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Abstract: The impact of ports on urban areas’ decarbonization to reduce air and environmental pollu-
tion effects to achieve sustainable development is undeniable, especially in the marine transportation
sector. In this case, applied studies that can contribute to existing knowledge on increasing ports’
energy self-sufficiency using renewable energy sources (RESs) are critical and necessary. In this study,
firstly, (1) the RESs assessment prioritization methodology was designed for Lazio ports. Additionally,
(2) long-term solar radiation and wind speed were analyzed using the Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-2) dataset of Lazio ports. Furthermore,
(3) the time-series, normal-distribution and correlation methods were applied to the generated energy
source, based on various parameters of the RESs used in the ports. Finally, (4) Italian port areas,
towards renewable energy community (REC) scenarios, were analyzed and developed.

Keywords: integrating renewable energy sources (RESs); renewable energy communities (REC);
decision making; port decarbonization; Italian ports

1. Introduction

Ports produce about 3% of greenhouse gases (GHGs) worldwide [1]. In this context,
seaports have used renewable energy systems in the last few years to fully or partially
meet energy demand and to reduce their carbon footprint (towards zero carbon) [2]. How-
ever, current activities in ports significantly increase carbon dioxide (CO2) emissions, and
the need for fundamental revisions should be according to their agenda [3]. Ports have
outstanding energy sources for energy production from RESs to be considered as engine
sources for next-generation programs due to their location and the high energy supply
and demand activities that are carried out in ports. In this regard, ports should be close
to electricity-production facilities, urban areas, transportation of raw materials, roads
and railways.

Ports can be classified into three categories based on characteristics, such as the type
of ship, the size of the ship that arrive at ports and the annual number of passengers
visiting ports of different capacities [4]. (i) Local ports are ports that are large enough
to meet the needs of a small island, usually full of small fishing boats and recreational
boats. The number of small ships in these ports indicates the low capacity and lack of
complex logistics processes. (ii) National ports are used to provide the transportation
services required by a country. In these ports, services are provided to all different types of
ships. These ports have the required logistical infrastructure to meet the basic needs of the
area used. (iii) International and regional ports can meet international and regional needs
due to adequate space and infrastructure [4].
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Various studies have been conducted to achieve sustainable development and influ-
ence port sustainability, focusing on new tools and new technology [5]. In this regard, the
definitions of port sustainability usually show that port sustainability is achieved only
when all environmental, economic and social dimensions increase in these areas [6,7]. The
main goal of port sustainability can be considered to be a socially acceptable and safe port
that maximizes economic profit, is energy efficient and is environmentally friendly [5,8].
Furthermore, ports can be considered as one of the important ways to strengthen global
economic decarbonization [9]. In this regard, a port can provide clean and renewable
energy, using local sources to support ships with clean electricity [10].

The role of port energy management in the sustainable development of renewable
energies is undeniable and can be easily implemented [11]. Interactions with stakeholders
and decision makers in the sustainable development of the environmental management
system can be considered the most crucial aspect of port energy management [12]. Energy
management in ports can be aligned with urban strategies, including measures to expand
the use of renewable energy, encourage environmentally friendly activities and protect
the environment [13]. In this regard, the development of monitoring systems in critical
environmental-performance indicators makes it possible to evaluate energy-consumption
studies and the environmental-risk-management footprint [14,15]. Increasing the need
for decision-making studies and empirical research based on the real experiences of port
decision makers in implementing sustainable tools can help evaluate and select existing
tools, technology and challenges [16]. The use of RESs in ports requires more complete
and accurate information from the scientific community to enable port decision makers
to make decisions with a lesser error probability [17]. Some studies have been carried out
to evaluate the renewable energy supply application for the decarbonization of Italian
ports [18], which included specific regulatory targets to be achieved. For example, applying
wind and solar energy in ports has been implemented worldwide, and the statistics address
the potential use of wind power in European ports [19,20]. Another approach to the use of
alternative power source for maritime ports is the use of tidal and wave energies to power
port operations [11,21]. Of course, reducing GHG and pollutant emissions is directly linked
with energy-efficiency interventions, equipment electrification and the use of RESs and
alternative fuels [22].

The first step in using RESs in the case of installation areas is to measure these energies
over a long period. When choosing the most suitable RESs, the potential relationship of the
RESs with the geographical location should be considered. According to studies conducted
of ports, including the Rotterdam port in the Netherlands and the Kitakyushu port in Japan
based using wind energy, the Campbell port in Australia using wave energy, and ports
in Tokyo, San Diego, Los Angeles and Valencia using solar [23], tidal [21], wave [24] and
wind energy, respectively, ports able to provide significant amounts of energy due to RESs’
significant potential. In this regard, several studies have been conducted to evaluate RESs in
ports, but the lack of studies on which form of RES is more beneficial for use in ports, given
the ports’ geographical location, is felt.

