4.3. Experimental Method
For this study, the keyword ajVVicFO09 was used to experiment with deleting part

of the chat log in the chatroom, and qWMLuPMX6h was used to experiment with deleting
the chatroom (see Figures 9 and 10).

Figure 9. Deleting part of the WhatsApp chat history used in the experiment (Same in WeChat). Figure 9. Deleting part of the WhatsApp chat history used in the experiment (Same in WeChat).

4.3.1. Delete Part of Chat Message

The experiment was conducted in the following order to check the change of SQLite
data for the deleted message.

1. After launching the instant messenger app (WhatsApp or WeChat) on the iPhone,
send a message composed of ajVVicFO09.

2. When the receiver confirms the message, delete the ajVVicFO09 message, close the
app, and lock the phone.

3. After copying and saving UDID.plist to the forensic workstation, create a backup file
using iTunes.

Sustainability 2022, 14, 13281 10 of 15

4. Extract the instant messenger app (WhatsApp or WeChat) to be analyzed using
iMazing to reconstruct the created backup file.

5. Check the SQLite database file where the conversation contents are saved from the
extracted app data, and search and analyze the traces of the ajVVicFO09 message.

Sustainability 2022, 14, x FOR PEER REVIEW 10 of 15

Figure 10. Deleting chat room of the WhatsApp used in the experiment (Same in WeChat).

4.3.1. Delete Part of Chat Message
The experiment was conducted in the following order to check the change of SQLite

data for the deleted message.
1. After launching the instant messenger app (WhatsApp or WeChat) on the iPhone,

send a message composed of ajVVicFO09.
2. When the receiver confirms the message, delete the ajVVicFO09 message, close the

app, and lock the phone.
3. After copying and saving UDID.plist to the forensic workstation, create a backup file

using iTunes.
4. Extract the instant messenger app (WhatsApp or WeChat) to be analyzed using

iMazing to reconstruct the created backup file.
5. Check the SQLite database file where the conversation contents are saved from the

extracted app data, and search and analyze the traces of the ajVVicFO09 message.

Figure 10. Deleting chat room of the WhatsApp used in the experiment (Same in WeChat).

4.3.2. Delete Chatroom

The experiment was conducted in the following order to check the change of SQLite
data for deleted chatroom.

1. After launching the instant messenger app (WhatsApp or WeChat) on the iPhone,
send a message composed of qWMLuPMX6h.

2. When the receiver confirms the message, delete the chat room, close the app, and lock
the phone.

3. After copying and saving UDID.plist to the forensic workstation, create a backup file
using iTunes.

4. Extract the instant messenger app (WhatsApp or WeChat) to be analyzed using
iMazing to reconstruct the created backup file.

5. Check the SQLite database file where the conversation contents are saved from the
extracted app data, and search to analyze the traces of the qWMLuPMX6h message.

5. Verification Results
5.1. WhatsApp
5.1.1. Delete Chat Message

As shown in Figure 9, after sending the unique keyword ajVVicFO09 used in the
experiment as a message, it was searched using dnGrep to specify the SQLite database file
in which the data were stored. The result confirmed that the data stored in ChatStorage.sqlite
in the AppDomainGroup-group.net.whatsapp.WhatsApp.shared/directory. The content of mes-
sages exchanged between users is stored in the ZTEXT column of the ZWAMESSAGE table
(see Table 3) [19].

Checking the hexadecimal code in ChatStorage.sqlite confirmed that the experiment’s
keyword ajVVicFO09 was stored normally (see Figure 11).

Sustainability 2022, 14, 13281 11 of 15

Table 3. Table scheme of ZWAMESSAGE in ChatStorage.sqlite.

No Column Name Declared Type Default Value Not Null

1 Z_PK INTEGER 0 FALSE

2 Z_ENT INTEGER 0 FALSE

3 Z_OPT INTEGER 0 FALSE

4 ZCHILDMESSAGESDELIVEREDCOUNT INTEGER 0 FALSE

(skip 26 columns)

31 ZPUSHNAME VARCHAR 0 FALSE

32 ZSTANZAID VARCHAR 0 FALSE

33 ZTEXT VARCHAR 0 FALSE

34 ZTOJID VARCHAR 0 FALSE
Sustainability 2022, 14, x FOR PEER REVIEW 12 of 15

Figure 11. Message keyword ajVVicFO09 in ChatStorage.sqlite of WhatsApp messenger.

