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Abstract: The purpose of this study is to propose an appropriate model to predict chemical composi-
tion during water purification at the Regional Water Company (PDAM) Surabaya, in order to achieve
proper drinking water standards. Drinking water treatment is very expensive, so the model serves as
a basis for determining the composition of chemicals used in the water purification process at PDAM
Surabaya. This study examines a model of the relationship between the level of clarity of drinking
water and the composition of the chemicals used. The government can obtain important benefits from
the forecasting model to formulate policies for the company. One of the objectives of developing the
estimation method involved in this research is to efficiently determine the exact chemical composition
resulting from the water purification process, which will inform the financing and control of water
quality. We used a multivariable linear approach for some parametric components, a multivariable
Fourier Series approach for some nonparametric components, and a multivariable Kernel approach
for semiparametric regression. Using the penalized least square (PLS) approach, a mixed estimator
of the Fourier and Kernel Series was obtained with semiparametric regression. The smoothing
parameters were selected using a common cross-validation technique (GCV). The performance of
this technique was evaluated using the Gaussian Kernel and Fourier Series with data trends in the
drinking water clarity level obtained from PDAM Surabaya. The findings showed that this technique
performed well, so we recommend that the government conduct an in-depth analysis to determine
correct chemical composition so that the cost of water treatment can be minimized.

Keywords: PLS; GCV; Kernel; Fourier Series; smoothing parameters

1. Introduction

In the adult human body, 70% of body weight is in the form of liquid. Therefore,
drinking water is a nutritional element that is as important as carbohydrates, proteins, fats,
and vitamins. Consuming good and sufficient mineral water can help the digestive process,
regulate metabolism, regulate food substances in the body, and ensure body balance,
provided that the quality of drinking water is assessed in terms of clarity [1]. To obtain
drinking water that is fit for consumption involves costly processing. Careful planning is
needed so that costs can be minimized. One approach that can be used is the application of
a semiparametric regression model, as proposed in this paper.

Semiparametric regression is a regression analysis technique in addition to parametric
and nonparametric regression. Both parametric and nonparametric features are integrated
in semiparametric regression. The parametric features used in semiparametric regression
include Fourier Series and Kernel. These three different estimators are combined in the
estimate. Linear regression is the easiest and most efficient estimator compared to other
nonparametric regression methods. Kernel is useful for use with un patterned data [2]
and has a relatively faster convergence speed than polynomial estimators, Fourier Series,
or splines [3]. Many nonparametric and semiparametric regression estimators have been
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developed. For data with variable patterns independent of node location, nonparametric
regression without mixed estimators, such as spline smoothing [4], Penalized Spline [5].
B-Spline [6], Weighted Partial Spline [7]. For data with changing patterns at certain sub-
intervals, truncated splines are used [8,9].

Semiparametric regression estimators have been developed by several authors,
including [10,11]. The authors of [12–14] used the Kernel technique and the authors
of [13,14] dan [15,16] developed an approach involving Fourier Series.

The assumption used by researchers when designing nonparametric or semiparametric
regression models is that each predictor in the nonparametric component will follow the
same pattern. However, the actual scenario is likely to reveal different correlation patterns
among the predictors. Mixed estimators for nonparametric and semiparametric regression
have been developed to estimate the regression curve according to the data pattern. Studies
on mixed estimators for nonparametric regression have previously been conducted on the
mixed Kernel estimator and Fourier Series in nonparametric regression [17], on the mixed
estimator of Fourier Series and truncated spline in nonparametric regression by [13,18,19],
and on the mixed estimator Kernel and smoothing spline in nonparametric regression [20].
For mixed semiparametric regression estimators, ref. [16] developed an approach that
combines spline truncated and Kernel approaches, while [12,14] constructed a model
combining Kernel estimators and Fourier Series. The authors of [20] developed an approach
that combines smoothing spline and Fourier Series. The smoothing parameter serves to
control the smoothness between the goodness of fit and the penalty.