Agostinelli et al. [25] investigated a digitization policy to optimize maintenance pro-
cesses and energy efficiency in port infrastructures to move towards the zero-energy zone.
They considered the Anzio port in the Lazio region as a pilot project, started and developed
as a particular example in the Mediterranean Sea. Furthermore, their study aimed to de-
velop energy-saving strategies and integrate production systems using RESs for sustainable
development. All stages of these applied strategies and energy analyss were carried out,
starting from the current situation and showing the infrastructure potential in energy self-
sufficiency. Finally, the authors discussed the potential of digital twins (DTs) research in the
target area using BIM (building information modeling) and a GIS (geographic information
system) to maximize the beneficial effect of energy-efficiency measurements. Karolina
Fossile et al. [26] used a multi-criteria decision model of RESs to select which renewable
energy type is most suitable for Brazilian ports. Their multi-criteria decision model will
help to implement a linear-planning model to identify suitable options for the use of RESs.
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The assessments showed that solar (PV) energy is the most sustainable RES for investment
in Brazilian ports. They also argued that, given the increasing competitiveness of ports,
it could be very effective to provide new methods that can assist ports in making critical
decisions, especially in selecting RESs. Therefore, they suggested that developing and
designing new models to measure RESs in port studies can help improve energy efficiency
and management in the future. Akbari et al. [27] examined ports’ logistics capabilities,
using the physical characteristics of ports and their connection and design to support the
installation, operation and maintenance of offshore wind projects. The relative importance
of these criteria using the analytical hierarchy process (AHP) determines the relative impor-
tance of the metrics. They then used the AHP in a case study as a decision-making tool to
enable port decision makers to assess the port’s understudy suitability for the installation
of an offshore wind farm in the United Kingdom.

The ‘energy community’ (EC) concept is also known as ‘renewable energy community’,
‘citizens energy community’, ‘community self-consumption’, or ‘simple community’, and it
is based on the open and voluntary participation of citizens. The EC manages activities,
such as the generation, distribution, supply, consumption, aggregation, energy storage,
energy efficiency of or the charging services for electric vehicles [28]. Moreover, the primary
purpose of ECs is to provide environmental and social benefits to the local area and financial
profits. Energy communities play a significant role in facilitating citizens’ participation in
the energy system, as people and enterprises join collective energy initiatives, aiming to
supply the members’ energy needs through renewable energy sources. The energy market,
as well as the related legal, administrative and social aspects, are some of the main factors
facilitating the energy communities’ development [29].

This study aims to validate a decision method to identify RESs’ potential interventions
in Lazio ports. In this case, a recent decision method was designed to enhance network
intelligence better to manage RESs for the decision making and monitoring of the ports’
energy needs. In this case, solar and wind were measured using the Modern-Era Retro-
spective analysis for Research and Applications, Version 2 (MERRA-2) data of four Lazio
province ports. The time-series, normal-distribution and correlation methods were applied
to the generated energy-source parameters based on solar and wind speed used in the
ports. Finally, Italian port areas towards REC scenarios were analyzed and developed.
This paper is organized as follows: Section 2 described port studies; Section 3 summarizes
an integrated methodology of RESs selecting; Section 4 shows the obtained results and
discussions; and Section 5 presents the conclusions.

2. Port Areas Description

In this article, four ports of Lazio were studied (Figure 1): (a) Anzio is a city and
commune on the Lazio coast region of Rome [25]; (b) Formia is situated on the Gaeta
Gulf [30]; (c) Terracina is an Italian city and commune of the Latina province of Rome;
(d) Ventotene is one of the Pontine islands in the Tyrrhenian Sea [31].

Sustainability 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 
Figure 1. Lazio port’s location and limitation areas of each port showed. 

3. Materials and Methods 
The methodological (Figures 2 and 3) approach consists of the following four phases: 

Section 3.1. long-term wind-speed and solar-radiation analysis; Section 3.2. hourly wind-
speed and solar-radiation data analysis; Section 3.3. wind-speed and solar-radiation 
statistical analysis; and Section 3.4. Italian port areas towards REC scenarios. 

 
Figure 2. The methodology description flowchart summarizing ports’ renewable energy source 
prioritization methodology. 

Figure 1. Cont.



Sustainability 2022, 14, 13720 4 of 18

Sustainability 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 
Figure 1. Lazio port’s location and limitation areas of each port showed. 

3. Materials and Methods 
The methodological (Figures 2 and 3) approach consists of the following four phases: 

Section 3.1. long-term wind-speed and solar-radiation analysis; Section 3.2. hourly wind-
speed and solar-radiation data analysis; Section 3.3. wind-speed and solar-radiation 
statistical analysis; and Section 3.4. Italian port areas towards REC scenarios. 

 
Figure 2. The methodology description flowchart summarizing ports’ renewable energy source 
prioritization methodology. 

Figure 1. Lazio port’s location and limitation areas of each port showed.

3. Materials and Methods

The methodological (Figures 2 and 3) approach consists of the following four phases:
Section 3.1. long-term wind-speed and solar-radiation analysis; Section 3.2. hourly wind-
speed and solar-radiation data analysis; Section 3.3. wind-speed and solar-radiation statis-
tical analysis; and Section 3.4. Italian port areas towards REC scenarios.
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3.1. Long-Term Wind-Speed and Solar-Irradiation Assessment

Firstly, more than ten years of monthly data from 2011 to 2021 by the MERRA-2
re-analysis dataset were used to evaluate and identify the wind-speed and solar-radiation
potential of classification ports.

3.2. Port’s Analysis Using Hourly Wind-Speed and Solar-Irradiation Data

Secondly, one year of hourly data from 2020 to 2021 by the MERRA-2 re-analysis
dataset was used to assess the wind speed and solar potential time-series analysis of port
areas to better understand the decision making. Furthermore, using wind data from step
one, the power density of the wind was analyzed applying Equation (1).

P =
1
2

ρv3
(

W/m2
)

(1)

where ρ is the standard air density at sea level, with a mean temperature of 15 ◦C and a
pressure of 1 atmosphere (1.225 kg/m3), and v is the wind speed (m/s). Furthermore, the
hourly data from the years included in the re-analysis dataset, relative to port area out-puts,
were used.

3.3. Statistical Analysis of Wind Speed and Solar Radiation

Pearson’s linear correlation coefficient (CC) [32] test was used to analyze the level of
correlation between the wind-speed and solar-radiation data of the four ports. The CC of
the population pX,Y between two sets generated randomly, X and Y, are defined as follows:

pX,Y = corr(X, Y) = cov(X, Y)/σXσY = E[(X − µX)(Y − µY)]/σXσY (2)

where µX and µY are the expected values of X and Y, and both σX and σY are the standard
deviations (SD). In the next step of the wind-speed and solar-radiation data statistical
analysis, an autocorrelation test was used [33]. The auto-CC lag k (rk) for a sequential time
series S1, S2, . . . , SK was defined as follows:

rk =
1
T ∑T−k

t=1

(
St − S

)(
St+k − S

)
/c0 , k = 0, 1, . . . , L (3)

where c0 denotes the sample variance of the sequential time-series data, T is the effective
sample size of St and S is the average of time series St. Generally, L = T/4, depending on
the time-series data length.
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3.4. Italian Port Areas towards REC Scenarios

The phases introduced two different simulation scenarios of ECs performed in the
Anzio and Terracina ports. The simulations were carried out through the RECON (Renew-
able Energy Community ecONomic simulator), a web application released by ENEA and
aimed at supporting preliminary energy, as well as economic and financial assessments, to
develop RECs. For the Anzio port, a simulation was carried out in the EC-only residential
buildings that do not have autonomous renewable energy production. On the other hand,
two different simulations were carried out for the Terracina port: (a) the first simulation
included residential buildings without the energy production from RESs; and (b) the sec-
ond simulation included “prosumer” buildings, which integrate PV panels. The primary
building use is residential and commercial.

At first, the simulations’ variable parameters were: (i) the number and type of
dwellings in the EC; and (ii) the number of users and related total consumption in the
energy community. The simulations’ fixed parameters were: (i) the port’s total consump-
tion, deduced from electric bills; and (ii) the port’s total PV production, deduced from
the number of roofs and structures for photovoltaic panels. For further simulations of
Terracina’s port, the PV production was a variable parameter related to the number of
buildings within the EC.

4. Results and Discussion

The re-analysis dataset was used for wind- and solar-potential assessment analysis, a
time series of RESs’ potential classification analysis, and decision-making strategy.

4.1. Long-Term Wind-Speed Assessment

Figure 4 shows the wind speed analyzed using the re-analysis dataset for the four case
studies of Lazio. Figures 5 and 6 show a monthly and seasonally wind-speed hourly time
series from 2020 to 2021 for the four Lazio ports. The wind power of the port case studies
are shown in Table 1.
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Table 1. Wind and solar powers of ports case studies.

Ports Wind Speed (m/s) Wind Power (W/m2) Solar Radiation (J) Solar Power (Wh)

Anzio 5.051 78.929 324.589 0.09016

Formia 4.685 62.984 315.831 0.08773

Ventotene 5.085 80.533 322.04 0.08945

Terracina 4.21 45.703 322.196 0.08949

4.2. Long-Term Solar-Radiation Assessment

Figure 7 shows the solar radiation analyzed using the MERRA-2 re-analysis dataset
for the four case studies of Lazio. Figures 8 and 9 shows the four Lazio ports’ monthly and
seasonal solar radiation using an hourly time series from 2020 to 2021. The solar power of
the port case studies are shown in Table 1.
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4.3. Statistical Analysis of Wind Speed

The frequency, mean and SD of the wind-speed values calculated for the available
time-series data of the four ports and are exhibited in Figure 10 ((a) Ventotene, (b) Anzio,
(c) Terracina, and (d) Formia). As a result, it can be seen that the minimum and maximum
average wind speed recorded is related to the Terracina and Ventotene ports at 4.175 and
5.065 (m/s), respectively.
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Figure 10. The wind-speed data normal-distribution fit histogram for Lazio ports: (a) Ventotene;
(b) Anzio; (c) Terracina; (d) Formia.

Figure 11 shows the scatter, histogram and CC of each pair location. First and foremost,
the observation positively affects all ports regarding the wind-speed data. Secondly, the
highest positive CC can be noticed between the Ventotene port and the Formia port.
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4.4. Statistical Analysis of Solar Radiation

Figure 12 shows the solar radiation’s highest correlation between the Formia and
Terracina ports at 0.85. Furthermore, it can be seen that the correlation among all ports is
positive and high. This is based on expectations because the distance between these ports
is not far.
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The Ventotene/Anzio ports and the Ventotene/Terracina ports can be considered
as having good potential for installing solar and wind turbines, respectively. Therefore,
this RES potential level in the Ventotene port can significantly contribute to energy self-
sufficiency in this port/island and lead to its energy self-sufficiency. Studies show that
more than 80% of world trade is conducted through ports every year [34]. The impact
of this global economic growth is that ports have been accompanied by an increase in
maritime transport, which has created competition between ports [35]. In addition, this
increase in marine transportation has changed the ports’ sovereignty. On the other hand,
ports face significant challenges related to climate change and the transition from fossil
fuel to renewable energies. Therefore, due to the increase in sustainable transportation and
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logistics, local and national development regions have increased their attention to the port-
integration perspective system. To achieve this goal, the introduction of new knowledge
about complex port-related interactions is novel, as it will affect the ports’ performance due
to the decision makers’ increasing power [36,37].

4.5. Simulation and Analysis of RECs’ Scenarios

The first simulation was performed in the Anzio port, consisting of a pier and a
breakwater, with a total of 400 berths for boat-docking and yachts. All the berths are
equipped with water and electrical connections for a service fee. The dock services are
managed by Capo d’Anzio SpA, a global service company established in 2010 to promote
and manage the town’s port. In addition, port services, such as bars, restaurants and
shops, are completely integrated into the city’s commercial area. The first step was the EC
simulation, including the port and the surrounding urban areas, through the port’s energy
and energy-efficiency interventions identification. As a result, the most suitable area for
deploying RES systems was identified by considering technical feasibility, visual impact
and the optimization of PV production (shading, optimal orientation of modules, etc.).

The first step was the efficiency interventions, which mainly focused on lighting sys-
tems, consisting of about 67% (260,975 kWh) of the total electrical load. The efficiency
interventions based on installing LED-lighting systems would reduce energy consumption
by about 65% (90,155 kWh). The global lighting intervention reduced the whole port
consumption by about 43%. In order to achieve a zero-energy district (ZED) or better,
namely a positive-energy district (PED), the second action was the design of RES systems
able to supply at least the whole port area’s energy needs. According to systems’ require-
ments and the local distribution of local radiation, the 16 photovoltaic-covered structures
(5◦ inclination) were positioned in the parking area near Piazzale Marinai d’Italia, covering
approximately 800 m2 and producing 200 kW for about 260,000 kWh per year (Figure 13).
As such, the entire port area’s energy consumption (222,000 kWh per year) was covered
through RES integration, resulting in the positive-energy district configuration, where the
exceeded production (40,000 kWh per year) could be provided to the EC.
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The second scenario was analyzed within the Terracina port. It is a canal port, pro-
tected to the south by the Gregorian pier and to the north by a reef pier composed of
two docks where 200 boats can be hosted. Thus, the efficiency interventions were only
based on replacing lighting systems with new LED systems, reducing the overall port
energy consumption by about 40%. Then, the charging station installation, photovoltaic
panels and wind turbines were also included in the simulation. For the installation of PV
structures, the central parking row was considered to cover about 385 m2. Photovoltaic
panels, consisting of 400 W monocrystalline modules, were installed for a total amount of
55 kW, globally producing 71,500 kWh with a surplus of energy of about 20,000 kWh per
year to create an energy community.
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In the first scenario, buildings without PV-production systems near the port were identified
in the north Terracina area. A total of 10 full-residential buildings and two of commercial uses on
the ground floor were selected. For each simulation, a different number of included buildings
was identified to analyze the EC-related energy self-sufficiency to the number of connected
assets. The simulation was performed with the following assumptions:

1. The average area of the dwellings is 80 sqm.
2. All the buildings can be attributed to an energy class ranging from F to G.
3. The average consumption of the dwelling is assumed to be 3288 kWh.

The same assumptions were considered for the second scenario, which involved
deploying the PV system on the buildings’ roofs within the EC, according to the area’s
geometric configuration. Figure 14 shows which buildings were used in the simulations.
For each building, the maximum number of PV panels that could be installed was calculated
through BIM-based simulations. Table 2 shows the PV energy power installed on different
buildings and their distribution within the simulations.
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Table 2. Buildings’ PV production within the simulations.

ID Building
ID

PV Production
(kWh) ID Building

ID
PV Production

(kWh) ID Building
ID

PV Production
(kWh) ID Building

ID
PV Production

(kWh)

T_3568

A 45.00

T_3576

B 7.94

T_3577

B 7.94

T_3578

B 7.94

B 7.94 C 0.00 D 31.76 E 13.24

C 0.00 D 31.76 E 13.24

D 31.76 E 13.24 F 0.00

E 13.24 F 0.00

F 0.00 I 26.47

G 7.94

H 0.00

I 26.47

J 0.00

Total 132.35 Total 79.41 Total 52.94 Total 21.18

The simulation’s purpose was to define a primary tool to support the configuration
of self-sustainable-energy communities. After predicting the fixed number of commercial
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activities involved in the energy community, the critical variable was assigned to the
number of dwellings and, consequently, to the total energy consumption of the residential
cluster, as shown in Figure 14. The main outputs obtained from the simulations can be
summarized as follows:

1. Annual electricity consumption and production;

1.1. Total electricity consumption,
1.2. Photovoltaic production,
1.3. Physical self-consumption (consumer with the same point of delivery (POD)

as the renewable source PV system),
1.4. Energy supplied into the grid (difference between photovoltaic production

and physical self-consumption),
1.5. Daytime electricity consumption,
1.6. Shared energy (energy consumed by RECs’ consumers),
1.7. Surplus energy (energy not consumed by RECs’ consumers),
1.8. Energy consumed (sum of physical self-consumption and shared energy),

2. Energy and environmental indexes

2.1. Physical self-consumption index (ratio of physical self-consumption to photo-
voltaic production),

2.2. Virtual self-consumption index (ratio of shared energy to photovoltaic production),
2.3. Total self-consumption index (sum of physical self-consumption index and

virtual self-consumption index),
2.4. Energy self-sustainability index (ratio of energy used to total electricity consumption),
2.5. Annual CO2 avoided,

Tables 3 and 4 summarize the most relevant input and output data within the
two different simulations.

Table 3. First simulation: input and output data.

ID
PV

Production
(kWh)

N◦

Residential-
Dwellings-

Type

N◦

Commercial-
Dwellings-

Type

Consumption
Residential
Buildings

(kWh)

Consumption
Commercial

Buildings
(kWh)

CER Total
Consumption

Energy Self-
Sufficiency

Index

Annual CO2
Avoided

A_3579 253.378 32 5 105.216 124.500 369.716 35.41% 82.57

A_3581 253.378 48 5 157.824 124.500 422.324 33.73% 82.78

A_3582 253.378 64 5 210.432 124.500 474.932 32.07% 82.96

A_3584 253.378 80 5 263.040 124.500 527.540 30.49% 83.12

T_3460 63.523 16 4 52.608 99.600 199.875 23.96% 20.98

T_3459 63.523 32 4 105.216 99.600 252.483 20.50% 21.05

T_3458 63.523 42 4 138.096 99.600 285.363 18.80% 21.08

T_3436 63.523 56 4 184.128 99.600 331.395 16.59% 21.10

Table 4. