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Abstract: Sustainable supply chains depend on three critical decisions: production, inventory man-
agement, and distribution with reverse flows. To achieve an effective level of operational performance,
policymakers must consider all these decisions, especially in Closed-Loop Supply Chains (CLSCs)
with remanufacturing option. In this research paper, we address the Integrated Production-Inventory-
Routing Problem with Remanufacturing (IPIRP-R) of returned End-Of-Life (EOL) products. The
aim behind solving this optimization problem is to minimize conjointly the total manufacturing,
remanufacturing, setup, inventory, and routing costs over the planning horizon. A two-phase de-
composition heuristic is developed to solve the model iteratively. Our study finds its originality in
the fact of jointly optimizing the Capacitated Lot-Sizing Problem with Remanufacturing (CLSP-R)
option and the Vehicle Routing Problem with Simultaneous Pick-up and Delivery (VRPSPD) in a
single framework. Numerical results showed that our solution approach provides good solutions
regarding small and medium-scale size instances under acceptable computational time, especially for
problems occurring with significant manufacturing and remanufacturing costs under relatively low
pickup requests.

Keywords: Integrated Production-Inventory-Routing Problem; lot-sizing problem with remanufacturing;
Vehicle Routing Problem (VRP); simultaneous pick-up and delivery; reverse logistics; Mixed Integer
Linear Programming (MILP); decomposition heuristic

1. Introduction

In a traditional supply chain, the complexity of joint planning of production, inventory,
and distribution operations, as well as the lack of information shared between stakeholders
have led to dealing with these operations in a separate manner. Nowadays, companies are
realizing the importance of improving their supply chains which are becoming increasingly
complex. In fact, several industries, such as beverage production and the pharmaceutical
industry, exhibit fluctuations in the production rate between production periods. They also
need to pick up EOL products for economic and regulatory reasons. As a result, industrial
decision-makers perceive the coordination and integration of production, inventory man-
agement and distribution operations as an opportunity for a competitive advantage. This
advantage can be increased and sustainable if this integration is considered in the context
of CLSCs. Accordingly, several companies have recently made efforts to integrate the
concept of reverse logistics within their decision-making systems for several purposes such
as the growing concern about the industrial impact on the environment, the restrictions of
regulations and laws, government regulations on recycled products and waste disposal,
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and increased energy consumption, as well as strong competition between companies.
Figure 1 depicts a typical industrial example of CLSC from the beverage industry.
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Figure 1. Typical beverage industry direct-reverse supply chain.

The integration of the production-inventory-distribution triplet in the context of re-
verse logistics can generate considerable benefits both economically (e.g., reduction in
operational costs) and environmentally (e.g., reduction in carbon emissions). Additionally,
integrating production, inventory and distribution decisions into a single problem is rele-
vant for certain types of goods, especially perishable or time-sensitive ones. Therefore, the
integration of these decision problems has attracted research interest due to the benefits
provided by the coordination of these operations. However, due to the presence of return
recovery activities, reverse logistics imposes new constraints on the management of the
overall CLSC system. Indeed, the introduction of the concept of reverse supply chains has
created many challenges with respect to logistics network design problems, transportation,
used products selection, supplier selection and evaluation, yield management, remanufac-
turing, disassembly, etc. The main inherent difficulties that arise in managing EOL product
returns include uncertainty (e.g., EOL returns quantity and quality prediction, random for
demand remanufactured products, processing times . . . ), balancing returns and demand,
reverse distribution, etc. Therefore, the need for a returns management system seems
essential. This information system can support and respond to reverse logistics impli-
cations and should be able to deal with the information relevant to each of the required
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activities, such as return management, inventory management, production (manufacturing
and remanufacturing) planning, and product improvement.

Among the various studies existing in the literature, IPIRP consisting of jointly opti-
mized decisions of production, inventory, distribution and routing has recently received
considerable attention [1]. In an IPIRP, single or multiple plants are responsible for produc-
ing products (single or multiple) and delivering them to multiple retailers or customers
over a multi-period time horizon by jointly considering all of these decisions [2]. A solution
for the IPIRP consists of deciding for each period: (1) the amount to produce at the central
plant; (2) how much to deliver to each customer; (3) the amount of goods to be held at
the central plant and at each customer; and (4) how to organize vehicle routes for each
scheduled delivery. These decisions typically have to be made within a finite planning
horizon consisting of multiple time periods. The aim is to jointly minimize production
inventory, setup, and routing costs ([3,4]).

The IPIRP generalizes the Inventory Routing Problem (IRP) when considering produc-
tion decisions. It can also be seen as a generalization of the classical Lost-Sizing Problem
(LSP) and the VRP. Although the IPIRP is NP-hard, it can enhance synchronization, save
product costs, and improve customer service levels. This has been demonstrated in numer-
ous studies and real-world applications.

Although the fact the classical IPIRP has been the subject of in-depth research for the
past decades, certain aspects of the problem have not been tackled in the recent literature.
In the context of CLSCs with remanufacturing option, this problem has not, as far as we can
tell, received enough attention. As part of this study, our objective is to design mathematical
models and develop optimization approaches to solve the integrated planning problem of
production, inventory, and direct-reverse distribution operations in the context of closed-
loop supply chains with remanufacturing option. This integrated planning problem is a
generalization of the classical IPIRP insofar as it additionally integrates decisions relating
to the recovery and remanufacturing of EOL products. We have answered the following
questions:

- How can we jointly design and optimize the integrated planning problem of produc-
tion, inventory, and distribution operations with reverse logistics consideration and
remanufacturing option?

- Given the complexity of his problem, would it be possible to solve the medium and
large instances? up to what problem sizes can optimal/near-optima solutions be
found?

- Finally, how could the aspect of remanufacturing EOL products contribute to the re-
duction in operational costs and consequently contribute to the economic performance
of CLSCs?

Thus, the contributions of our study to the literature can be summarized as follows:

(a) It provides a variant of the classical IPIRP with direct and reverse flows as well as
remanufacturing option. The direct-reverse distribution with simultaneous pickups
and deliveries is now coupled with the Capacitated VRP (CVRP), which has been
addressed in the recent IPIRP literature.

(b) The study offers a new mathematical formulation for the IPIRP-R problem with
reverse logistics considerations. In contrast to most existing modeling approaches on
the IPIRP, the IPIRP-R model covers additional costs related to remanufacturing EOL
products at the total cost function level, as well as new constraints related to returns
management.

(c) This study designs and implements a modified iterative decomposition heuristic
inspired by [5]. To the best of our knowledge, the decomposition heuristic-based
algorithm has not been adopted yet to tackle the IPIRP with remanufacturing option.

(d) The study provides extensive computational experiments to assess the efficiency and
limits of the proposed solution approach. A set of randomly generated instances
were used to test the proposed heuristic against cutting-edge optimization software.
According to numerical results on benchmark instances, the decomposition heuristic
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provides competitive solutions for the smaller instances and is capable of finding
good feasible solutions in competitive computational times for the medium instances,
which exceed the current capabilities of the solver.

(e) Finally, this study highlights the effects of remanufacturing parameters on the balance
between manufacturing and remanufacturing operations through a sensitivity analy-
sis and relevant management information provided. Possible industrial applications
of the solutions outlined in this paper could be, but are not limited to, the production
and distribution of newspapers, returnable and reusable packaging products, and
beverage and perishable products industries.

Following is the outline of this paper. We provide a brief overview of related works on
the IPIRP problem in Section 2. Section 3 formally describes the problem studied. Section 4
provides the mathematical formulation of the IPIRP-R problem. The developed solution
approach is then presented in Section 5. Computational experiments and obtained results
are provided in Section 6. In Section 7, we conclude with discussions on future research
directions.

2. Related Literature

Since it was first introduced by [6], the IPIRP has received extensive research interest
and finds its application in several areas and finds its application in several areas. Ta-
ble 1 shows the most interesting application areas of the IPRIP occurring in the context
of forward supply chains. In particular, this problem has been used extensively in the
newspaper production and distribution industry, as well as in the food and perishable
products industries. Furthermore, recent research works and real-life case studies have
demonstrated that effective production, inventory, and routing activity coordination can
increase synchronization, save product costs, and enhance service levels [7]. In comparison
to the conventional sequential approach, where routing decisions are taken into account
after developing the production plan, [8] notes that integrated production, inventory, and
routing planning may result in savings ranging from 3% to 20% [9]. Another example
illustrating the economic benefits that would be expected from effective coordination of
production, inventory and distribution activities, can be found in [10] where authors in-
dicate that the Kellogg company used the Kellogg Planning System (KPS), an integrated
planning system, and was able to save $4.5 million in 1995. Moreover, by integrating these
operational activities, customers can benefit from a high level of service with low stockout
risk [11,12]. Despite the fact that the coordination of supply chain decisions has constantly
progressed and attracted the attention of researchers, it remains a major challenge for in-
dustrials and researchers, especially in vendor-managed inventory (VMI) and Just-In-Time
(JIT) systems, where it often arises [13].