This paper proposes a combined estimate of semiparametric regression of the multi-
variable Kernel mixed estimator and Fourier Series, in which some nonparametric compo-
nents contain repeating and un patterned components. Semiparametric regression research
using mixed estimates of Kernel and Series Fourier was carried out by [13] but has not
been able to overcome the semiparametric data pattern of mixed multivariable Kernel
and multivariable Fourier Series for parameters components; Kernel components and
Fourier Series are also multivariable. This paper presents the combined estimation of the
multivariable Kernel estimator and the multivariable Fourier Series, using a PLS estimation
approach as the estimation method. The estimator technique uses a PLS estimate produced
by combining goodness of fit and penalty.

With respect to the optimal smoothing parameter selection method using the GCV
method, a small optimal smoothing parameter will produce a very rough estimate on the
Fourier Series estimator, but a large smoothing parameter will produce a very fine estimate
where the estimator is not able to estimate the data according to the pattern. Similarly,
an optimal bandwidth is required because a very small bandwidth will result in a very
coarse Kernel estimator and a very wide bandwidth will produce a Kernel estimator that is
slippery and does not match the data pattern. Previous nonparametric and semiparametric
regression researchers have extensively developed the GCV method. Researchers who
studied the GCV technique in nonparametric regression, among others, found that the
GCV technique was superior to an unbiased risk approach in this context [17]. The authors
of [15] investigated semiparametric regression using the GCV method. The selection of
smoothing parameters in this study was based on the development of optimal smoothing
parameter selection on the balanced estimator combined multivariable Fourier Series and
Kernel in semiparametric regression [13].

The model results obtained from the estimation results are anticipated to be used
in modeling the level of clarity of drinking water in PDAM Surabaya. The estimation of
parametric components is approximated by a multivariable parametric method, Kernel
components are approximated by Gaussian Kernels and components of the Fourier Series
are approximated using Fourier Series with trends. The estimation model can be used
to predict the composition of the optimal use of chemicals while taking into account the
threshold for drinking water. This information is anticipated to provide reference materials
for planning drinking water management. As each chemical is expensive and its price
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varies, it is hoped that, using this model, PDAM Surabaya can efficiently manage the costs
of producing clean water.

2. Materials and Techniques

Given a data pair of n that is (t1i, . . . , tpi, x1i, . . . , xqi, z1i, . . . , zri, yi), with i = 1, 2, . . . , n.
yi is the reaction variable. A multivariable semiparametric regression form is produced as
follows:

yi = η(t1i, . . . , tpi, x1i, . . . , xqi, z1i, . . . , zri) + εi (1)

εi is a random error for which I IDN(0, σ2). Assuming that the regression curve µ is
additive, it may be expressed as:

yi =
p

∑
j=1

gj(tji) +
q

∑
k=1

mk(xki) +
r

∑
l=1

hl(zli) + εi, i = 1, 2, . . . , n (2)

Part
p
∑

j=1
gj(tji) is a parametric component that can be approached using a multivariable

linear function;
q
∑

k=1
mk(xki) is a nonparametric component that can be approached using

a multivariable Kernel function, and
r
∑

l=1
hl(zli) is a nonparametric component with hl

expected to be smooth and enclosed in continuous function space on (0, π), so that hl(zli)

may be approached using Fourier Series [21] H(zl) with H(zi) = bzi +
1
2 a0 +

S
∑

s=1
as cos szi

where b, a0,, as, s = 1, 2, . . . S are model parameters.

The following equation yields the estimator η by PLS optimization:

Min
hl∈C(0,π),β∈Rp+1 ,γ∈Rr(S+2)

{
n−1

n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jtji −
q

∑
k=1

mk(xki)−
r

∑
l=1

(
blzli +

1
2

a0l +
S

∑
s=1

asl cos szli

)) 2

+
r

∑
l=1

˘l

π∫
0

2
π
(hl
′′ (zl))

2dzl

 (3)

where ˘l are the smoothing parameters.
The function that measures goodness of fit makes up the first component of Equation (3),

and the function that measures the penalty makes up the second.

