Rapid Detection of Tools of Railway Works in the Full Time Domain
Abstract
:1. Introduction
- 1.
- An image enhancement network with brightness channel decisions is proposed to ensure the robustness of image enhancement in the full time domain.
- 2.
- It has been proposed to add a lightweight attention module and use the improved CIoU loss function on the basis of YOLOX, which greatly improves the detection performance in the complex environment of tool collection and the overlay of tools.
- 3.
- Compared with previous methods, this method has achieved encouraging experimental results on railway tool datasets in actual operation and maintenance scenarios.
2. Related Work
3. Proposed Method
3.1. Image Enhancement Module
3.2. Lightweight Attention Module
3.3. Loss Function
4. Experimental Results and Analysis
4.1. Preparation for the Experiment
4.2. Evaluation Indicators
4.3. Analysis of Experimental Results
4.3.1. Inspection Quality
4.3.2. Ablation Experiments
4.3.3. Comparison Experiment of Model Performance
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guan, L.; Jia, L.; Xie, Z.; Yin, C. A lightweight framework for obstacle detection in the railway image based on fast region proposal and improved yolo-tiny network. IEEE Trans. Instrum. Meas. 2022, 71, 1–16. [Google Scholar] [CrossRef]
- He, D.; Zou, Z.; Chen, Y.; Liu, B.; Miao, J. Rail transit obstacle detection based on improved cnn. IEEE Trans. Instrum. Meas. 2021, 70, 1–14. [Google Scholar] [CrossRef]
- Chen, W.; Meng, S.; Jiang, Y. Foreign object detection in railway images based on an efficient two-stage convolutional neural network. Comput. Intell. Neurosci. 2022, 2022, 3749635. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Wang, Y.; Zhang, H.; Zhong, H.; Liu, L.; Wu, Q.J.; Yang, Y. Dm-ris: Deep multimodel rail inspection system with improved mrf-gmm and cnn. IEEE Trans. Instrum. Meas. 2019, 69, 1051–1065. [Google Scholar]
- Wang, T.; Yang, F.; Tsui, K.-L. Real-time detection of railway track component via one-stage deep learning networks. Sensors 2020, 20, 4325. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Wang, X. Joint deep learning for pedestrian detection. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2056–2063. [Google Scholar]
- Zhou, C.; Yuan, J. Bi-box regression for pedestrian detection and occlusion estimation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 135–151. [Google Scholar]
- Hu, G.; Hua, Y.; Yuan, Y.; Zhang, Z.; Lu, Z.; Mukherjee, S.S.; Hospedales, T.M.; Robertson, N.M.; Yang, Y. Attribute-enhanced face recognition with neural tensor fusion networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3744–3753. [Google Scholar]
- Peng, X.; Yu, X.; Sohn, K.; Metaxas, D.N.; Chandraker, M. Reconstruction-based disentanglement for pose-invariant face recognition. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1623–1632. [Google Scholar]
- Mehta, D.; Sridhar, S.; Sotnychenko, O.; Rhodin, H.; Shafiei, M.; Seidel, H.-P.; Xu, W.; Casas, D.; Theobalt, C. Vnect: Real-time 3D human pose estimation with a single rgb camera. ACM Trans. Graph. 2017, 36, 44. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, U.; Doering, A.; Yasin, H.; Krüger, B.; Weber, A.; Gall, J. A dual-source approach for 3D human pose estimation from single images. Comput. Vis. Image Underst. 2018, 172, 37–49. [Google Scholar] [CrossRef]
- You, Y.; Zhao, Y. A human pose estimation algorithm based on the integration of improved convolutional neural networks and multi-level graph structure constrained model. Pers. Ubiquitous Comput. 2019, 23, 607–616. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE international Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolo9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Bai, T.; Gao, J.; Yang, J.; Yao, D. A study on railway surface defects detection based on machine vision. Entropy 2021, 23, 1437. [Google Scholar] [CrossRef] [PubMed]
- Chandran, P.; Asber, J.; Thiery, F.; Odelius, J.; Rantatalo, M. An investigation of railway fastener detection using image processing and augmented deep learning. Sustainability 2021, 13, 12051. [Google Scholar] [CrossRef]
- Guo, F.; Qian, Y.; Shi, Y. Real-time railroad track components inspection based on the improved yolov4 framework. Autom. Constr. 2021, 125, 103596. [Google Scholar] [CrossRef]
- Lv, H.; Yan, H.; Liu, K.; Zhou, Z.; Jing, J. Yolov5-ac: Attention mechanism-based lightweight yolov5 for track pedestrian detection. Sensors 2022, 22, 5903. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Zhang, L.; Shen, Y.; Ma, Y.; Zhao, S.; Zhou, Y. Zero-shot restoration of underexposed images via robust retinex decomposition. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), Virtual, 6–10 July 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Land, E.H.; McCann, J.J. Lightness and retinex theory. J. Opt. Soc. Am. 1971, 61, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-iou loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 658–666. [Google Scholar]
Methods | mAP | FPS |
---|---|---|
Yolox | 74.16% | 34.26 |
Yolox + Image enhancement | 75.13% | 35.58 |
Yolox + Image enhancement + CIoU | 76.94% | 34.58 |
Yolox + Image enhancement + CIoU + Attention module | 77.26% | 32.25 |
Model | AP Plastic Bucket | Motor | Electric Drill | Grinding Machine | Woven Bag | Toolkit | mAP | FPS |
---|---|---|---|---|---|---|---|---|
Retinanet | 0.97 | 0.89 | 0.67 | 0.14 | 0.55 | 0.80 | 71.02% | 23.67 |
Yolov5s | 0.65 | 0.91 | 0.34 | 0.04 | 0.53 | 0.99 | 68.37% | 41.37 |
Yolox | 0.88 | 0.91 | 0.66 | 0.53 | 0.15 | 0.71 | 74.16% | 34.26 |
Ours | 0.99 | 0.92 | 0.75 | 0.61 | 0.57 | 0.84 | 77.26% | 32.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Luo, Y.; Li, S.; Fan, Z.; Li, X.; Ju, J.; Lin, M.; Wang, Z. Rapid Detection of Tools of Railway Works in the Full Time Domain. Sustainability 2022, 14, 13662. https://doi.org/10.3390/su142013662
Zheng Z, Luo Y, Li S, Fan Z, Li X, Ju J, Lin M, Wang Z. Rapid Detection of Tools of Railway Works in the Full Time Domain. Sustainability. 2022; 14(20):13662. https://doi.org/10.3390/su142013662
Chicago/Turabian StyleZheng, Zhaohui, Yuncheng Luo, Shaoyi Li, Zhaoyong Fan, Xi Li, Jianping Ju, Mingyu Lin, and Zijian Wang. 2022. "Rapid Detection of Tools of Railway Works in the Full Time Domain" Sustainability 14, no. 20: 13662. https://doi.org/10.3390/su142013662
APA StyleZheng, Z., Luo, Y., Li, S., Fan, Z., Li, X., Ju, J., Lin, M., & Wang, Z. (2022). Rapid Detection of Tools of Railway Works in the Full Time Domain. Sustainability, 14(20), 13662. https://doi.org/10.3390/su142013662