After addressing the economic importance of the joint integration of production, in-
ventory and routing decisions, a significant number of works have addressed several math-
ematical formulations and solving approaches for different variants of the IPIRP problem.
In the literature, the IPIRP can be characterized according to the following specifications:
(a) number of products (single or multiple); (b) number of plants (single or multiple); (c)
production and inventory systems capacity at the plant (limited or unlimited); and (d) back-
ordering (allowed or forbidden). Furthermore, most IPIRP variants addressed in the past
decade have been focused on multiple plants and heterogenous capacitated vehicles [14],
demand uncertainty [15,16], multi-item back-order [17], perishable products [18–20], multi-
scale production [21], multiple products and outsourcing [7], sequence-dependent setup
times and limited heterogeneous vehicles [15] and multi-item with a heterogenous fleet of
vehicles and multiple time windows and customers deadlines [9].

Furthermore, the IPIRP can be perceived as an integration of two-level lot-sizing and
VRP problems, both of which are quite difficult to solve [16]. Given the fact that the IPIRP is
NP-hard [22], there are only a few exact algorithms such as branch-and-bound [23], branch-
and-price [24–26], branch-and-cut [1,27], branch-and-cut guided search [13], mixed integer
formulation [5,6,25], Lagrangian relaxation [27] and benders decomposition [28] available
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in the literature and can solve small and medium-sized problems. Heuristics and meta-
heuristics are most preferred for the IPIRP, e.g., scatter search algorithm [29], approximation
algorithms [12,14,16], decoupled/iterative heuristic [24,30], greedy randomized neighborhood
searches [31], iterative mixed-integer programming [5], particle-swarm optimization [32],
multiphase heuristic [13,26,33], ant colony optimization [34], memetic algorithm [35], genetic
algorithms [36], tabu search algorithms [37,38], relax-and-fix heuristic [39] and mathematical
programming heuristic [40] have been used to solve several variants of the IPIRP. In addition,
the majority of these approximate methods have been tested on the benchmark instances
generated by [41] and [22]. To the best of our knowledge, the recent and most successful one is
the two-phase iterative heuristic proposed by [5] providing the best solutions for all available
instances. Readers can refer to [37] for a recent review.

On the other hand, the fierce competition that persists today between companies as
well as the growth of environmental awareness towards industrial activities have moti-
vated companies and policymakers to collaborate and jointly improve their operational
and environmental performance by incorporating the concept of reverse logistics within
their regular production-inventory-distribution decision systems. This can be achieved by
solving the IPIRP through CLSC. In contrast, the IPIRP has received less attention when
it comes to reverse logistics, with the exception of a few research works such as [3–6,13].
According to [38], managing reverse flows of EOL products through a typical CLSC net-
work, involves usually (1) EOL product pickup from costumers; (2) reverse logistics to
return the EOL products collected; (3) screening, matching and disposal to specify the most
economical reuse alternatives; (4) remanufacturing; and (5) remarketing to promote and
reach new markets. Figure 2 illustrates the generic concept of a CLSC with the different key
processes and steps of reverse logistics. Furthermore, refurbishment, repair or upgrade are
considered to be the important processes involved in the transformation of EOL products
through a remanufacturing operation [4]. In addition, the collection and remanufacturing of
EOL products as practices to reduce emissions and to be environmentally friendly are best
demonstrated through CLSCs ([3,4]). Furthermore, since [42] have emphasized the crucial
role that remanufacturing plays in sustainable supply chains, in particular those with a
closed-loop structure, several works that have addressed remanufacturing have mainly
focused on inventory systems with remanufacturing [43], economic aspects of remanufac-
turing [44], and marketing considerations [3,4,45]. Unfortunately, routing decisions within
inventory systems with remanufacturing option have received less attention.
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The IPIRP with reverse logistics, remanufacturing option and simultaneous delivery
and pickup considerations, has been addressed recently by several studies [3,4,13]. The
PRPRPD is the acronym given to this optimization problem, which was first presented
by [13]. The PRPRPD problem has been defined as a MILP model by the authors, who have
also developed a hybrid method that combines branch-and-cut with a search heuristic to
find the best solution. Researchers have also paid particular attention to the PRPRPD due to
its applications in the beverage, electrical appliance, and returnable/reusable transportation
industries [47]. The works research of [48,49] are examples of vehicle routing issues with
pickup and delivery.

Table 2 depicts the main characteristics of the selected IPIRP-related studies and
compares them with the problem addressed in this article. In summary, we notice that the
majority of research works related to the IPIRP literature conducted so far have focused
on the optimization of this problem within classical supply chains rather than closed-loop
ones. In addition, solution approaches such as decomposition heuristics, matheuristics
(MIP-based heuristics) and metaheuristics are the most preferred methods used to tackle
the complexity of solving IPIRP problems. In light of this, the purpose of our study is
to contribute to the study of the IPIRP with remanufacturing (IPIRP-R) and bridge gaps
related to the lack of studies dealing with the IPIRP with reverse logistics considerations,
by extending our previous studies [5,6] since we provide a new mathematical formulation
for the IPIRP with the option of remanufacturing (IPIRP-R) of returned EOL products
throughout a typical CLSC network involving a fleet of homogeneous capacitated vehicles
to perform simultaneous deliveries and pickups from customers.

The IPIRP-R we are studying in this article differs from the PRPRPD proposed by [13].
Indeed, authors have addressed the classic IPIRP in the context of CLSC with reverse
logistics and remanufacturing considerations following a “many-to-many” direct-reverse
distribution structure performed by a heterogeneous fleet of capacitated vehicles located
at depots dedicated, respectively, for manufacturing new products and remanufacturing
of EOL ones, and distinguish between pickup dedicated routes from those dedicated for
deliveries. In addition, retailers require that their inventory levels should be managed
by the supplier according to the Vendor Managed Inventory (VMI) policy. However, in
our study, we have adopted a “one-to-many-to-one” direct-reverse distribution structure
using a homogeneous fleet of vehicles with limited capacity available at the central plant
to perform deliveries and collections simultaneously. Regarding the optimization method
and given the NP-hardiness of the IPIRP-R, we propose a decomposition heuristic inspired
by [5] to deal with small and medium-scale size problems.

Table 1. Overview of the IPRP application areas.

A
pp

lic
at

io
n

ar
ea

s

Food industry [19,20,50,51]

Supply Chain and logistics [5,16,52]

Process
industries

Petrochemistry [53]

Gas production [54,55]

Furniture production [9,39]

Newspaper production/
distribution [36,56–58]

Forest production [59,60]

Emerging
issues

Sustainable supply
chains

Carbon emissions [23,32]

Energy efficiency [61,62]

Carbon emissions
regulation policies [19,20,24,63]

Reverse logistics [3,4,13,63–65]

Perishability of products [19,20,46,66]



Sustainability 2022, 14, 13563 7 of 30

Table 2. Summary of selected references on IPIRP.

Reference
Production Inventory Distribution

RL
Solution Method

#Plants #Product Rem. Policy Cap. Fleet #Vehicle Type Approach

[6] Single Multiple ML Hom. Unlimited H Decomposition

[8] Single Multiple ML Hom. Unlimited H Decomposition

[27] Single Multiple ML Hom. Limited H Lagrangian relaxation

[36] Single Multiple Hom. Multiple H Genetic algorithms

[14] Multiple Single ML 3 Het. Multiple H Decomposition

[41] Single Single ML 3 Hom. Multiple H GRASP

[67] Single Single ML 3 Hom. Multiple H Decomposition

[35] Single Single ML 3 Hom. Multiple H Memetic

[25] Single Single ML 3 Hom. Multiple H Tabu Search

[12,26] Single Single ML 3 Hom. Multiple H Branch-and-price (B&P)

[68] Single Multiple ML Hom. Multiple H Tabu Search

[33] Single Multiple ML 3 Hom. Single H Tabu Search

[22] Single Single ML/OU 3 Hom. Single E/H
B&C/Decomposition
iterative MIP based

heuristic

[34] Multiple Multiple Hom. Multiple H Ant Colony
Optimization (ACO)

[31] Single Single ML 3 Hom. Multiple H ALNS

[1] Single Single ML/OU 3 Hom. Multiple E/H B&C/ALNS

[5] Single Single ML 3 Hom. Multiple H
Decomposition

iterative MIP based
heuristic

[28] Single Single ML 3 Hom. Multiple E Benders-based B&C

[29] Single Single ML /OU 3 Hom. Multiple H Recherche de
dispersion

[17] Single Multiple ML 3 Hom. Single H Relax and Fix

[32] Single Single ML 3 Hom. Multiple H Particle Swarm
Optimization (PSO)

[24] Single Single ML 3 Hom. Single H B&P

[21] Multiple Multiple ML 3 Hom. Multiple H
Decomposition

iterative MIP based
heuristic

[16] Single Single ML 3 Hom. Multiple H
Decomposition

iterative MIP based
heuristic

[40] Single Single ML 3 Hom. Multiple H
Decomposition

iterative MIP based
heuristic

[69] Single Single ML 3 Hom. Multiple H Simulated annealing
algorithm

[3] Single Single 3 3 Hom. Single 3 E MILP

[13] Multiple Single 3 ML 3 Het. Multiple 3 E B&C guided search

[9] Single Multiple Het. Multiple E
Decomposition

iterative MIP based
heuristic
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Table 2. Cont.