3. Results and Discussion
3.1. Mixed Kernel Model and Multivariable Fourier Series in Semiparametric Regression

Several lemmas must be satisfied to generate a mixed model Kernel and multivariable
Fourier Series in semiparametric regression in Equation (2). Lemma 1 presents solutions
for parametric components, Lemma 2 presents solutions for Kernel components, Lemma
3 presents solutions for Fourier Series components and Lemma 4 presents solutions for
goodness of fit, while Lemma 5 presents the penalty component form of Equation (3).

Lemma 1. If the components of a linear parametric curve are multivariable,
p
∑

j=1
gj(tji) in Equation (2)

are approximated by a multivariable linear function, then
p
∑

j=1
gj(tji) can be written to matrix as Xβ,

where X is a size matrix n × (p + 1), and β is a size vector (p + 1) × 1.

Proof of Lemma 1. If function gj(tji) is roughly represented by a multivariable linear
function, then gj(tji) = β0j + βi jtji, i = 1, 2, . . . , n; j = 1, 2, . . . , q.
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For gj(tji), when i = 1, 2, . . . , n, then the following is obtainedgj(tj1)
...

gj(tjn)

 =

β0j + β1jtj1
...

β0j + βnjtjn


so that:

p
∑

j=1

(
β0j + β1jtji

)
...

p
∑

j=1

(
β0j + β1jtji

)

 =

β01 + β11t1i + β02 + β12t2i + . . . + β0p + β1ptpi
...

β01 + β11t1i + β02 + β12t2i + . . . + β0p + β1ptpi

, β∗0 = β01 + . . . + β0p

so that the matrix can be written, such as:

p
∑

j=1
gj(tji) = Xβwith

X =

 1 t11 . . . 1 tp1
...

... . . .
...

...
1 t1n . . . 1 tpn

, β∗0 = β01 + . . . + β0p and

β =
[

β∗0 β11 . . . β1p
]T are linear function parameters

(4)

.�

Lemma 2. If the components of the Kernel curve
q
∑

k=1
mk(xki) in Equation (2) is approximated by a

multivariable Kernel function, the Nadaraya–Watson estimator [2], then
q
∑

k=1
mk(xki) can be written

as matrix Ωy, as follows:
p

∑
k=1

mk(xki) = Ωy,

where Ω is a size matrix size n × n, y is a size vector n × 1.

Proof of Lemma 2. If the Kernel curve
q
∑

k=1
mk(xki) in Equation (2) is approached with a

multivariable Kernel function, the Nadaraya–Watson estimator [2], then
q
∑

k=1
mk(xki) can be

written as a matrix Ωy

mϕk
(xki) = n−1

n

∑
i=1

Wϕki
(xki)yi

with:

Wϕk
(xki) =

Kϕk (xk − xki)

n−1
n
∑

i=1
Kϕk (xk − xki)

,

Kϕk (xk − xki) =
1
ϕk

K
(

xk − xki
ϕk

)
where Kϕk (xk − xki) is a Kernel function. ϕk is a bandwidth parameter.
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For i = 1, 2, . . . , n, obtained:

m̂ϕki
(xki) = n−1

n
∑

k=1
Wϕk1

(xk1)y1 = n−1Wϕk1 (xk1)y1 + Wϕk2 (xk2)y1 + . . . + Wϕkn (xkn)y1

...

m̂ϕkn
(xkn) = n−1

n
∑

k=1
Wϕkn

(xkn)yn = n−1Wϕkn (xkn)yn + Wϕkn (xkn)y2 + . . . + Wϕkn (xkn)yn

as follows k = 1, 2, . . . , q


m̂ϕ1i

(x1i)
...

m̂ϕqi
(xqi)

 =


n−1

n
∑

i=1
Wϕ1i

(x1i)yi

...

n−1
n
∑

i=1
Wϕqi

(xqi)yi

 =

n−1Wϕ11(x1i)y1 + . . . + Wϕ1n(x1i)yi
...

n−1Wϕq1(xqi)y1 + . . . + Wϕqn(xqi)yi



Kernel components can be written as follows:

ĝϕk
(tk) = Pk(ϕk )y (5)

y =
(
y1 y2 . . . yn

)T

Pk(ϕk) =


n−1Wϕ11(x11) Wϕ12(x12) . . . Wϕ1n(x1n)

...
n−1Wϕq1(xq1) Wϕq2(xq2) . . . Wϕqn(xqn)


as a result of Equation (6), the following is obtained:

q

∑
k=1

mk(xki) = Ωy, � (6)

where Ω =
[
P1(ϕ1) P2(ϕ2) . . . Pq(ϕq)

]T . �

Lemma 3. If the Kernel curve component
r
∑

l=1
hl(zli) in Equation (2) is approximated by a Fourier

Series function Hl(zli), assuming regression hl ∈ C(0, π), l = 1, 2, . . . , r, then

r

∑
l=1

hl(zli) can be written as
r

∑
l=1

hl(zli) = Dγ (7)

where D is a matrix of size n × r(S+2) and γ is a vector of size r(S+2)× 1 .

Proof of Lemma 3. If the components of the curve of the Fourier Series
r
∑

l=1
hl(zli) is approximated by the Fourier Series function Hl(zli) assuming regression hl(zli)

hl ∈ C(0, π), l = 1, 2, . . . , r are oscillation parameters [21], then obtained follow is

Hl(zli) = blzli +
1
2

a0l +
S

∑
s=1

asl cos szli, i = 1, 2, . . . , n, l = 1, 2, . . . , r (8)

for i = 1, 2, . . . , n, then the following is obtained:

Hl(zl1)
...

Hl(zln)

 =


blzl1 +

1
2 a0l +

S
∑

s=1
asl cos szl1

...

blzln +
1
2 a0l +

S
∑

s=1
asl cos szln

 (9)
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so that
r
∑

l=1
Hl(zli) in Equation (10), the above equation is presented in matrix form,

as follows:
r

∑
l=1

hl(zli) = Dγ � (10)

where:

D =

z11 1 cos z11 · · · cos Sz11 · · · zr1 1 cos zr1 · · · cos Szr1
...

...
...

. . .
...

. . .
...

...
...

. . .
...

z1n 1 cos zr1 · · · cos Szrn · · · zrn 1 cos zrn · · · cos Szrn


and

γ =
[
b1

1
2 a01 a11 . . . aS1 . . . br

1
2 a0r a1r . . . aSr

]T .

�

Lemma 4. If the semiparametric regression model is as in Equation (2), where the linear regression
curve is given in Lemma 1, the Kernel curve is in Lemma 2 and the Fourier Series curve is in Lemma
3, then the equation’s goodness of fit (3) is as follows:

((I− y)Ω− Xβ−Dγ)T((I− y)Ω− Xβ−Dγ)

Proof of Lemma 4. If the parametric component is approximated by a linear function

so that
p
∑

j=1
gj(tji) = Xβ (Lemma 1), then the Kernel component is close to the Nadaraya–

Watson Kernel, then
q
∑

k=1
mk(xki) = Ωy, then the components of the Fourier Series are

approximated by the Bilodeau Fourier Series, then
r
∑

l=1
hl(zli) = Dγ, Equation (3) can be

presented in the form of a matrix y = Xβ + yΩ + Dγ + ε, so that the goodness of fit
equation (3) is obtained εTε, as follows:

((I− y)Ω− Xβ−Dγ)T((I− y)Ω− Xβ−Dγ) �

�

Lemma 5. If the penalty component is given as
r
∑

l=1
˘l

π∫
0

2
π (hl

′′ (zl))
2dzl from Equation (2), then:

r

∑
l=1

˘l

π∫
0

2
π
(hl

′′ (zl))
2dzl = flTPγ (11)

λl are smoothing parameters.

Proof of Lemma 5. Given a penalty component is given as
r
∑

l=1
˘l

π∫
0

2
π (hl

′′ (zl))
2dzl with

hl(zli) expected to be smooth and enclosed in a continuous function space C(0, π), so
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that hl(zli) may be approached by blzli +
1
2 a0l +

S
∑

s=1
asl cos szli, then determine the second

derivative of hl(zli), obtained hl
′′ (zl) = −

S
∑

s=1
s2aslcos szl a result

π∫
0

2
π
(h′′ (z))2dz =

S

∑
s=1

s4a2
s= γ

TPγ � (12)

with γ =


b

1
2 a0
a1
...

aS

 and P =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 14 · · · 0
...

...
...

. . .
...

0 0 0 · · · S4

. �

Theorem 1 provides a detailed explanation of the mixed model of Kernel and multi-
variable Fourier Series, where the linear curve is provided in Equation (4), the Kernel curve
in Equation (5), the Fourier Series curve in Equation (8), and the penalty in Equation (12).

Theorem 1. Equation (1) describes a semiparametric regression model. The linear regression curve
is represented by the expressions given in Equation (4), the Kernel in Equation (5), Fourier Series in
Equation (8), and penalty in Equation (12). We obtain a multivariable by minimizing the PLS in
Equation (3), giving us:

η̂(β,ϕ,λ,s)(t, x, z) = M∗y

where y is a vector size n × 1 and M* is a matrix size n × n.

Proof of Theorem 1. Based on Lemma 4, Equation (3)’s optimization can be expressed as:

Min
γ,β

η(γ,β) = Min
γ,β

[
n−1[(I−Ωk)y− Xβ −Dγ]T [(I−Ωk)y− Xβ −Dγ] + γTPγ

]
(13)

where γTPγ a is the penalty component.
In Equation (13), if A = (I−Ωk)y− Xβ, so ζ(γ,β), It can be expressed as:

∂η(γ,β)
∂γ = n−1 ∂

∂γ

[(
AT − γTDT

)
(A−Dγ) + γTPγ

]
=
[
2DTD + 2P

]
γ− 2DTA = 0

^
γ =

[
DTD + P

]−1DTA

To get an estimator γ, so η(γ,β) is obtained by partially deriving from γ, and the
result is equal to zero.

^
γ = B

(
(I−Ω)y− X

^
β

)
where B =

[
DTD + P

]−1
DT (14)

Next, to get an estimation
^
β, i.e., partially derivative of ζ(γ,β) to β, then equated to

zero, as follows:

∂η(γ,β)
∂β = n−1 ∂

∂β

[(
yT(I−Ω)T −βTXT-γTDT

)
((I−Ω)y− Xβ−Dγ) + γTPγ

]
= n−1

[
2XTX

^
β− 2XT(I−Ω)y + 2XTDγ

]
= 0

^
β = (XTX)

−1
XT
[
(I−Ω)y−D

^
γ

]
(15)
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Equation (14) is substitute into Equation (15), and we obtained:

^
β = T∗y, where T∗ =

(
I− (XTX)

−1
XTDBX

)−1
(XTX)

−1
XT)(I−DB)(I−Ω) (16)

Next get
^
γ, namely by substituting Equation (16) into the Equation (14), we obtained:

^
γ = B

(
(I−Ω)y− X

^
β

)
= B(I−Ω− XT∗)y

where
^
β = T∗y,

The above equation can be written in matrix form, as follows

^
γ = C*y,where C∗ = B(I−Ω− XT∗)

y is a vector of size n × 1 and C* is a matrix of size n × n,

If
^
β given in Equation (15) is substituted, we get an estimator for the parametric component:

^
g(β,ϕ,λ,s)(t, x, z) = X

^
β = XT∗y, with T∗ is a matrix size n× n (17)

where T∗ = X
(

I + (XTX)
−1

XTDBX
)−1(

(XTX)
−1

XT(I−DB)(I−Ω)
)

.

After the parametric estimator is obtained, the next step is to obtain a multivariable
Kernel component estimator, as follows:

^
m(β,ϕ,λ,s)(t, x, z) =

q

∑
k=1

^
m(β,ϕ,λ,s)k(t, x, z) = Ωy (18)

where Ω =
q
∑

k=1
Pk(ϕk) = P1(ϕk)P2(ϕk)Pg(ϕk). Ω is a matrix size n × n,

The following steps are taken to obtain the estimator for the multivariable Fourier
Series components:

r

∑
l=1

ĥ(β,ϕ,λ,s)l(t, x, z) = D
^
γ = DC∗y,with

^
γ = C*y (19)

Because
^
g(β,ϕ,λ,s)(t, x, z) given in Equation (17),

^
m(β,ϕ,λ,s)(t, x, z) is given in

Equation (18), dan
^
h(β,ϕ,λ,s)(t, x, z) is given in Equation (19), then the estimation of the

Kernel mixture and the multivariable Fourier Series in the semiparametric regression,
where: x = (x1, x2, . . . , xq)

T , t = (t1, t2, . . . , tp)
T , and z = (z1, z2, . . . , zr)

T , so that:
η̂(β,ϕ,λ,s)(t, x, z) = (XT∗ + Ω + DC∗)y.

Furthermore, the above equation can be presented as follows:

η̂(β,ϕ,λ,s)(t, x, z) = M∗y � (20)

where M∗ = (XT∗ + Ω + DC∗). y is a vector of size n × 1 and M* is a matrix of size
n × n.�

3.2. Smoothing Parameter Selection

Semiparametric regression using the Kernel mixed estimator and multivariable Fourier
Series is highly reliant on the selection of the best smoothing, bandwidth, and oscillation
parameters. The authors of [22,23] state that the selection of the smoothing parameters
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using GCV in semiparametric regression utilizing the combined estimator multivariable
Fourier Series and Kernel is according to:

GCV(β,ϕ,λ, s) =
n−1‖(I−M∗) y ‖2

(n−1trace(I−M∗)2 , with M∗ = (XT∗ + Ω + DC∗) (21)

The least GCV(β,ϕ,λ, s) results in the ideal smoothing parameters, oscillation para-
meters, and bandwidth.

4. Modeling Data

In this section, the TKAM data at PDAM Surabaya are subjected to a combined
model of the multivariable Kernel and the Fourier Series in semiparametric regression.
Drinking water is very important for human life and must be used wisely considering future
generations [24]. Because of water pollution, purification processes are necessary which are
very costly [25] and require careful planning, including the assessment of the composition
of the chemical substances needed to obtain drinking water that meets required standards.

After conducting an initial study on TKAM data at PDAM Surabaya, the obtained data
show that there were differences in the data patterns between each predictor variable and
the reaction variable; that is, some showed a Fourier Series pattern, others showed a Kernel
pattern, and some followed a linear pattern. These data were then applied to the model
in Equation (19) using R software with library(pracma), library(MASS), library(lmtest)
and library(gtools). The response variable y was the level of clarity of drinking water.
The predictor variables thought to affect the level of water clarity included aluminum
sulfate (x1), liquid chlorine (x2), cupric sulfate (x3), chlorine (x4), Dukem 108A (x5), and the
turbidity of the water after deposition (x6), where x2, x3, and x6 are parametric components,
x1 dan x5 are Kernel components and x4 is a Series Fourier component. The estimated
result, based on the smallest GCV criterion value [23,26], from Equation (20) is 0.00209. The
following estimation models were obtained:

ŷ = −0.28893 + 17.8774x2i − 0.33519x3i − 0.02863x6i +

1√
2ß

exp
[
− 1

2

( 0.47351−x1i
0.33068

)2
]

30
Σ

i=1
1√
2ß

exp
[
− 1

2

( 0.47351−x1i
0.33068

)2
]

+

1√
2ß

exp
[
− 1

2

( 0.50129−x5i
0.00177

)2
]

30
Σ

i=1
1√
2ß

exp
[
− 1

2

( 0.50129−x1i
0.00177

)2
] − 0.52630x4i − 0.57788 cos x4i − 4.51577× 10−9 cos 2x4i − 2.00623 cos 3x4i

An overview of the real data and the estimated results is presented in Figure 1.
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Figure 1. Comparison between real data and TKAM estimation results at PDAM Surabaya.
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A combination of the multivariable Kernel and multivariable Fourier Series in Semi-
parametric regression has a value R2 = 88.2% when estimating the degree of clarity of
drinking water in PDAM Surabaya utilizing semiparametric regression modeling. Based
on the value = 88.2% obtained, the predictor variable can explain 88.2% of the variance in
the relationship between the response variables. Furthermore, this shows the suitability of
this model to be used in modeling the TKAM data from PDAM Surabaya [19].

5. Conclusions

This paper presents an estimation technique for semiparametric regression using
PLS. We combined the multivariable parametric estimator, the multivariable Kernel and
the multivariable Fourier Series to estimate the regression curve with data having a data
pattern that was partly parametric multivariable, partly multivariable Kernel and partly
Fourier Series multivariable. The model was based on the smallest GCV. We considered
the outcomes using various types of Kernels, while looking at the estimator features of the
Fourier Series and Kernel estimator in semiparametric regression. The model obtained was
more adequate compared to [19] which had a determination coefficient R of 84%. Using a
mixed estimate of Kernel and multivariable Fourier Series, the coefficient of determination
R was found to be 88.4%.
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Notations

Symbol Meaning
yi Response variable to i
xpi The predictor variable to p on the parametric component x for the i-th subject.

the ith predictor variable on the kth parametric component
The p-th predictor variable on the parametric component for the i-th subject

tki The predictor variable to k on the nonparametric component t for the i-th subject.
zri The predictor variable to r on the nonparametric component z for the i-th subject.
a0,aS, b Fourier Series parameters
β Parametric component parameter vector/regression coefficient vector
m(x) Parametric function for parametric components
g(t) Kernel functions for nonparametric components
h(z) Fourier Series functions for nonparametric components
ε Random error vector with ε ∼ N(0,Iσ2).
σ2 Error variance
ϕ Bandwidth
a Vector containing the parameters of the Fourier Series measuring (S + 2) × 1.
T The matrix containing the coefficients of the multivariable Fourier Series of n × (S + 2).
λ Smoothing parameter
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S Oscillation parameters
SSE Sum square error
SST Sum square total
A−1 The invers of A matrix
K(t) Kernel function
tr(A) The trace of A matrix
D∗ Matrix D*
E[.] Expectation
GCV(.) Generalized cross validation
I Identity matrix
S Oscillation of a Fourier Series function
R2 Coefficient of determination
D The matrix containing the coefficients of the multivariable Fourier Series of n × r(S + 2).
γ Multivariable Fourier Series parameter matrices of size (S + 2) × 1

A∗
Goodness of fit component function semiparametric regression mixed with Kernel and
Fourier Series

B∗ Penalty component function mixed semiparametric regression Kernel and Fourier Series
L∗ The integral of a function L
M∗ The integral of a function M
P Matrix containing Kernel weights of size n × n.
T Matrix containing multivariable Fourier Series coefficients of size n× p(k + 2).
Ω Matrix containing matrices P.
X Parametric component predictor variable matrix of size n× (r + 1)
Z Matrix containing univariable Fourier Series coefficients of size n× (k + 2).
˘j j-th smoothing parameter
β Vector containing parameter estimates of parametric components

µ̂
Parameter vector containing parameter estimates of parametric and nonparametric
components

R2 Coefficient of determination
< Real number
‖.‖ Norm/vector length
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