Figure 12. Comparison of before and after according to deletion of ZTEXT column data.

5.1.2. Delete Chatroom
The unique keyword qWMLuPMX6h was sent via a message, and the chatroom was

deleted to observe changes in data following its deletion. Afterward, the experimental
keyword was searched in the backup files but was not found.

5.2. WeChat
5.2.1. Delete Chat-Log

Experiments with WeChat were conducted in the same way as WhatsApp. Like
WhatsApp, the unique keyword ajVVicFO09 was sent as a message, and it was searched
using dnGrep to specify the SQLite database file containing the data. The result confirmed
that the data were stored in message_2.sqlite in the AppDomain-com.tencent.xin/Docu-
ments/8750670c8c1f06f1d8b1f62c47637fa1/DB/directory. The
8750670c8c1f06f1d8b1f62c47637fa1 value in the directory path is estimated to be a unique
value generated by the app, and the content of messages exchanged by users is stored in
the Message column of the Chat_bf2456a533c56bf9488ab126ae200ea2 table (see Table 4). The
bf2456a533c56bf9488ab126ae200ea2 value included in the table name is estimated to be a
unique value composed of information about the chat partner.

Table 4. Table Scheme of Chat_bf2456a533c56bf9488ab126ae200ea2 in message_2.sqlite.

No Column Name
Declared

Type Default Value Not Null

1 CreateTime INTEGER 0 FALSE
2 Des INTEGER FALSE

Figure 11. Message keyword ajVVicFO09 in ChatStorage.sqlite of WhatsApp messenger.

Checking the data after the deletion showed that the record (cell) in the ZWAMESSAGE
table where the message was stored had not been deleted but maintained. However, it was
confirmed that the ZTEXT column of the corresponding cell was updated to NULL, and
the corresponding area was reduced (see Figure 12).

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 15

Figure 11. Message keyword ajVVicFO09 in ChatStorage.sqlite of WhatsApp messenger.

Figure 12. Comparison of before and after according to deletion of ZTEXT column data.

5.1.2. Delete Chatroom
The unique keyword qWMLuPMX6h was sent via a message, and the chatroom was

deleted to observe changes in data following its deletion. Afterward, the experimental
keyword was searched in the backup files but was not found.

5.2. WeChat
5.2.1. Delete Chat-Log

Experiments with WeChat were conducted in the same way as WhatsApp. Like
WhatsApp, the unique keyword ajVVicFO09 was sent as a message, and it was searched
using dnGrep to specify the SQLite database file containing the data. The result confirmed
that the data were stored in message_2.sqlite in the AppDomain-com.tencent.xin/Docu-
ments/8750670c8c1f06f1d8b1f62c47637fa1/DB/directory. The
8750670c8c1f06f1d8b1f62c47637fa1 value in the directory path is estimated to be a unique
value generated by the app, and the content of messages exchanged by users is stored in
the Message column of the Chat_bf2456a533c56bf9488ab126ae200ea2 table (see Table 4). The
bf2456a533c56bf9488ab126ae200ea2 value included in the table name is estimated to be a
unique value composed of information about the chat partner.

Table 4. Table Scheme of Chat_bf2456a533c56bf9488ab126ae200ea2 in message_2.sqlite.

No Column Name
Declared

Type Default Value Not Null

1 CreateTime INTEGER 0 FALSE
2 Des INTEGER FALSE

Figure 12. Comparison of before and after according to deletion of ZTEXT column data.

5.1.2. Delete Chatroom

The unique keyword qWMLuPMX6h was sent via a message, and the chatroom was
deleted to observe changes in data following its deletion. Afterward, the experimental
keyword was searched in the backup files but was not found.

Sustainability 2022, 14, 13281 12 of 15

5.2. WeChat
5.2.1. Delete Chat-Log

Experiments with WeChat were conducted in the same way as WhatsApp. Like What-
sApp, the unique keyword ajVVicFO09 was sent as a message, and it was searched using
dnGrep to specify the SQLite database file containing the data. The result confirmed that the
data were stored in message_2.sqlite in the AppDomain-com.tencent.xin/Documents/8750670c8c
1f06f1d8b1f62c47637fa1/DB/directory. The 8750670c8c1f06f1d8b1f62c47637fa1 value in the di-
rectory path is estimated to be a unique value generated by the app, and the content of mes-
sages exchanged by users is stored in the Message column of the Chat_bf2456a533c56bf9488ab
126ae200ea2 table (see Table 4). The bf2456a533c56bf9488ab126ae200ea2 value included in
the table name is estimated to be a unique value composed of information about the
chat partner.

Table 4. Table Scheme of Chat_bf2456a533c56bf9488ab126ae200ea2 in message_2.sqlite.

No Column Name Declared Type Default Value Not Null

1 CreateTime INTEGER 0 FALSE

2 Des INTEGER FALSE

3 ImgStatus INTEGER 0 FALSE

4 MesLocalID INTEGER FALSE

5 Message TEXT FALSE

6 MesSvrID INTEGER 0 FALSE

7 Status INTEGER 0 FALSE

8 TableVer INTEGER 1 FALSE

9 Type INTEGER FALSE

Checking the hexadecimal code in message_2.sqlite confirmed that the experimental
keyword ajVVicFO09 was stored normally (see Figure 13).

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 15

3 ImgStatus INTEGER 0 FALSE
4 MesLocalID INTEGER FALSE
5 Message TEXT FALSE
6 MesSvrID INTEGER 0 FALSE
7 Status INTEGER 0 FALSE
8 TableVer INTEGER 1 FALSE
9 Type INTEGER FALSE

Checking the hexadecimal code in message_2.sqlite confirmed that the experimental
keyword ajVVicFO09 was stored normally (see Figure 13).

Figure 13. Message Keyword ajVVicFO09 in message_2.sqlite of WeChat Messenger.

A check of the data after deletion showed that the record (cell) stored in the
Chat_bf2456a533c56bf9488ab126ae200ea2 table, which stored the message, had been de-
leted. Moreover, it was confirmed that the record (cell) area in which the data were stored
existed but had been updated to 0x00 (see Figure 14).

Figure 14. Comparison of before and after according to deletion of message column data.

5.2.2. Delete Chatroom
As with WhatsApp, a unique keyword qWMLuPMX6h was sent as a message, and

the experimental keyword was searched in the backup data to observe data changes after
deleting the chatroom, but it was not found.

5.3. Discussion
When the SQLite database record is deleted, if the database shrink function or other

application-level deletion does not work, it is possible to recover the deleted record. How-
ever, the experimental results confirmed that the deleted column data or cell data could
not be recovered from iPhone backup data for both instant messengers examined in this
study (see Table 5). This is because the deletion process of both instant messengers was
operated not only at the SQLite database level but at the app level. The results of this

Figure 13. Message Keyword ajVVicFO09 in message_2.sqlite of WeChat Messenger.

A check of the data after deletion showed that the record (cell) stored in the Chat_bf2456
a533c56bf9488ab126ae200ea2 table, which stored the message, had been deleted. Moreover,
it was confirmed that the record (cell) area in which the data were stored existed but had
been updated to 0 × 00 (see Figure 14).

Sustainability 2022, 14, 13281 13 of 15

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 15

3 ImgStatus INTEGER 0 FALSE
4 MesLocalID INTEGER FALSE
5 Message TEXT FALSE
6 MesSvrID INTEGER 0 FALSE
7 Status INTEGER 0 FALSE
8 TableVer INTEGER 1 FALSE
9 Type INTEGER FALSE

Checking the hexadecimal code in message_2.sqlite confirmed that the experimental
keyword ajVVicFO09 was stored normally (see Figure 13).

Figure 13. Message Keyword ajVVicFO09 in message_2.sqlite of WeChat Messenger.

A check of the data after deletion showed that the record (cell) stored in the
Chat_bf2456a533c56bf9488ab126ae200ea2 table, which stored the message, had been de-
leted. Moreover, it was confirmed that the record (cell) area in which the data were stored
existed but had been updated to 0x00 (see Figure 14).

Figure 14. Comparison of before and after according to deletion of message column data.

5.2.2. Delete Chatroom
As with WhatsApp, a unique keyword qWMLuPMX6h was sent as a message, and

the experimental keyword was searched in the backup data to observe data changes after
deleting the chatroom, but it was not found.

5.3. Discussion
When the SQLite database record is deleted, if the database shrink function or other

application-level deletion does not work, it is possible to recover the deleted record. How-
ever, the experimental results confirmed that the deleted column data or cell data could
not be recovered from iPhone backup data for both instant messengers examined in this
study (see Table 5). This is because the deletion process of both instant messengers was
operated not only at the SQLite database level but at the app level. The results of this

Figure 14. Comparison of before and after according to deletion of message column data.

5.2.2. Delete Chatroom

As with WhatsApp, a unique keyword qWMLuPMX6h was sent as a message, and
the experimental keyword was searched in the backup data to observe data changes after
deleting the chatroom, but it was not found.

5.3. Discussion

When the SQLite database record is deleted, if the database shrink function or other
application-level deletion does not work, it is possible to recover the deleted record. How-
ever, the experimental results confirmed that the deleted column data or cell data could not
be recovered from iPhone backup data for both instant messengers examined in this study
(see Table 5). This is because the deletion process of both instant messengers was operated
not only at the SQLite database level but at the app level. The results of this experiment
were conducted on the backup data acquired from the sender’s mobile device, but the
receiver’s mobile phone has the same result.

Table 5. Verification result of privacy protection reliability regarding iOS-based instant messenger.

Category SQLite File Deletion Subject
The Deleted Area on Page

Message Privacy
Column Data Cell

WhatsApp ChatStorage.sqlite
Part of message Update with NULL

(shrink) Exists Protected

Chat room Message not found

WeChat Message_2.sqlite
Part of message Updated whole cell area with 0 × 00 Protected

Chat room Message not found

In other hand, we must continue to consider many further discussions on various ways
to protect privacy in the future. For example, Qu (2020) proposed a customizable reliable
differential privacy model (CRDP), which provides customizable protection on each indi-
vidual while being attack-proof for optimizing the tradeoff between customizable privacy
preservation and data utility [20]. Additionally, Feng (2020) proposed PMF, a privacy-
preserving mobility prediction framework via federated learning, to solve this problem
without significantly sacrificing the prediction performance [21]. As such, various methods
of protecting privacy have been researched and presented, so it should be highly considered
to use the most suitable method according to the privacy surrounding environment.

6. Conclusions and Future Works

With the diffusion of mobile devices and Internet hyperconnectivity technology, all
daily living records of individuals are being recorded on mobile devices in real-time.
Especially smartphones are widely distributed, and a considerable amount of user data is
being stored in them. This study verified the reliability of the user’s privacy protection by
acquiring smartphone data through the creation of backup data from a locked iPhone in a

Sustainability 2022, 14, 13281 14 of 15

restricted environment and checking the traces after deleting the instant messenger message
sent by the user in the collected data. When the SQLite database record is deleted, if the
database shrink function or other application-level deletion does not work, it is possible to
recover the deleted record. However, the analysis of the iPhone backup data confirmed
that the SQLite data for deleted messages could not be recovered in this study. The deleted
message was stored in the SQLite file of the iPhone backup data was overwritten with
0 × 00 or updated with a NULL value, making it impossible to recover the deleted message,
so it confirmed that the user privacy is safely protected. The deletion process was operated
at the app level. This has a positive effect in terms of privacy security. This study confirmed
the data storage structure, such as the SQLite database file containing the chat message and
the related table, making it practically useful. In the future, it is necessary to verify that
the same experimental results are obtained when directly stored in the mobile disk space,
such as audio and video, as well as text stored in the SQLite database. In addition, further
studies on the verification of privacy protection reliability are needed by confirming the
recoverability for global messengers not covered in this study.

Author Contributions: Conceptualization, J.S.; Data curation, J.S.; Formal analysis, J.S.; Funding
acquisition, J.-T.S.; Investigation, J.S.; Methodology, J.S.; Project administration, J.-T.S.; Resources, J.S.;
Software, J.S.; Supervision, J.-T.S.; Validation, J.S. and J.-T.S.; Visualization, J.S.; Writing—original
draft, J.S.; Writing—review and editing, J.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Nuclear Safety and Security Commission (NSSC) of the
Republic of Korea (No. 2106058, 40%), the Korea government (MSIT) (No.2021-0-01806, Development
of security by design and security management technology in smart factory, 40%), and the Gachon
University research fund of 2021(GCU-202106330001, 20%).

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by the Nuclear Safety Research Program through
the Korea Foundation of Nuclear Safety (KoFONS) and Institute of Information & communications
Technology Planning & Evaluation (IITP), and Gachon University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. You, G.; Kim, G.; Cho, S.J.; Han, H. A comparative study on Optimization, Obfuscation, and Deobfuscation tools in Android. J.

Internet Serv. Inf. Secur. 2021, 11, 2–15.
2. Domingues, P.; Nogueira, R.; Francisco, J.C.; Frade, M. Analyzing TikTok from a digital forensics perspective. J. Wirel. Mob. Netw.

Ubiquitous Comput. Dependable Appl. 2021, 12, 87–115.
3. Nakashima, E.; Albergotti, R. The FBI Wanted to Unlock the San Bernardino Shooter’s iPhone. It Turned to a Little-Known

Australian Firm. Available online: https://www.washingtonpost.com/technology/2021/04/14/azimuth-san-bernardino-apple-
iphone-fbi/ (accessed on 21 April 2022).

4. Mahalik, H.; Edwards, S.; Murphy, C. iPhone Forensics-Separating the Facts from Fiction. A Technical Autopsy of the Apple/FBI
Debate. Available online: https://www.sans.org/webcasts/iphone-forensics-separating-facts-fiction-technical-autopsy-apple-
fbi-debate-101890/ (accessed on 25 March 2022).

5. Hong, H. The Number of Password Cases Alone Is 56 Billion. iPhone Password That Even the FBI Can’t Solve. Available online:
https://www.mk.co.kr/news/society/view/2022/04/321122/ (accessed on 11 May 2022).

6. Dixon, S. Most Popular Global Mobile Messenger Apps as of January 2022, Based on Number of Monthly Active Users. Statista.
Available online: https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/ (accessed on 8
May 2022).

7. Anglano, C. Forensic analysis of WhatsApp messenger on Android smartphones. Forensic Sci. Int. Digit. Investig. 2014, 11,
201–221. [CrossRef]

8. Han, J.; Lee, S. A Practical Approach to Analyze Smartphone Backup Data as a Digital Evidence. DFRWS, USA. Available online:
https://dfrws.org/presentation/a-practical-approach-to-analyze-smartphone-backup-data-as-a-digital-evidence/ (accessed on
22 May 2022).

9. Shimmi, S.S.; Dorai, G.; Karabiyik, U.; Aggarwal, S. Analysis of iOS SQLite schema evolution for updating forensic data extraction
tools. In Proceedings of the 8th International Symposium on Digital Forensics and Security (ISDFS), Beirut, Lebanon, 1–2 June
2020; pp. 1–7.

https://www.washingtonpost.com/technology/2021/04/14/azimuth-san-bernardino-apple-iphone-fbi/
https://www.washingtonpost.com/technology/2021/04/14/azimuth-san-bernardino-apple-iphone-fbi/
https://www.sans.org/webcasts/iphone-forensics-separating-facts-fiction-technical-autopsy-apple-fbi-debate-101890/
https://www.sans.org/webcasts/iphone-forensics-separating-facts-fiction-technical-autopsy-apple-fbi-debate-101890/
https://www.mk.co.kr/news/society/view/2022/04/321122/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
http://doi.org/10.1016/j.diin.2014.04.003
https://dfrws.org/presentation/a-practical-approach-to-analyze-smartphone-backup-data-as-a-digital-evidence/

Sustainability 2022, 14, 13281 15 of 15

10. Jeon, S.; Bang, J.; Byun, K.; Lee, G.; Lee, S. The method of recovery for deleted record in the unallocated space of SQLite database.
J. Korea Inst. Inf. Secur. Cryptol. 2011, 21, 143–154.