Reference
Production Inventory Distribution

RL
Solution Method

#Plants #Product Rem. Policy Cap. Fleet #Vehicle Type Approach

[39] Single Multiple Hom. Single H Relax and Fix

[15] Single Multiple Het. Multiple E MILP

[23] Single Single ML 3 Hom. Single E B&B

[7] Single Multiple ML 3 Hom. Multiple H
Three-level

decomposition
MIP-based heuristic

[70] Multiple Multiple ML 3 Hom. Multiple H
Three-phase

decomposition
MIP-based heuristic

[4] Single Single 3 3 Hom. Multiple 3 E MILP

Our study Single Single 3 3 Hom. Multiple 3 H
Two-phase

decomposition MIP
based heuristic

Note: Rem.: Remanufacturing; OU: Order-Up-to level policy; ML: Maximum Level policy; Hom.: Homogeneous;
Het.: Heterogeneous; RL: Reverse Logistics; E: Exact; H: Heuristic.

3. Problem Description

In this section, a formal description of the IPIRP-R is provided.
Let G = (N, A) define a complete directed graph network, where N = {0, 1, 2, . . . , |NC|}

is the set of nodes and A = {(i, j) : i, j ∈ N, i 6= j} is the set of arcs. The central plant is
denoted by node {0} and the customers are denoted by the set NC = N\{0}. To satisfy
the triangular inequality (i.e., cij + cjk ≥ cik), each (i, j) ∈ A has a non-negative symmetric
traveling cost denoted cij, which represents the cost of traveling to node j from node i.
At each period t ∈ T (T = {1, 2, . . . , |T|}), each customer i ∈ Nc requires a dynamic
demand for delivery and pickup denoted, respectively, dit and pit. The delivery and pickup
requirements of the central depot are supposed null (d0t = p0t = 0, ∀ t ∈ T). Two pro-
duction lines are located at the central plant for the manufacturing of serviceable products
and remanufacturing of returned EOL ones. Each production line requires a separate
setup cost and has a specific limited capacity. Furthermore, in order to satisfy all customer
demands over the finite planning horizon, each production line must produce an economic
quantity based on the single-item lot-sizing policy, either by manufacturing new products
or by remanufacturing returned EOL ones or both. This implies that the remanufactured
products are supposed as new as manufactured ones and backlogging is not allowed. We
assume that returned EOL products cannot be fully remanufactured as some returned
ones are beyond repair due to technical constraints. This means that remanufacturing
cannot cover all returned EOL involving a remanufacturing rate 0 ≤ η ≤ 1. In addition,
a unit production cost is considered for manufacturing (resp., remanufacturing) a new
product (resp., returned product) during each period. We also assume that all lead times
for manufacturing and remanufacturing are extremely short. Furthermore, it is supposed
that remanufacturing operations are less costly than those related to manufacturing in
order to ensure manufacturing cost reduction by enhancing remanufacturing. Customers’
requests for pickups and deliveries are expected to be deterministic and known throughout
the entire planning horizon. In addition, we suppose that the initial inventory level of
serviceables is set to a minimum safety stock. However, it is assumed that the returns
inventory’s initial stock level is zero (zero initial stock condition). Furthermore, a holding
cost occurs for each inventory, and new manufactured (resp., remanufactured) products
are stored in the serviceables (resp., returns) inventory without going over its maximum
storage level. A fleet of capacitated homogeneous vehicles is available at the central plant
to perform deliveries and pickups simultaneously. Moreover, we assume that customers
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requiring no requests should not be visited (e.g.: dit > 0 and pit ≤ Q), and each vehicle
performs a single tour in a given time period, visiting multiple customers only once, and
then returns to the central plant, making sure that its capacity Q limit is not exceeded. Split
pickups and deliveries are supposed to be prohibited. The considered closed-loop network
is shown in Figure 3.
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Figure 3. Illustration of the studied CLSC network.

The IPIRP-R problem seeks to find the conjoint optimal planning which minimizes
the combined total cost of fixed and variable costs of manufacturing, remanufacturing,
inventory, and routing operations in order to satisfy simultaneously customer demand for
delivery and pickup. There are several decisions that must be made jointly for each period
of the planning horizon:

1. When and how many items should be manufactured;
2. When and how many items should be remanufactured;
3. When and how many items to hold at both serviceables and returns inventories;
4. How to organize the vehicles tours visits to simultaneously perform delivery and

pickup from customers.

4. Mathematical Formulation for the IPIRP-R

The main notation as well as the mathematical formulation of the IPIRP-R are provided
in this section. We first introduce the following additional notation just before describing
the MILP model:

(a) Indexing sets

N: set of nodes, with N = {0, 1, 2, . . . , |NC|}, where node {0} denotes the central plant;
NC: set of customers, with NC = {1, 2, . . . , |NC|} is indexed by i and j;
T: set of planning horizon periods, with T = {1, 2, . . . , |T|} is indexed by t;
K: set of fleet vehicles, with K = {1, 2, . . . , |K|} is indexed by v.

(b) Parameters

pm: unit cost of manufacturing a serviceable product;
Km: fixed setup cost for manufacturing;
hm: unit cost of holding new manufactured product at serviceables inventory;
Cm

t : manufacturing system’s maximum production rate at period t;
Um

t : serviceable inventory’s maximum stock level at t;
pr: cost per unit for remanufacturing an EOL-returned product;
Kr: fixed setup cost for remanufacturing;
hr: cost per stocking unit of returned EOL products in returns inventory;
Cr

t : remanufacturing system’s maximum production rate at period t;
Ur

t : returns inventory’s maximum stock level at period t;
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Im
0 : initial stock level of serviceables inventory;

Ir
0: initial stock level of returns inventory;

dit: delivery demand of customer i ∈ NC at period t;
pit: pickup demand of customer i ∈ NC at period t;
η: remanufacturing rate satisfying 0 ≤ η ≤ 1;
Q: capacity of each vehicle;
f c: fixed cost of using a vehicle;
cij: transportation costs over arc (i, j) ∈ A (assume cij = cji and cii = 0).

(c) Decision variables

xm
t : amount of new products manufactured in period t;

δm
t : 0–1 variable which equals 1, if manufacturing occurs at period t (xm

t > 0), 0 otherwise;
Im
t : serviceable inventory’s level at the end of period t;

xr
t : amount of remanufactured products in period t;

δr
t : 0–1 variable which equals 1, if remanufacturing occurs at period t (xr

t > 0), 0 otherwise;
Ir
t : returns inventory’s level at the end of period t;

zijt: demand delivered to node i and transported in arc (i, j) at period t;
wijt: demand collected from node i and transported in arc (i, j) at period t;

yijvt:
binary variable which is 1 or 0 depending on whether vehicle v reaches node j after node i
during period t.

(d) Objective function and constraints

The integrated model IPIRP-R can be formulated using the parameters and variables
previously introduced as follows:

(IPIRP− R) : minz = ∑
t∈T

(Km. δm
t + pm. xm

t + hm. Im
t + Kr.δr

t + pr. xr
t + hr. Ir

t )+

∑
j∈NC

∑
v∈K

∑
t∈T

f c.y0jvt + ∑
i∈N

∑
j∈N
j 6=i

∑
v∈K

∑
t∈T

cij.yijvt (1)

subject to
Im
t = Im

t−1 + xm
t + xr

t − ∑
j∈NC

z0jt; ∀t ∈ T (2)

Ir
t = Ir

t−1 − xr
t /η + ∑

i∈NC

wi0t; ∀t ∈ T (3)

0 ≤ Im
t ≤ Um

t ; ∀t ∈ T (4)

0 ≤ Ir
t ≤ Ur

t ; ∀t ∈ T (5)

xm
t ≤ min

{
∑i∈NC ∑T

l=t dil , Cm
t

}
. δm

t ; ∀t ∈ T (6)

xr
t ≤ min

{
min

{
∑i∈NC ∑T

l=t dil , Cr
t

}
.δr

t , η.Ir
t−1

}}
; ∀t ∈ T (7)

∑j∈NC
y0ivt ≤ 1; ∀v ∈ K, ∀t ∈ T (8)

∑i∈NC
yi0vt ≤ 1; ∀v ∈ K, ∀t ∈ T (9)

∑i ∈ N
i 6= j

∑v∈K yijvt ≤ 1; ∀j ∈ NC, ∀t ∈ T (10)

∑j ∈ N
j 6= i

yijvt −∑j ∈ N
j 6= i

yjivt = 0; ∀i ∈ NC, ∀v ∈ K, ∀t ∈ T (11)

(
zijt + wijt

)
≤ Q. ∑v∈K yijvt; ∀ (i, j : i 6= j) ∈ N, ∀t ∈ T (12)



Sustainability 2022, 14, 13563 11 of 30

∑i ∈ N
i 6= j

zijt −∑i ∈ N
i 6= j

zjit = djt; ∀j ∈ NC, ∀t ∈ T (13)

∑i ∈ N
i 6= j

wjit −∑i ∈ N
i 6= j

wijt = pjt; ∀j ∈ NC, ∀t ∈ T (14)

w0jt = 0; ∀j ∈ NC, ∀t ∈ T (15)

zi0t = 0; ∀i ∈ NC, ∀t ∈ T (16)

yijvt ∈ {0, 1}; ∀ (i, j : i 6= j) ∈ N, ∀v ∈ K, ∀t ∈ T (17)

xm
t ∈ Z+, xr

t ∈ Z+, Im
t ∈ Z+, Ir

t ∈ Z+, δm
t ∈ {0, 1}, δr

t ∈ {0, 1}; ∀t ∈ T (18)

zijt ∈ Z+, wijt ∈ Z+; ∀ (i, j : i 6= j) ∈ N, ∀t ∈ T (19)

Objective function (1) seeks to minimize the total manufacturing, remanufacturing,
setup, inventory, and routing costs. The inventory flow balance equations are represented
by the constraints (2)–(3). Inequalities (4)–(5) limit, respectively, the inventory level of
serviceables and returns inventories without exceeding their maximum capacity at the
end of each period. The manufacturing and remanufacturing capacity constraints are
represented by the inequalities (6)–(7), which ensure that a manufacturing operation would
only take place in a period t if the manufacturing production system (or the remanufac-
turing production system) is set up at the beginning of the period t. The vehicle routing
constraints are indicated by constraints (8)–(11). Constraint (10) ensures that the vehicle
capacity should not be exceeded by the transported total load. Notably, the combination of
constraints (10) and (12) guarantees that if a customer’s requests for deliveries and pickups
are not null, then that customer should be visited. Equations (13) and (14) ensure that
customer requests, respectively, for delivery and collection are fulfilled. The vehicle must
leave the central plant with no pickup loads and return after performing all deliveries, as
required by constraints (15) and (16). Finally, constraints (17)–(19) provide the domain of
the variables.

From Equations (1)–(19) described above, we can easily notice that the integrated
model IPIRP-R is similar to the classic IPIRP with an additional structure of costs related
to the remanufacturing operation as well as constraints related to the pickup and holding
of EOL products. Because the IPIRP-R generalizes the classical IPIRP, it follows that the
IPIRP-R is also NP-hard [13]. Given the fact that the IPIRP-R model includes a considerable
number of decision variables and constraints, which explain the long-running execution
times that this model took on medium-sized instances, it seemed logical to us to lean
towards approximate optimization methods based on heuristics (see Section 5). In fact, the
literature review carried out has revealed that heuristics based on mathematical models
(matheuristics) have been widely used to solve this type of optimization problem. In
particular, Iterative MILP-based heuristics have demonstrated their performance and
flexibility when solving the classical IPIRP. This type of method often combines heuristics
with exact approaches to turn the original problem into easier-to-solve sub-problems, while
trying to lose as little information about the original problem as possible.

Note that jointly optimizing production, inventory, and distribution operations in the
context of reverse logistics with the remanufacturing option of EOL products could have
a positive impact on how well the economy and environment perform in the considered
closed supply chain network. Indeed, we believe that the recovery of the residual value of
EOL products through remanufacturing process could contribute to minimizing the total
integrated cost of the involved operations, especially since we assume that the fixed and
variable costs of remanufacturing activities are less costly than manufacturing ones given
the fact that customer requests can be satisfied either by new or remanufactured products
or both. This means that remanufacturing activities can reduce production costs as long as
manufacturing activities can be replaced by remanufacturing ones given there are enough



Sustainability 2022, 14, 13563 12 of 30

EOL products to pick up at customer locations and to hold in the returns inventory. Further-
more, it may be possible to cut CO2 emissions by collecting and remanufacturing returned
EOL products and therefore contribute to improving the environmental performance of
the closed-loop logistics network taking into account product lifecycle management after
exceeding its lifespan.

5. Solution Approach

This section deals with the description of the approximate optimization method devel-
oped to solve the IPIRP-R problem. Thus, a modified two-phase iterative decomposition
heuristic (denoted by CST) inspired by the work of [5] is proposed to solve small and
medium-sized problems and obtain good quality solutions in terms of total integrated cost
within reasonable computational time.

5.1. Overview

To solve the IPIRP-R, we consider a method based on some feature ideas similar to [5]
who proposed a two-phase iterative method (IM) to solve the classic IPIRP. The idea is to
split the IPIRP-R into two smaller sub-problems which are solved iteratively until no better
solution is possible for a given stopping criterion (e.g., number of iterations) is reached.

The first phase addresses the capacitated single-item lot-sizing problem with remanu-
facturing, denoted CLSP-R, where the IPIRP-R model is restricted to the manufacturing,
remanufacturing, and inventory management decisions. This model decides when and
how many new products to manufacture and to hold, when and how many EOL products
to remanufacture and to hold, how many new products to deliver and how many EOL ones
to pick up simultaneously from visited customers. In addition, the model also allocates cus-
tomers to vehicles without considering explicitly routing decisions by using approximate
visiting costs SCivt which are updated throughout the algorithm. The capacity constraints
on production and inventory systems as well as the capacity constraint of each vehicle are
considered in this phase. The objective of the CLSP-R model is to minimize the total cost
of manufacturing, remanufacturing, setup, holding and the approximate visiting costs. In
the second phase, we optimize the routing decisions for the used vehicles in each period
vehicle by solving a restricted version of the IPIRP-R model namely the VRPSPD taking
into consideration the customers allocated for each vehicle arising from the first phase.

The method is started by setting the current solution as an empty solution and the
best solution found as infinity. The value of SCivt is initially set to c0i + ci0 (Algorithm 1,
line 3). Then, the first phase minimizes the restricted CLSP-R model using the initialized
approximate visiting cost SCivt (∀ i ∈ NC, ∀v ∈ K, ∀t ∈ T) instead of transportation cost cij.

Note that the approximate visiting cost SCivt has a crucial role as it creates a connection
between the first and second phases. Moreover, this cost is updated in each iteration of
the method using the information provided by the solution of the second phase so that
solutions of the first phase are driven to better solutions in terms of customer clustering.
Whenever a feasible solution is found, it is then used to update the approximate visiting
costs for the next iteration of the CLSP-R model. This iterative procedure stops whenever
the overall solution is not improved for a given number of iterations or the execution
time limit is exceeded. When the iterative procedure stops, a diversification mechanism is
applied and the whole process will be repeated until the number of restarts is reached.

Algorithm 1 shows the main steps of our decomposition heuristic method, and the
sections that follow provide more specific descriptions of each step.
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Algorithm 1. Optimization method—A Decomposition heuristic for the IPIRP-R

Inputs: Nbmax_Iter; Nbmax_Rest
Output: Best_Sol
1: // Parameters Initialization
2: Sol ← ∅ ; Best_Sol ← +∞ ; Restart← 0 ; No_Improv← 0 ;
3: SCivt = c0i + ci0, ∀i ∈ NC; ∀v ∈ K ; ∀t ∈ T
4: Repeat
5: Repeat
6: Solve the restricted CLSP-R model and get γivt, ∀i ∈ NC, ∀v ∈ K, ∀t ∈ T;
7: Solve the restricted VRPSPD model for all v ∈ K, t ∈ T, ∃i ∈ NC such as: γivt=1
8: // Update the solution and parameters if necessary
9: If Sol < Best_sol then
10: BestSol ← Sol ;
11: No_Improv← 0 ;
12 Else
13: No_Improv← No_Improv + 1 ;
14: End If
15: Update approximate visiting costs SCivt, ∀i ∈ NC, ∀v ∈ K, ∀t ∈ T using Algorithm 2;
16: Until No_Improv ≥ Nbmax_Iter
17: Diversification;
18: Restart← Restart + 1 ;
19: Until Restat ≥ Nbmax_Rest
20: Return Best_Sol

5.2. First Phase: A Restricted Capacitated Lot-Sizing Problem with Remanufacturing Model

In this section, we describe the mathematical model used in the first phase of our
heuristic approach. As already mentioned, this phase decides when and how many new
products to manufacture, when and how many EOL products to remanufacture, when to
visit customers, how many new products to deliver and how many EOL products to pick
up simultaneously by solving the restricted CLSP-R model. In this model the parameter
SCivt represents the cost of visiting customer i ∈ NC at period t with vehicle v. The aim
of the objective function is to minimize the total integrated cost related to manufacturing
(resp. remanufacturing) of new products (reps. re-manufactured products), to setup
(manufacturing and remanufacturing) and to inventory holding of serviceables products
(resp. returned products) as well as costs related to inserting customers into vehicle routes.

To formulate the CLSP-R model (Algorithm 1, line 6), the following additional param-
eter and decision variables are defined:

(a) Parameter

SCivt:
approximate visiting cost for serving customer i from the central plant by vehicle v in
period t;

(a) Decision variables:

ξvt: binary variable which equals 1, if vehicle v is selected to be used in period t, 0 otherwise;
γivt: binary variable which equals 1, if customer i is served by vehicle v in period t, 0 otherwise;
aivt: quantity of new products delivered to customer i visited by the vehicle v in period t;
bivt: quantity of returned products collected from customer i visited by the vehicle v in period t;

The CLSP-R restricted model can be described as follows:

(CLSP− R ) : min z =
|T|
∑

t=1
(Km. δm

t + pm. xm
t + hm. Im

t + Kr.δr
t + pr. xr

t + hr. Ir
t )

+ ∑
i∈NC

|K|
∑

v=1

|T|
∑

t=1
SCivt.γivt +

|K|
∑

v=1

|T|
∑

t=1
ξvt

(20)

subject to
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• Maximum inventory capacity limits constraints (4)–(5);
• Manufacturing and remanufacturing capacity constraints (6)–(7);

subject to
Im
t = Im

t−1 + xm
t + xr

t −∑i∈NC ∑v∈K aivt; ∀t ∈ T (21)

Ir
t = Ir

t−1 − xr
t /η + ∑i∈NC ∑v∈K bivt; ∀t ∈ T (22)

∑v∈K aivt = dit; ∀i ∈ NC, ∀t ∈ T (23)

∑v∈K bivt = pit; ∀i ∈ NC, ∀t ∈ T (24)

∑i∈NC
aivt ≤ Q; ∀v ∈ K, ∀t ∈ T (25)

∑i∈NC
bivt ≤ Q; ∀v ∈ K, ∀t ∈ T (26)

aivt ≤ Q.γivt; ∀i ∈ NC, ∀v ∈ K, ∀t ∈ T (27)

bivt ≤ Q.γivt; ∀i ∈ NC, ∀v ∈ K, ∀t ∈ T (28)

∑v∈K γivt ≤ 1; ∀i ∈ NC, ∀t ∈ T (29)

γivt ≤ ξvt; ∀i ∈ NC, ∀v ∈ K, ∀t ∈ T (30)

γivt ∈ {0, 1}; ∀i ∈ NC, ∀v ∈ K, ∀t ∈ T (31)

ξvt ∈ {0, 1}; ∀v ∈ K, ∀t ∈ T (32)

aivt ∈ Z+ (33)

bivt ∈ Z+ (34)

and (18).
The objective function (20) seeks to minimize the total integrated manufacturing,

remanufacturing, setup, inventory and visit costs as well as the number of vehicles to
be used. The inventory flow balance at the serviceable inventory and returns inventory
is guaranteed, respectively, by constraints (21) and (22). Equation (23) ensures that the
amount of quantities delivered using selected vehicles corresponds to the delivery request
of the visited customer. Constraint (24) ensures that the amount of quantities collected from
the visited customer using selected vehicles corresponds to his pickup request. Constraints
(25) and (26) guarantee that the capacity of the vehicles is not exceeded whatsoever by the
quantities to be delivered or collected, respectively. Constraints (27) and (28) guarantee
that the amount of delivery goods (reps. pickup amount) is equal to 0 if no customer is
visited. Constraint (29) prevents split deliveries and pickups. Constraint (30) indicates that
a customer is visited by a vehicle in a given period, only if this vehicle is used in the same
period. Finally, constraints (31)–(34) bound the ranges of the decision variables.

Note that solving the CLSP-R model without estimating visiting costs would result in
a solution entirely driven by manufacturing or remanufacturing costs, for which it may be
quite challenging to find a feasible routing plan. It is therefore a matter of roughly consid-
ering transport costs to find solutions with a better compromise between manufacturing
(resp., remanufacturing) and transport costs. Consequently, the CLSP-R model is aware
that routing decisions are significant when determining the total cost even though it does
not explicitly reflect routing decisions [3,33].

The second phase will use the assignment of customers per vehicle from the first phase
to determine the delivery-collection routing program for customers served in each period
by each vehicle.

5.3. Second Phase: A Restricted VRP with Simultaneous Pickup and Delivery MODEL

In this section, the routing part with simultaneous delivery and pickup of our heuristic
approach will be described. Therefore, in virtue of the decisions made in the first phase,
the routing problem seeks to solve the constrained VRPSPD model. The second phase’s
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objective consists in finding the optimal routes for the direct-reverse distribution of a set of
customers served by a group of vehicles during each period.

Let S vt = {i ∈ NC : γivt = 1} represent the cluster of customers i assigned to vehicle
v in period t from the first phase. For all vehicles, we solve the following restricted VRPSPD
formulation (Algorithm 1, line 7):

(VRPSPD) : minz = ∑
j∈ Sivt

∑
v∈K

∑
t∈T

f c.y0jvt + ∑
i∈Sivt∪{0}

∑
j∈Sjvt∪{0}

j 6=i

∑
v∈K

∑
t∈T

cij.yijvt (35)

subject to
∑j ∈ Sjvt

y0jvt ≤ 1; ∀v ∈ K, ∀t ∈ T (36)

∑i∈Sivt
yi0vt ≤ 1; ∀v ∈ K, ∀t ∈ T (37)

∑i ∈ Sivt ∪ {0}
i 6= j

∑v∈K yijvt ≤ 1; ∀j ∈ Sjvt, ∀t ∈ T (38)

∑j ∈ Sjt ∪ {0}
j 6= i

yijvt −∑j ∈ Sjt ∪ {0}
j 6= i

yjivt = 0; ∀i ∈ Sivt, ∀v ∈ K, ∀t ∈ T (39)

zijt + wijt ≤ Q. ∑v∈K yijvt; ∀(i, j : i 6= j) ∈ Sivt ∪ {0}, ∀v ∈ K, ∀t ∈ T (40)

∑i ∈ Sivt ∪ {0}
i 6= j

zijt −∑i ∈ Sivt ∪ {0}
i 6= j

zjit = djt; ∀j ∈ Sjvt, ∀t ∈ T (41)

∑i ∈ Sivt ∪ {0}
i 6= j

wjit −∑i ∈ Sivt ∪ {0}
i 6= j

wijt = pjt; ∀j ∈ Sjvt, ∀t ∈ T (42)

w0jt = 0; ∀j ∈ Sjvt, ∀t ∈ T (43)

zi0t = 0; ∀i ∈ Sivt, ∀t ∈ T (44)

yijvt ∈ {0, 1}; ∀(i, j : i 6= j) ∈ Sivt ∪ {0}, ∀v ∈ K, ∀t ∈ T (45)

zijt ∈ Z+, wijt ∈ Z+; ∀(i, j : i 6= j) ∈ Sivt ∪ {0}, ∀t ∈ T (46)

Objective function (35) seeks to minimize the total fixed and variable routing costs.
Constraints (36) and (37) ensure that each vehicle must leave and return to the central depot,
respectively. Constraint (38) denotes that each customer is visited once. Constraints (39)
guarantee flow conservation. Constraints (40) guarantee the vehicle’s capacity. Constraints
(41) and (42) impose that customers’ requests need to be fulfilled. Constraints (43) and
(44) ensure that the vehicle leaves the central plant with no pickup load and returns after
fulfilling all delivery demands. Domain constraints for decision variables are provided via
constraints (45) and (46).

5.4. Updating Visiting Costs SCivt

As mentioned earlier, the approximate visit costs play an important role as they allow
the connection between the first and the second phase. This section outlines the steps
involved in upgrading these costs.

Let Rvt the route assigned to vehicle v at period t, provided by solving the second
phase. Rvt is defined on set Svt ∪ {0}. Let i+ and i− represent, respectively, the predecessor
and successor of customer i in route r ∈ Rvt for v ∈ V, t ∈ T and i ∈ Svt.

Likewise, for v ∈ V, t ∈ T and i /∈ Svt, ∆ivt is the least expensive cost to insert
customer i in route r. Algorithm 2, based on [5], shows how to update the approximate
visiting cost SCivt (Algorithm 1, line 15).
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Algorithm 2. Update approximate visit costs Sivt

1: For all v ∈ K and t ∈ T do
2: For all ∀i ∈ NC do
3: If i ∈ Svt then
4: SCivt ← (ci,i− ) +

(
ci,i+

)
− (ci− ,i+ )

5: Else
6: SCivt ← ∆ivt
7: End If
8: End For
9: End For

5.5. Diversification Mechanism

To guide the first phase to explore a new space of new solutions, the approximate
visit costs should be diversified. Through this section, the mechanism of diversification of
approximate visit costs is presented.

A feasible solution for the IPIRP-R problem is guaranteed whenever the LP solver
finds feasible routes for all subproblems in phase 2. Afterwards, whenever the best solution
already found has not been improved, we use a multi-start procedure to restart the whole
procedure (Algorithm 1, line 17). The idea is to restart iteratively the process by randomly
generating approximate visiting cost SCivt by multiplying it by a random number ρivt. Its
value is chosen in the interval [0.5, 1.5] and the approximate visiting cost SCivt is set to
ρvit× (c0i + ci0). The stopping criterion of this mechanism is met when a predetermined
number of restarts is reached (Algorithm 1, line 19).

6. Computational Study

In this section, we compare the obtained results from CPLEX and our CST heuristic
by performing in-depth computational experiments on the generated instances described
in Section 5.1. All mathematical formulations were built in Java Eclipse utilizing Concert
Technology and solved by CPLEX 12.7 using the default parameters on a 64-bit Windows
10 Professional PC with a processor Intel® CoreTM i7-4790 CPU 2.9 GHz and 12 G RAM. In
the following subsections, instances generation and numerical results are presented.

6.1. Instances Generation

In order to generate instances for the IPIRP-R, we use a similar test bed to [4] and
adapt some data sets from the ideas of [13,22], along with the parameters related to reman-
ufacturing and pickup requests. All the tests were conducted on three classes of randomly
generated problem instances.

Test instances of the first class (standard class) were generated according to the param-
eters mentioned in Table 3.

Table 3. Parameters used for the generation of instances of the standard class.

Parameter Possible Values

Time horizon |T| {3, 6}
Number of costumers |NC | 5k, with k = {1, 2, 3, 4, 7, 10}

Delivery demand of customer i ∈ NC at period
t ∈ T, dit

Integer number randomly generated in the range [5,
30]

Pickup demand of customer i ∈ NC at period t ∈ T,
pit

- Low pickups scenario: pit ≤
(

dit
2

)
- High pickups scenario:

dit/2 ≤ pit ≤ (dit ∗ 3/4)

Manufacturing system’s maximum production rate
at period t ∈ T, Cm

t
2·∑t ∈ T ∑i∈NC

dit
T

Remanufacturing system’s maximum production
rate at period t ∈ T, Cr

t
2·∑t ∈ T ∑i∈NC

pit
T
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Table 3. Cont.

Parameter Possible Values

Serviceable inventory’s maximum stock level t ∈ T,
Um

t
2·∑t ∈ T ∑i∈NC

dit
T ·|NC |

Initial stock level of serviceables inventory, Im
0

⌈
∑t ∈ T ∑i∈NC

dit
T

⌉
Initial stock level of returns inventory 0

Unit cost of manufacturing a serviceable product, pm 10hm

Unit cost of holding new manufactured product at
serviceables inventory, hm 8

Unitary production cost of a new remanufactured
product, pr σ× pm where σ= {0.1, 0.3, 0.5, 0.7, 0.9}

Unitary inventory holding cost for return product, hr hr = hm

Fixed manufacturing setup cost, Km 100pm

Fixed remanufacturing setup cost, Kr 0.01Km

Remanufacturing rate, η η = 0, 9

Transportation cost, cij

⌊√(
Xi − Xj

)2
+
(
Yi −Yj

)2
+ 0.5

⌋
, where each

coordinate is randomly generated as an integer
number in the interval [0, 500] to obtain the points

(Xi , Yi) and
(
Xj, Yj

)
Transportation capacity, Q 100

Vehicle fixed cost for using a vehicle, f c 500

Maximum number of vehicles over the planning
horizon, |K|max

⌈
max

(
∑t ∈ T ∑i∈NC

dit ;∑t ∈ T ∑i∈NC
pit

)
Q

⌉

The only difference between the second class of instances and the first one is that
the parameter pm is changed from 10hm to 100hm. This class mimics scenarios where
manufacturing and remanufacturing production system costs have a greater impact than
inventory costs. Finally, the coordinates of the consumers and central plant are multiplied
by a factor of 10 in the third class, which is otherwise identical to the first. In this class,
scenarios with high transportation costs are examined. In all cases, random selections have
been drawn using a uniform distribution.

A total of 20 combinations are generated for a given number of customers |NC|
based on the various parameter values: a time horizon with two values for |T| = {3, 6},
two pickup scenario possibilities {Low, High}, and a unit remanufacturing cost rate with
five different values σ = {0.1, 0.3, 0.5, 0.7, 0.9}. Four instances with different requests
and node coordinates were generated for each combination of these parameters, totaling
20 ∗ 4 ∗ 6 = 480 instances for each instance type.

6.2. Algorithm Parameters Setting

The values of the parameters impacting the performance of the algorithm must be
carefully chosen. To do so, we have adjusted the values of the parameters Nbmax_Iter
(maximum number of iterations) and Nbmax_Rest (maximum number of restarts), where
NB_Iterations = Nbmax_Iter × Nbmax_Rest (total number iterations). We firstly ad-
justed these two parameters simultaneously and a second time we fixed the parameter
Nbmax_Iter and we varied the parameter Nbmax_Rest. Figure 4 shows the simulated
results in terms of the percentage of the average deviation from the solution of CPLEX
(Gap%) and the average execution time of the algorithm in seconds (CPU(s)) for problems
with 15 customers and 3 periods over the three classes of data sets. Note that the average
results were obtained based on four instances. Furthermore, the average Gap% was cal-
culated according to the best solutions obtained from the algorithm compared with the
upper bounds obtained by CPLEX in a certain amount of time. Note that whenever our
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CST heuristic finds better solutions than the upper bounds found by CPLEX, the Gap%
will be negative.
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Figure 4. Sensitivity analysis of the performance of the proposed algorithm with respect to param-
eters 𝑁𝑏𝑚𝑎𝑥_𝐼𝑡𝑒𝑟  and 𝑁𝑏𝑚𝑎𝑥_𝑅𝑒𝑠𝑡  on problems with |𝑁 | = 15  and |𝑇| = 3 : three classes of 
data sets. 

Obviously, adjusting the values of 𝑁𝑏𝑚𝑎𝑥_𝐼𝑡𝑒𝑟 and 𝑁𝑏𝑚𝑎𝑥_𝑅𝑒𝑠𝑡 has an important 
effect on the performance of the algorithm. For the case, we have adjusted the two param-
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Figure 4. Sensitivity analysis of the performance of the proposed algorithm with respect to parameters
Nbmax_Iter and Nbmax_Rest on problems with |NC | = 15 and |T| = 3 : three classes of data sets.
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Obviously, adjusting the values of Nbmax_Iter and Nbmax_Rest has an important
effect on the performance of the algorithm. For the case, we have adjusted the two pa-
rameters at the same time, we can notice that average Gap% decreases drastically when
NB_Iterations = 50× 50 for all cases with an average execution time CPU(s) around 100 s.
We observe the same results for the second scenario where we fix the first parameter and
adjust the second. In fact, as can be seen from NB_Iterations = 50× 5 the average Gap%
drops enormously with an average execution time around 60 s. Moreover, to obtain good
quality solutions, we have opted to set a number of iterations of NB_Iterations = 100× 5
when solving all instances.

6.3. Computational Results

In order to assess the effectiveness of our CST heuristic and understand how changes in
important remanufacturing-related parameters affect solutions, computational experiments
were conducted. These experiments are summarized in this section.

By using IBM Concert Technology, the integrated model and the decomposition
heuristic were coded in Java and solved using CPLEX 12.7. We used the default CPLEX
parameters for the integrated model, and a two-hour maximum calculation time limit was
imposed for each instance.

For the heuristic, we have solved the mathematical formulations in the first and the
second phases (i.e., CLSP-R and VRPSPD) using CPLEX 12.7 with its default settings for up
to 1200 s (20 min).

6.3.1. Performance Assessment of CST Heuristic on Random Instances

This section presents computational results obtained from performed tests on the ran-
dom instances described in Section 5.1, achieved by the MILP model and our decomposition
heuristic.

Note that all tests were carried out on the basis of a remanufacturing rate fixed at
η = 0.9, a unit remanufacturing cost fixed at pr = 0.3× pm, with a number of iterations fixed
at Nbma_Iter = 100 and a number of restarts of value NbmaxRest = 5. These considerations
are valid for all three classes of instances. In Tables 3–5, we report the results from both
CPLEX and the CST heuristic. Each row corresponds to the calculation result carried out
based on four instances.

For CPLEX, columns “#Opt.” and “#Feas.” indicate, respectively, the number of in-
stances solved to optimality and those for which CPLEX has been capable to determine
a feasible solution within the given time frame. Column “Av. Opt. CPU(s)CPLEX” shows
the average of the total computing time in seconds spent by CPLEX until solving the
optimal instances, and “Av. Gap% (LB)CPLEX” represents the average optimality deviation
calculated on the basis of feasible solutions. This optimality deviation was calculated as
follows: Gap% (LB)CPLEX = 100×

(
UBCPLEX−LBCPLEX

LBCPLEX

)
, where “UBCPLEX” and “LBCPLEX”

represent the upper and lower bounds found by CPLEX after 2 h of calculation.
For the CST heuristic, column “Av. CPU(s)CST” shows the average of the total com-

puting time in seconds spent by the CST heuristic calculated based on all instances.
The column Av. Gap% (Opt.)CST indicates the average optimality deviation calculated
based on instances solved to optimality. The optimality deviation, in this case, was cal-
culated as follows: Gap% (Opt.)CST = 100×

(
SolCST−OPTCPLEX

OPTCPLEX

)
, with SolCST indicates

the solution value found by the heuristic CST based on instances solved to optimal-
ity. The column Av. Gap% (LB)CST indicates the average optimality deviation calcu-
lated based on instances for which CPLEX could not find an optimal solution and we
take its lower bound. In this case, the optimality deviation is calculated as follows:
Gap% (LB)CST = 100 ×

(
SolCST−LBCPLEX

LBCPLEX

)
. Finally, the column Av. Gap% (UB)CST in-

dicates the average optimality deviation calculated based on instances for which CPLEX
was able to find an optimal feasible solution or not and we take its upper bound (which
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is equal to the optimal solution in some cases). In this case, the optimality deviation is
calculated as follows: Gap% (UB)CST = 100×

(
SolCST−UBCPLEX

UBCPLEX

)
.

In Table 4, we assess the performance of the algorithm against the commercial solver
CPLEX on the instances of the second class of data set. Obtained results indicate that CPLEX
was able to optimally solve all instances of up to five customers regardless of the number
of period times considered. However, CPLEX was unable to optimally solve instances with
more than 15 customers regardless of the number of period times during 2 h of execution
time. These results are observed for both pickup scenarios (high and low). This implies that
the integrated IPIRR-R model is sensitive to the instance size (number of both customers
and time periods) and becomes unable to solve problems of medium and large sizes. This
can be explained by the fact that the model contains a large number of variables and that it
jointly optimizes the CLSP-R and the VRPSPD each of them is known as NP-hard. These
results also confirm that integrated operations planning problems arising in the context of
CLSCs with remanufacturing option are even more complex to solve, which means that
the approximate methods are suitable for solving medium and large-sized instances of this
class of problems.

Further, the proposed algorithm can obtain near-optimal solutions for the majority
of instances with an average deviation from optimal solutions of 1% (with a minimum of
1% and a maximum of 2%) when pickup requests are relatively low, requiring very short
average computation times of approximately 35 s (with a minimum of 10 s and a maximum
of 105 s). However, when pickup requests are relatively high, the average deviation from
optimal solutions is 1% (with a minimum of 1% and a maximum of 2%), requiring very
short average computation times of approximately 44 s (with a minimum of 20 s and a
maximum of 117 s).

For larger size problems for which CPLEX cannot find the optimal solution, the average
deviation from the optimal solutions is 3% (with a minimum of 1% and a maximum of 9%
when pickup requests are relatively low, requiring very short average computation times
of approximately 35 s (with a minimum of 10 s and a maximum of 105 s). However, when
the pickup requests are relatively high, the average deviation from optimal solutions is 4%
(with a minimum of 1% and a maximum of 11, requiring very short average computation
times of approximately 44 s (with a minimum of 20 s and a maximum of 117 s).

We can also highlight cases where CPLEX failed to find feasible solutions while the
CST heuristic did, this applies to the case of problems with (|NC| = 35; |T| = 3) and
(|NC| = 50; |T| = 3) with a pickup scenario, respectively, high and low. Moreover, negative
values of the average Gap(%) correspond to cases where the heuristic exceeds the upper
bound of CPLEX by finding better solutions. This can be observed in problems with
|NC| > 35 regardless of period times and pickup scenarios.

The obtained results from numerical tests on the standard class (Class 1) and the
one with greater impact on transportation costs (Class 3) are depicted in Tables 5 and 6,
respectively. We notice that the obtained results are consistent with those obtained from the
performance assessment of CPLEX versus the CST heuristic on the second class of instances
(Table 4).
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Table 4. Computational results on the second class of instances: greater impact of manufacturing and
remanufacturing systems.

|NC| |T|

Low Pickups

CPLEX Results CST Results

#Opt #Feas. Av.
Opt.CPU(s)CPLEX

Av.
Gap% (LB)CPLEX

Av.
CPU(s)CST

Av.
Gap% (Opt.)CST

Av.
Gap% (LB)CST

Av.
Gap% (UB)CST

5
3 4 0 1 - 22 1 - 1

6 4 0 132 - 10 1 - 1

10
3 2 2 8 0 27 1 1 1

6 2 2 210 0 22 2 2 1

15
3 0 4 - 0 49 - 1 1

6 0 4 - 0 24 - 1 1

20
3 0 4 - 0 28 - 1 1

6 0 4 - 0 28 - 1 1

35
3 0 1 - 0 57 - 1 0

6 0 4 - 0 23 - 9 6

50
3 0 0 - - 105 - - -

6 0 2 - 0 29 - 8 −8

Min 1 0 10 1 1 −8

Max 210 0 105 2 9 6

Average 81 0 35 1 3 1

|NC| |T|

High Pickups

CPLEX Results CST Results

#Opt #Feas. Av.
Opt.CPU(s)CPLEX

Av.
Gap% (LB)CPLEX

Av.
CPU(s)CST

Av.
Gap% (Opt.)CST

Av.
Gap% (LB)CST

Av.
Gap% (UB)CST

5
3 4 0 0 - 40 1 - 1

6 4 0 2 - 21 1 - 1

10
3 3 1 26 0 27 1 1 1

6 3 1 259 0 20 2 2 2

15
3 1 3 319 0 60 1 1 1

6 0 4 - 0 29 - 2 2

20
3 0 4 - 0 36 - 1 1

6 0 4 - 0 46 - 1 1

35
3 0 0 - - 65 - - -

6 0 4 - 0 24 - 11 9

50
3 0 1 - 0 117 - 1 −2

6 0 3 - 0 38 - 10 −12

Min 0 0 20 1 1 −12

Max 319 0 117 2 11 9

Average 79 0 44 1 4 1
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Table 5. Computational results on the standard class of instances.

|NC| |T|

Low Pickups

CPLEX Results CST Results

#Opt #Feas. Av.
Opt.CPU(s)CPLEX

Av.
Gap% (LB)CPLEX

Av.
CPU(s)CST

Av.
Gap% (Opt.)CST

Av.
Gap% (LB)CST

Av.
Gap% (UB)CST

5
3 4 0 0 - 30 9 - 9

6 4 0 2 - 11 6 - 6

10
3 2 2 4 0 30 6 5 4

6 4 0 48 - 28 11 - 11

15
3 1 3 312 0 77 3 6 5

6 0 4 - 0 18 - 9 9

20
3 1 3 204 0 37 8 9 6

6 0 4 - 0 38 - 7 5

35
3 0 0 - - 61 - - -

6 0 4 - 0 170 - 25 −3

50
3 0 1 - 0 188 - 5 −14

6 0 2 - 0 323 - 5 −20

Min 0 0 11 3 5 −20

Max 312 0 323 11 25 11

Average 45 0 84 8 10 6

|NC| |T|

High Pickups

CPLEX Results CST Results

#Opt #Feas. Av.
Opt.CPU(s)CPLEX

Av.
Gap% (LB)CPLEX

Av.
CPU(s)CST

Av.
Gap% (Opt.)CST

Av.
Gap% (LB)CST

Av.
Gap% (UB)CST

5
3 4 0 0 - 30 10 - 10

6 4 0 1 - 19 8 - 8

10
3 2 2 2 0 26 6 5 4

6 4 0 44 - 21 14 - 14

15
3 1 3 229 0 52 4 7 6

6 0 4 - 0 32 - 11 11

20
3 0 4 - 0 43 - 9 7

6 0 4 - 0 34 - 8 6

35
3 0 0 - - 59 - - -

6 0 4 - 0 254 - 7 −15

50
3 0 2 - 0 158 - 6 −20

6 0 2 - 0 296 - 7 −32

Min 0 0 19 4 5 −32

Max 229 0 296 14 11 14

Average 28 0 85 9 8 8
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Table 6. Computational results on the third class of instances: greater impact of transportation costs.

|NC| |T|

Low Pickups

CPLEX Results CST Results

#Opt #Feas. Av.
Opt.CPU(s)CPLEX

Av.
Gap% (LB)CPLEX

Av.
CPU(s)CST

Av.
Gap% (Opt.)CST

Av.
Gap% (LB)CST

Av.
Gap% (UB)CST

5
3 4 0 0 - 10 37 - 37

6 4 0 3 - 10 28 - 28

10
3 2 2 4 0 10 21 24 20

6 4 0 24 - 9 44 - 44

15
3 1 3 276 0 55 16 26 24

6 0 4 - 0 3 - 186 181

20
3 1 3 1814 0 18 24 28 20

6 0 4 - 0 6 - 203 190

35
3 0 0 - - 43 - - -

6 0 4 - 0 17 - 262 136

50
3 0 1 - 0 13 - 256 113

6 0 2 - 1 32 - 265 60

Min 0 0 3 16 24 20

Max 1814 1 55 44 265 190

Average 138 0 19 32 157 21

|NC| |T|

High Pickups

CPLEX Results CST Results

#Opt #Feas. Av.
Opt.CPU(s)CPLEX

Av.
Gap% (LB)CPLEX

Av.
CPU(s)CST

Av.
Gap% (Opt.)CST

Av.
Gap% (LB)CST

Av.
Gap% (UB)CST

5
3 4 0 0 - 9 39 - 39

6 4 0 1 - 7 31 - 31

10
3 2 2 3 0 9 21 20 17

6 4 0 17 - 8 49 - 49

15
3 1 3 1194 0 68 17 29 26

6 0 4 - 0 9 - 200 195

20
3 1 3 2141 0 17 35 35 28

6 0 4 - 0 3 - 217 201

35
3 0 0 - - 39 - - -

6 0 4 - 0 16 - 277 133

50
3 0 0 - - 15 - - -

6 0 2 - 1 32 - 289 59

Min 0 0 3 17 20 17

Max 2141 1 68 49 289 201

Average 213 0 19 36 163 27

In Table 7, we report the performance of the proposed algorithm on the different
classes of instances. This time, the column Av. CPU(s)CPLEX shows the average of the total
computing time in seconds from CPLEX calculated based on all instances.

We can notice that class 2 is the easiest to solve, followed by classes 1 and 3. This im-
plies that the problem becomes easy to solve when the manufacturing and remanufacturing
costs are significant. Moreover, from Tables 4–6, it should be noted that the average gaps
for the low pickup scenario are always lower than those related to the high pickup scenario,
which means that the instances are easy to solve when pickup requests are relatively low.
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Table 7. Computational results on random instances with |NC| = {5, 10, 15, 20, 35, 50}.

