Integrating Renewable Energy Sources in Italian Port Areas towards Renewable Energy Communities
Abstract
:1. Introduction
2. Port Areas Description
3. Materials and Methods
3.1. Long-Term Wind-Speed and Solar-Irradiation Assessment
3.2. Port’s Analysis Using Hourly Wind-Speed and Solar-Irradiation Data
3.3. Statistical Analysis of Wind Speed and Solar Radiation
3.4. Italian Port Areas towards REC Scenarios
4. Results and Discussion
4.1. Long-Term Wind-Speed Assessment
4.2. Long-Term Solar-Radiation Assessment
4.3. Statistical Analysis of Wind Speed
4.4. Statistical Analysis of Solar Radiation
4.5. Simulation and Analysis of RECs’ Scenarios
- The average area of the dwellings is 80 sqm.
- All the buildings can be attributed to an energy class ranging from F to G.
- The average consumption of the dwelling is assumed to be 3288 kWh.
- Annual electricity consumption and production;
- 1.1.
- Total electricity consumption,
- 1.2.
- Photovoltaic production,
- 1.3.
- Physical self-consumption (consumer with the same point of delivery (POD) as the renewable source PV system),
- 1.4.
- Energy supplied into the grid (difference between photovoltaic production and physical self-consumption),
- 1.5.
- Daytime electricity consumption,
- 1.6.
- Shared energy (energy consumed by RECs’ consumers),
- 1.7.
- Surplus energy (energy not consumed by RECs’ consumers),
- 1.8.
- Energy consumed (sum of physical self-consumption and shared energy),
- Energy and environmental indexes
- 2.1.
- Physical self-consumption index (ratio of physical self-consumption to photovoltaic production),
- 2.2.
- Virtual self-consumption index (ratio of shared energy to photovoltaic production),
- 2.3.
- Total self-consumption index (sum of physical self-consumption index and virtual self-consumption index),
- 2.4.
- Energy self-sustainability index (ratio of energy used to total electricity consumption),
- 2.5.
- Annual CO2 avoided,
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Misra, A.; Venkataramani, G.; Gowrishankar, S.; Ayyasam, E.; Ramalingam, V. Renewable Energy Based Smart Microgrids—A Pathway To Green Port Development. Strat. Plan. Energy Environ. 2017, 37, 17–32. [Google Scholar] [CrossRef]
- Ferretti, M.; Parola, F.; Risitano, M.; Tutore, I. Complementary Assets And Green Practices In Shipping Management: A Multiple Case Study Analysis. Int. J. Transp. Econ. 2016, 43, 379–396. [Google Scholar]
- Mat, N.; Cerceau, J.; Shi, L.; Park, H.-S.; Junqua, G.; Lopez-Ferber, M. Socio-ecological transitions toward low-carbon port cities: Trends, changes and adaptation processes in Asia and Europe. J. Clean. Prod. 2016, 114, 362–375. [Google Scholar] [CrossRef]
- Sifakis, N.; Tsoutsos, T. Planning zero-emissions ports through the nearly zero energy port concept. J. Clean. Prod. 2020, 286, 125448. [Google Scholar] [CrossRef]
- Iris, Ç.; Lam, J.S.L. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems. Renew. Sustain. Energy Rev. 2019, 112, 170–182. [Google Scholar] [CrossRef]
- Kuznetsov, A.; Dinwoodie, J.; Gibbs, D.; Sansom, M.; Knowles, H. Towards a sustainability management system for smaller ports. Mar. Policy 2015, 54, 59–68. [Google Scholar] [CrossRef]
- Puig, M.; Wooldridge, C.; Michail, A.; Darbra, R.M. Current status and trends of the environmental performance in European ports. Environ. Sci. Policy 2015, 48, 57–66. [Google Scholar] [CrossRef]
- Bach, C.K.; Groll, E.A.; Braun, J.E.; Horton, W.T. Dual port vapor injected compression: In-system testing versus test stand testing, and mapping of results. Renew. Energy 2016, 87, 819–833. [Google Scholar] [CrossRef] [Green Version]
- Cerceau, J.; Mat, N.; Junqua, G.; Lin, L.; Laforest, V.; Gonzalez, C. Implementing industrial ecology in port cities: International overview of case studies and cross-case analysis. J. Clean. Prod. 2014, 74, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Schipper, C.A.; Vreugdenhil, H.; de Jong, M.P.C. A sustainability assessment of ports and port-city plans: Comparing ambitions with achievements. Transp. Res. Part D Transp. Environ. 2017, 57, 84–111. [Google Scholar] [CrossRef]
- Acciaro, M.; Ghiara, H.; Cusano, M.I. Energy management in seaports: A new role for port authorities. Energy Policy 2014, 71, 4–12. [Google Scholar] [CrossRef]
- Boile, M.; Theofanis, S.; Sdoukopoulos, E.; Plytas, N. Developing a Port Energy Management Plan: Issues, Challenges, and Prospects. Transp. Res. Rec. J. Transp. Res. Board 2016, 2549, 19–28. [Google Scholar] [CrossRef]
- Acciaro, M.; Vanelslander, T.; Sys, C.; Ferrari, C.; Roumboutsos, A.; Giuliano, G.; Lee Lam, J.S.; Kapros, S. Environmental sustainability in seaports: A framework for successful innovation. Marit. Policy Manag. 2014, 41, 480–500. [Google Scholar] [CrossRef]
- Gibbs, D.; Rigot-Muller, P.; Mangan, J.; Lalwani, C. The role of sea ports in end-to-end maritime transport chain emissions. Energy Policy 2014, 64, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Hall, P.V.; O’Brien, T.; Woudsma, C. Environmental innovation and the role of stakeholder collaboration in West Coast port gateways. Res. Transp. Econ. 2013, 42, 87–96. [Google Scholar] [CrossRef]
- Di Vaio, A.; Varriale, L.; Alvino, F. Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy. Energy Policy 2018, 122, 229–240. [Google Scholar] [CrossRef]
- Ng, A.K.; Zhang, H.; Afenyo, M.; Becker, A.; Cahoon, S.; Chen, S.-L.; Esteban, M.; Ferrari, C.; Lau, Y.-Y.; Lee, P.T.-W.; et al. Port Decision Maker Perceptions on the Effectiveness of Climate Adaptation Actions. Coast. Manag. 2018, 46, 148–175. [Google Scholar] [CrossRef]
- Kotrikla, A.M.; Lilas, T.; Nikitakos, N. Abatement of air pollution at an aegean island port utilizing shore side electricity and renewable energy. Mar. Policy 2017, 75, 238–248. [Google Scholar] [CrossRef]
- Lam, J.S.L.; Notteboom, T. The Greening of Ports: A Comparison of Port Management Tools Used by Leading Ports in Asia and Europe. Transp. Rev. 2014, 34, 169–189. [Google Scholar] [CrossRef]
- Maleki, A. Optimal operation of a grid-connected fuel cell based combined heat and power systems using particle swarm optimisation for residential sector. Int. J. Ambient Energy 2019, 42, 550–557. [Google Scholar] [CrossRef]
- Ramos, V.; Carballo, R.; Álvarez, M.; Sánchez, M.; Iglesias, G. A port towards energy self-sufficiency using tidal stream power. Energy 2014, 71, 432–444. [Google Scholar] [CrossRef]
- Thangavel, V.; Momula, S.Y.; Gosala, D.B.; Asvathanarayanan, R. Experimental studies on simultaneous injection of ethanol–gasoline and n-butanol–gasoline in the intake port of a four stroke SI engine. Renew. Energy 2016, 91, 347–360. [Google Scholar] [CrossRef]
- Hassan, H.; Abo-Elfadl, S. Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate. Renew. Energy 2018, 116, 728–740. [Google Scholar] [CrossRef]
- López, M.; Iglesias, G. Long wave effects on a vessel at berth. Appl. Ocean Res. 2014, 47, 63–72. [Google Scholar] [CrossRef]
- Agostinelli, S.; Cumo, F.; Nezhad, M.M.; Orsini, G.; Piras, G. Renewable Energy System Controlled by Open-Source Tools and Digital Twin Model: Zero Energy Port Area in Italy. Energies 2022, 15, 1817. [Google Scholar] [CrossRef]
- Fossile, D.K.; Frej, E.A.; da Costa, S.E.G.; de Lima, E.P.; de Almeida, A.T. Selecting the most viable renewable energy source for Brazilian ports using the FITradeoff method. J. Clean. Prod. 2020, 260, 121107. [Google Scholar] [CrossRef]
- Akbari, N.; Irawan, C.A.; Jones, D.F.; Menachof, D. A multi-criteria port suitability assessment for developments in the offshore wind industry. Renew. Energy 2017, 102, 118–133. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, L.; Cappelli, V.; Klausmann, N.; van Soest, H. Peer-to-Peer Trading and Energy Community in the Electricity Market: Analysing the Literature on Law and Regulation and Looking ahead to Future Challenges. International Energy Agency. 2021. Available online: https://library.wur.nl/WebQuery/wurpubs/fulltext/558791 (accessed on 1 September 2022).
- Biresselioglu, M.E.; Limoncuoglu, S.A.; Demir, M.H.; Reichl, J.; Burgstaller, K.; Sciullo, A.; Ferrero, E. Legal Provisions and Market Conditions for Energy Communities in Austria, Germany, Greece, Italy, Spain, and Turkey: A Comparative Assessment. Sustainability 2021, 13, 11212. [Google Scholar] [CrossRef]
- Cumo, F.; Curreli, F.R.; Pennacchia, E.; Piras, G.; Roversi, R. Enhancing the urban quality of life: A case study of a coastal city in the metropolitan area of Rome. WIT Trans. Built Environ. 2017, 170, 127–137. [Google Scholar]
- Cumo, F. Digital twin for critical infrastructures: The Ventotene Island port case study, Italy. Built Environ. 2021, 205, 217–222. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Springer Topics in Signal Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Monti, A.C. A proposal for a residual autocorrelation test in linear models. Biometrika 1994, 81, 776–780. [Google Scholar] [CrossRef]
- UNCTAD, United Nations Conference on Trade and Development. Reveiw of Maritime Transport. 2018. Available online: https://unctad.org/system/files/official-document/rmt2018_en.pdf (accessed on 1 September 2022).
- Jia, H.; Lampe, O.D.; Solteszova, V.; Strandenes, S.P. Norwegian port connectivity and its policy implications. Marit. Policy Manag. 2017, 44, 956–966. [Google Scholar] [CrossRef]
- Fuenfschilling, L.; Truffer, B. The interplay of institutions, actors and technologies in socio-technical systems—An analysis of transformations in the Australian urban water sector. Technol. Forecast. Soc. Chang. 2016, 103, 298–312. [Google Scholar] [CrossRef]
- Vejvar, M.; Lai, K.-H.; Lo, C.K.Y.; Fürst, E.W. Strategic responses to institutional forces pressuring sustainability practice adoption: Case-based evidence from inland port operations. Transp. Res. Part D Transp. Environ. 2018, 61, 274–288. [Google Scholar] [CrossRef]
Ports | Wind Speed (m/s) | Wind Power (W/m2) | Solar Radiation (J) | Solar Power (Wh) |
---|---|---|---|---|
Anzio | 5.051 | 78.929 | 324.589 | 0.09016 |
Formia | 4.685 | 62.984 | 315.831 | 0.08773 |
Ventotene | 5.085 | 80.533 | 322.04 | 0.08945 |
Terracina | 4.21 | 45.703 | 322.196 | 0.08949 |
ID | Building ID | PV Production (kWh) | ID | Building ID | PV Production (kWh) | ID | Building ID | PV Production (kWh) | ID | Building ID | PV Production (kWh) |
---|---|---|---|---|---|---|---|---|---|---|---|
T_3568 | A | 45.00 | T_3576 | B | 7.94 | T_3577 | B | 7.94 | T_3578 | B | 7.94 |
B | 7.94 | C | 0.00 | D | 31.76 | E | 13.24 | ||||
C | 0.00 | D | 31.76 | E | 13.24 | ||||||
D | 31.76 | E | 13.24 | F | 0.00 | ||||||
E | 13.24 | F | 0.00 | ||||||||
F | 0.00 | I | 26.47 | ||||||||
G | 7.94 | ||||||||||
H | 0.00 | ||||||||||
I | 26.47 | ||||||||||
J | 0.00 | ||||||||||
Total | 132.35 | Total | 79.41 | Total | 52.94 | Total | 21.18 |
ID | PV Production (kWh) | N° Residential-Dwellings-Type | N° Commercial-Dwellings-Type | Consumption Residential Buildings (kWh) | Consumption Commercial Buildings (kWh) | CER Total Consumption | Energy Self-Sufficiency Index | Annual CO2 Avoided |
---|---|---|---|---|---|---|---|---|
A_3579 | 253.378 | 32 | 5 | 105.216 | 124.500 | 369.716 | 35.41% | 82.57 |
A_3581 | 253.378 | 48 | 5 | 157.824 | 124.500 | 422.324 | 33.73% | 82.78 |
A_3582 | 253.378 | 64 | 5 | 210.432 | 124.500 | 474.932 | 32.07% | 82.96 |
A_3584 | 253.378 | 80 | 5 | 263.040 | 124.500 | 527.540 | 30.49% | 83.12 |
T_3460 | 63.523 | 16 | 4 | 52.608 | 99.600 | 199.875 | 23.96% | 20.98 |
T_3459 | 63.523 | 32 | 4 | 105.216 | 99.600 | 252.483 | 20.50% | 21.05 |
T_3458 | 63.523 | 42 | 4 | 138.096 | 99.600 | 285.363 | 18.80% | 21.08 |
T_3436 | 63.523 | 56 | 4 | 184.128 | 99.600 | 331.395 | 16.59% | 21.10 |
ID | PV Production (kWh) | N° Residential-Dwellings-Type | N° Commercial-Dwellings-Type | Consumption Residential Buildings (kWh) | Consumption Commercial Buildings (kWh) | CER Total Consumption | Energy Self-Sufficiency Index | Annual CO2 Avoided |
---|---|---|---|---|---|---|---|---|
T_3436 | 63.523 | 56 | 4 | 184.128 | 99.600 | 331.395 | 16.59% | 21.10 |
T_3458 | 63.523 | 42 | 4 | 138.096 | 99.600 | 285.363 | 18.80% | 21.08 |
T_3459 | 63.523 | 32 | 4 | 105.216 | 99.600 | 252.483 | 20.50% | 21.05 |
T_3460 | 63.523 | 16 | 4 | 52.608 | 99.600 | 199.875 | 23.96% | 20.98 |
T_3568 | 221.153 | 56 | 4 | 184.128 | 99.600 | 331.395 | 32.43% | 71.95 |
T_3576 | 158.807 | 42 | 4 | 138.096 | 99.600 | 285.363 | 30.53% | 51.85 |
T_3577 | 128.222 | 32 | 4 | 105.216 | 99.600 | 252.483 | 29.64% | 41.94 |
T_3578 | 90.579 | 16 | 4 | 52.608 | 99.600 | 199.875 | 28.72% | 29.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agostinelli, S.; Neshat, M.; Majidi Nezhad, M.; Piras, G.; Astiaso Garcia, D. Integrating Renewable Energy Sources in Italian Port Areas towards Renewable Energy Communities. Sustainability 2022, 14, 13720. https://doi.org/10.3390/su142113720
Agostinelli S, Neshat M, Majidi Nezhad M, Piras G, Astiaso Garcia D. Integrating Renewable Energy Sources in Italian Port Areas towards Renewable Energy Communities. Sustainability. 2022; 14(21):13720. https://doi.org/10.3390/su142113720
Chicago/Turabian StyleAgostinelli, Sofia, Mehdi Neshat, Meysam Majidi Nezhad, Giuseppe Piras, and Davide Astiaso Garcia. 2022. "Integrating Renewable Energy Sources in Italian Port Areas towards Renewable Energy Communities" Sustainability 14, no. 21: 13720. https://doi.org/10.3390/su142113720
APA StyleAgostinelli, S., Neshat, M., Majidi Nezhad, M., Piras, G., & Astiaso Garcia, D. (2022). Integrating Renewable Energy Sources in Italian Port Areas towards Renewable Energy Communities. Sustainability, 14(21), 13720. https://doi.org/10.3390/su142113720