11. Jung, B.; Han, J.; Choi, H.; Lee, S. A study on the possibility of recovering deleted data through analysis of SQLite Journal in
messenger application. J. Digit. Forensic 2018, 12, 11–20.

12. Property List. Available online: https://en.wikipedia.org/wiki/Property_list (accessed on 17 May 2022).
13. Satish, B. Forensic Analysis of iPhone Backups. Available online: https://www.exploit-db.com/docs/english/19767-forensic-

analysis-of-ios5-iphone-backups.pdf (accessed on 2 June 2022).
14. Apple Platform Security. Available online: https://support.apple.com/ko-kr/guide/security/welcome/web (accessed on 2

June 2022).
15. About the ‘Trust This Computer’ Alert on Your iPhone, iPad, or iPod Touch. Available online: https://support.apple.com/en-us/

HT202778 (accessed on 2 June 2022).
16. The Database Header. Available online: https://sqlite.org/fileformat.html#the_database_header (accessed on 18 May 2022).
17. B-Tree Pages. Available online: https://sqlite.org/fileformat.html#b_tree_pages (accessed on 18 May 2022).
18. Jeon, S.; Bang, J.; Byun, K.; Lee, S. A recovery method of deleted record for SQLite database. Pers. Ubiquitous Comput. 2011, 16,

707–715. [CrossRef]
19. Khalid, Y. Extracting WhatsApp Messages from an iOS Backup. Available online: https://yasoob.me/posts/extracting-whatsapp-

messages-from-ios-backup/ (accessed on 6 March 2022).
20. Qu, Y.; Yu, S.; Zhou, W.; Chen, S.; Wu, J. Customizable Reliable Privacy-Preserving Data Sharing in Cyber-Physical Social

Networks. IEEE Trans. Netw. Sci. Eng. 2021, 8, 269–281. [CrossRef]
21. Feng, J.; Rong, C.; Sun, F.; Guo, D.; Li, Y. PMF: A Privacy-preserving Human Mobility Prediction Framework via Federated

Learning. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–21. [CrossRef]

https://en.wikipedia.org/wiki/Property_list
https://www.exploit-db.com/docs/english/19767-forensic-analysis-of-ios5-iphone-backups.pdf
https://www.exploit-db.com/docs/english/19767-forensic-analysis-of-ios5-iphone-backups.pdf
https://support.apple.com/ko-kr/guide/security/welcome/web
https://support.apple.com/en-us/HT202778
https://support.apple.com/en-us/HT202778
https://sqlite.org/fileformat.html#the_database_header
https://sqlite.org/fileformat.html#b_tree_pages
http://doi.org/10.1007/s00779-011-0428-7
https://yasoob.me/posts/extracting-whatsapp-messages-from-ios-backup/
https://yasoob.me/posts/extracting-whatsapp-messages-from-ios-backup/
http://doi.org/10.1109/TNSE.2020.3036855
http://doi.org/10.1145/3381006

	Introduction
	Related Works
	Background
	Acquisition Method of Locked iPhone
	SQLite Logical Structure
	Cell Structure
	Existing Method Detection and Recovery of Deleted Cell
	Summary

	Experimental Environments
	Message Deletion Events of Target Messengers
	Tools and Experiment Environment
	Experimental Method
	Delete Part of Chat Message
	Delete Chatroom

	Verification Results
	WhatsApp
	Delete Chat Message
	Delete Chatroom

	WeChat
	Delete Chat-Log
	Delete Chatroom

	Discussion

	Conclusions and Future Works
	References