Low Pickups

Class |NC|
CPLEX Solutions CST Solutions

Av.CPU(s)CPLEX Av.CPU(s)CST Av.Gap% (LB)CST Av.Gap% (UB)CST

1
5

2 (4) 11 6 6

2 132 (4) 10 1 1

3 3 (4) 10 28 28

1
10

48 (4) 28 11 11

2 3710 (2) 22 2 1

3 24 (4) 9 44 44

1
15

- (0) 18 9 9

2 - (0) 24 1 1

3 - (0) 3 186 181

1
20

- (0) 38 7 5

2 - (0) 28 1 1

3 - (0) 6 203 190

1
35

- (0) 170 25 −3

2 - (0) 23 9 6

3 - (0) 17 262 136

1
50

- (0) 323 5 −21

2 - (0) 29 8 −8

3 - (0) 32 265 60

High Pickups

Class |NC|
CPLEX Solutions CST Solutions

Av.CPU(s)CPLEX Av.CPU(s)CST Av.Gap% (LB)CST Av.Gap% (UB)CST

1
5

1 (4) 19 8 8

2 2(4) 21 1 1

3 1 (4) 7 31 31

1
10

44 (4) 21 14 14

2 1998 (3) 20 2 2

3 17 (4) 8 49 49

1
15

- (0) 32 11 11

2 - (0) 29 2 2

3 - (0) 9 200 195

1
20

- (0) 34 8 6

2 - (0) 46 1 1

3 - (0) 3 217 201

1
35

- (0) 254 7 −15

2 - (0) 24 11 9

3 - (0) 16 277 133

1
50

- (0) 296 7 −32

2 - (0) 38 10 −12

3 - (0) 32 289 59

Note: |T| = 6 (i) denotes the number of instances solved to optimality out of 4 instances, (-) indicates that the total
computing time exceeds the time limit of 2 h.

To sum up, the numerical results showed that the IPIRP-R model becomes easy
to solve when manufacturing and remanufacturing costs become important and when
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pickup requests are relatively low. The same results revealed that CPLEX can effectively
solve optimality instances involving up to five customers regardless of the number of
time periods and pickup scenarios. For the same type of instances, the heuristic CST has
provided solutions with a quality close to those found by the solver CPLEX. For instances
with 35 up 50 customers and three periods, respectively, with a relatively high and low
pickup scenario, our decomposition heuristic clearly outperformed the CPLEX solver,
finding better solutions.

In all cases, the heuristic CST could usually find good feasible solutions within accept-
able computing time. Furthermore, regardless of the number of time periods and pickup
scenarios for which the solver failed to find a solution within two hours of computing,
our solution approach successfully identified feasible solutions for instances with up to
50 consumers. These results are consistent for the three classes of instances.

6.3.2. Sensitivity Analysis

In order to assess and analyze the contribution of the remanufacturing process in
terms of reducing operational costs, we present through this section a sensitivity analysis
of the performance of the CLSC considered with respect to variations of the parameters
related to the remanufacturing operation, in particular, the remanufacturing rate (η) and
its unit cost (pr = σ× pm). To do this, 200 new instances were generated on the basis of
the instances from the standard class, each with |NC| = 5 customers and |T| = 6 periods,
by varying the parameters η ∈ {0.1; 0.3; 0.5; 0.7; 0.9}, σ ∈ {0.1; 0.3; 0.5; 0.7; 0.9}, two
scenarios for pickups, and for each combination four instances with different requests and
coordinates are considered.

In Table 8, we give a comparison example of costs for different values of the percentage
of remanufacturing unit cost for a given remanufacturing rate. Note that each row is
calculated based on four instances. In addition, to better understand other key information,
we illustrate in Figure 5 the selected costs and parameters (for the high pickup scenario).

Table 8. Comparison of operational costs (on average) under different values of remanufacturing
unit cost according to the pickup scenarios.

σ TC MC RC HNP HRP MS RS TCT

Pi
ck

up
sc

en
ar

io

H
ig

h
pi

ck
up

s

0.1 24,405 3822 946 278 1655 3114 3114 3800

0.3 24,265 3318 2806 479 1478 3126 3126 3400

0.5 26,479 3336 4440 346 1588 3120 3120 3400

0.7 28,663 3480 6350 353 1420 3114 3114 3500

0.9 31,734 3630 8473 625 1612 3114 3114 3600

Lo
w

pi
ck

up
s

0.1 32,614 6978 630 322 1016 6096 6096 3800

0.3 31,816 6444 1868 304 1065 6102 6102 3400

0.5 33,252 6216 3000 371 919 6108 6108 3400

0.7 34,990 6492 4242 244 988 6096 6096 3500

0.9 37,307 6636 5767 467 1078 6096 6096 3600

Note: |T| = 6; η = 0.9 ; TC: total cost; MC: manufacturing total cost; RC: remanufacturing total cost; HNP:
holding cost from storing new products; HRP: holding cost from storing return products; MS: manufacturing
setup cost; RS: remanufacturing setup cost; TCT: transport total cost.

In Figure 5, we can observe, for a given remanufacturing unit cost, as the remanufac-
turing rate increases, the total remanufacturing cost increases, but the total manufacturing
cost decreases. This suggests that remanufacturing activities are gradually replacing man-
ufacturing ones. This observation is more significant when the remanufacturing rate is
significant (for example, η = 0.9) because there is enough stock in terms of returned EOL
to cover the delivery demands.
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7. Conclusions and Perspectives

In this paper, we proposed a two-phase decomposition heuristic to tackle the Inte-
grated Production-Inventory-Routing Problem with Remanufacturing (IPIRP-R) that is a
generalization of the classical single-item capacitated lot-sizing with the option of remanu-
facturing and the VRP with simultaneous pickup and delivery. Optimizing this problem
within a CLSC network can have a positive impact on its economic and environmental
performance. Indeed, recovering the residual value of returned EOL products through the
remanufacturing process, leads to minimizing the total integrated cost of the involved oper-
ations, especially since we assume that the fixed and variable costs of the remanufacturing
activities are less expensive than manufacturing and knowing that customer demands can
be met with either new or remanufactured products or both. This means that remanufac-
turing activities can reduce production costs as long as manufacturing activities can be
replaced by remanufacturing ones if there is a sufficient amount of EOL products collected
from customers and stored at the returns inventory level. On the other hand, the collection
and remanufacturing of EOL products can be considered a means of reducing greenhouse
gas emissions and therefore contribute to improving the environmental performance of the
network.

The proposed heuristic procedure splits the problem into two subproblems, which
are subsequently solved iteratively. Based on approximative visiting costs, a restricted
capacitated CLSP-R is solved in the first phase. Without expressly considering routing
decisions, this phase decides when and how much to manufacture and to remanufacture at
each period, when to visit customers and how much to deliver and pick up concurrently
at each visit, as well as the assignment of customers to vehicles. Based on the assignment
decisions of customers to vehicles from the first phase, the second phase decides the optimal
sequence of visiting a set of customers served by a set of vehicles in each period by solving
a restricted VRPSPD.

First, the effectiveness of the proposed solution approach has been assessed on a set of
computational experiments performed on three classes of randomly generated problem
instances against cutting-edge optimization software. Numerical results on benchmark
instances showed that our method can find good quasi-optimal solutions in an acceptable
computing time for small and medium-scale problems, characterized by a greater impact of
manufacturing and remanufacturing costs, particularly when pickup requests are relatively
low. The effects of remanufacturing parameters on the balance between manufacturing
and remanufacturing are then captured through extensive computer analyses, from which
pertinent management information has been derived. The obtained results demonstrate
that the developed algorithm is operational and can thus be applied to many problems
of common interest arising in the context of CLSs, particulary in the production and
distribution of electrical and electronic components, returnable and reusable packaging
products, food industry, (e.g., perishable products) and the beverage industry.

Despite the relevance and applicability of the approaches developed, the problems of
integrated planning of operations in the context of sustainable supply chains are difficult to
solve and require sophisticated approach methods to deal with their complexity. Given
the obtained results and the contributions presented in this study, it would therefore
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be relevant to continue our research work in order to improve the performance of the
methods used. A notable perspective for future research would be to develop for each
of the subproblems CLSP-R and VRPSPD, a fast heuristic procedure. In fact, each of
these two sub-problems becomes difficult when the problem size increases and, therefore,
developing effective techniques to solve it is necessary to reduce computation time and
solve large-scale problems. Furthermore, better effective methods of approximating the
visiting costs together with a more sophisticated diversification strategy (e.g., the update
mechanism from [5]) can be used to drive the heuristic to more thoroughly explore the
solution space, narrowing the gap to optimal solutions. Moreover, to assess the quality
of heuristic solutions, another interesting perspective would be to compute good lower
bounds by applying Lagrangian relaxation to the IPIRP-R model.

Future research work should also focus on expanding the IPIRP-R formulation by
including carbon emissions exhausted from production (manufacturing and remanufac-
turing), remanufacturing, inventory, and routing activities. Moreover, investigating the
IPIRP-R formulation with a heterogeneous fleet of capacitated vehicles and time windows
to reduce transportation costs while guaranteeing a high service level. Moreover, it would
be interesting to introduce multiple plants with multiple products as well as demands un-
certainty (e.g.: quality of EOL products returned, amounts of delivery and pickup requests,
etc.). Furthermore, it would be interesting to incorporate the cost for permanent assets
capital to assess the effect of the tangible depreciation of permanent assets on both the
total integrated cost and the involved operations’ decisions. Finally, it would also be wise
to develop a decision support system that integrates our solution approaches developed
in this study with a returns management information system to help industrial decision-
makers cope with the complexity imposed by the reverse logistics processes throughout a
closed-loop network. By considering all these dimensions, we come closer to the real-life
situations that occur in remanufacturing processes.
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