Introducing the Special Issue on Artificial Intelligence Applications for Sustainable Urban Living
1. Introduction
2. Methods
- image classification, denoising, segmentation, object detection and tracking;
- video surveillance, video object detection, video object tracking, and video denoising applications;
- automatic speech recognition (ASR), text to speech (TTS), speech denoising, and speaker identification applications for urban living;
- artificial intelligence-based music composition, analytics, recommendation, and instruction applications;
- natural language processing (NLP) applications for urban living;
- multimodality applications for urban living;
- artificial-Intelligence-based content generation applications for sustainable urban living;
- optical flow estimation for sustainable urban living;
- autonomous driving techniques’ applications;
- IoT applications in urban living;
- Edge computing models and lite deep learning models for real-time applications;
- heterogeneous computing for smart urban living;
- human–computer Interaction applications for smart and sustainable urban living;
- medical image processing and smart healthcare applications for urban living;
- wireless artificial intelligence applications for sustainable urban living;
- other artificial intelligence applications in the transformation of classical cities to smart cities.
3. Discussion and Conclusions
Funding
Conflicts of Interest
References
- Liu, Z.; Meng, L.; Tan, Y.; Zhang, J.; Zhang, H. Image compression based on octave convolution and semantic segmentation. Knowl.-Based Syst. 2021, 228, 107254. [Google Scholar] [CrossRef]
- He, Y.; Zeng, T.; Xiong, Y.; Li, J.; Wei, H. Deep Leaning Based Frequency-Aware Single Image Deraining by Extracting Knowledge from Rain and Background. Mach. Learn. Knowl. Extr. 2022, 4, 738–752. [Google Scholar] [CrossRef]
- Azarang, A.; Kehtarnavaz, N. A generative model method for unsupervised multispectral image fusion in remote sensing. Signal Image Video Process. 2022, 16, 63–71. [Google Scholar] [CrossRef]
- Zhu, H.; Wei, H.; Li, B.; Yuan, X.; Kehtarnavaz, N. A review of video object detection: Datasets, metrics and methods. Appl. Sci. 2020, 10, 7834. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Y.; Huang, Y.; Zeng, M.; Ni, S.; Budagavi, M.; Guo, X. Facial: Synthesizing dynamic talking face with implicit attribute learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 3867–3876. [Google Scholar]
- Kim, M.; Cao, B.; Mau, T.; Wang, J. Speaker-independent silent speech recognition from flesh-point articulatory movements using an LSTM neural network. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 2323–2336. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Wisler, A.; Wang, J. Speaker Adaptation on Articulation and Acoustics for Articulation-to-Speech Synthesis. Sensors 2022, 22, 6056. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Long, Y.; Wei, H.; Li, Y. New Acoustic Features for Synthetic and Replay Spoofing Attack Detection. Symmetry 2022, 14, 274. [Google Scholar] [CrossRef]
- Sang, M.; Li, H.; Liu, F.; Arnold, A.O.; Wan, L. Self-supervised speaker verification with simple siamese network and self-supervised regularization. In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 6127–6131. [Google Scholar]
- Gong, X.; Zhu, Y.; Zhu, H.; Wei, H. Chmusic: A traditional Chinese music dataset for evaluation of instrument recognition. In Proceedings of the 2021 4th International Conference on Big Data Technologies, Zibo, China, 24–26 September 2021; pp. 184–189. [Google Scholar]
- Sun, J.; Xue, F.; Li, J.; Zhu, L.; Zhang, H.; Zhang, J. TSINIT: A Two-Stage Inpainting Network for Incomplete Text. IEEE Trans. Multimed. 2022. [Google Scholar] [CrossRef]
- Tao, F.; Busso, C. Gating neural network for large vocabulary audiovisual speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 1290–1302. [Google Scholar] [CrossRef]
- Wei, H.; Kehtarnavaz, N. Simultaneous utilization of inertial and video sensing for action detection and recognition in continuous action streams. IEEE Sens. J. 2020, 20, 6055–6063. [Google Scholar] [CrossRef]
- Tao, F.; Busso, C. End-to-end audiovisual speech recognition system with multitask learning. IEEE Trans. Multimed. 2020, 23, 1–11. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, J.; Liu, H.; Zhou, Q.; Zhu, J.; Li, B. Deep-Learning-Enabled Automatic Optical Inspection for Module-Level Defects in LCD. IEEE Internet Things J. 2021, 9, 1122–1135. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Liu, C.; Hu, Y. Understanding and tackling the hidden memory latency for edge-based heterogeneous platform. In Proceedings of the 3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20), Santa Clara, CA, USA, 25–26 June 2020. [Google Scholar]
- Wang, Z.; Wei, H.; Wang, J.; Zeng, X.; Chang, Y. Security Issues and Solutions for Connected and Autonomous Vehicles in a Sustainable City: A Survey. Sustainability 2022, 14, 12409. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Z.; Wang, Z.; Tang, X.; Liu, C.; Yin, S.; Hu, Y. Enabling Latency-Aware Data Initialization for Integrated CPU/GPU Heterogeneous Platform. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 3433–3444. [Google Scholar] [CrossRef]
- Zhao, M.; Jha, A.; Liu, Q.; Millis, B.A.; Mahadevan-Jansen, A.; Lu, L.; Landman, B.A.; Tyska, M.J.; Huo, Y. Faster Mean-shift: GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking. Med. Image Anal. 2021, 71, 102048. [Google Scholar] [CrossRef]
- You, L.; Jiang, H.; Hu, J.; Chang, C.H.; Chen, L.; Cui, X.; Zhao, M. GPU-accelerated Faster Mean Shift with euclidean distance metrics. In Proceedings of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Los Alamitos, CA, USA, 27 June–1 July 2022; pp. 211–216. [Google Scholar]
- Chang, Y.; Tang, H.; Li, B.; Yuan, X. Distributed joint optimization routing algorithm based on the analytic hierarchy process for wireless sensor networks. IEEE Commun. Lett. 2017, 21, 2718–2721. [Google Scholar] [CrossRef]
- Cai, T.; Zhang, J.; Yan, S.; Meng, L.; Sun, J.; Al-Dhahir, N. Reconfigurable Intelligent Surface Aided Non-Orthogonal Unicast-Multicast Secure Transmission. IEEE Wirel. Commun. Lett. 2021, 11, 578–582. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhou, Y.; Ji, H.; Sun, J.; Al-Dhahir, N. Energy and spectral efficiency tradeoff via rate splitting and common beamforming coordination in multicell networks. IEEE Trans. Commun. 2020, 68, 7719–7731. [Google Scholar] [CrossRef]
- Li, B.; Jiang, F.; Xia, H.; Pan, J. Under the Background of AI Application, Research on the Impact of Science and Technology Innovation and Industrial Structure Upgrading on the Sustainable and High-Quality Development of Regional Economies. Sustainability 2022, 14, 11331. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, Z.; Chen, L.; Huang, Z. Vascular enhancement with structure preservation from noisy X-ray angiogram images by employing non-local Hessian-based filter. Optik 2021, 232, 166523. [Google Scholar] [CrossRef]
- Cao, B.; Teplansky, K.; Sebkhi, N.; Bhavsar, A.; Inan, O.T.; Samlan, R.; Mau, T.; Wang, J. Data Augmentation for End-to-end Silent Speech Recognition for Laryngectomees. In Proceedings of the Interspeech 2022, Incheon, Korea, 18–22 September 2022; pp. 3653–3657. [Google Scholar]
- Ni, A.; Azarang, A.; Kehtarnavaz, N. A review of deep learning-based contactless heart rate measurement methods. Sensors 2021, 21, 3719. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Cao, X.; Zhou, M.; Feng, J.; Xia, L.; Pogue, B.W.; Paulsen, K.D.; Jiang, S. MRI-guided near-infrared spectroscopic tomography (MRg-NIRST): System development for wearable, simultaneous NIRS and MRI imaging. In Proceedings of the Multimodal Biomedical Imaging XVII, San Francisco, CA, USA, 2 March 2022; pp. 87–92. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Wang, Z.; Chang, Y.; Huang, Z. Introducing the Special Issue on Artificial Intelligence Applications for Sustainable Urban Living. Sustainability 2022, 14, 13631. https://doi.org/10.3390/su142013631
Wei H, Wang Z, Chang Y, Huang Z. Introducing the Special Issue on Artificial Intelligence Applications for Sustainable Urban Living. Sustainability. 2022; 14(20):13631. https://doi.org/10.3390/su142013631
Chicago/Turabian StyleWei, Haoran, Zhendong Wang, Yuchao Chang, and Zhenghua Huang. 2022. "Introducing the Special Issue on Artificial Intelligence Applications for Sustainable Urban Living" Sustainability 14, no. 20: 13631. https://doi.org/10.3390/su142013631
APA StyleWei, H., Wang, Z., Chang, Y., & Huang, Z. (2022). Introducing the Special Issue on Artificial Intelligence Applications for Sustainable Urban Living. Sustainability, 14(20), 13631. https://doi.org/10.3390/su142013631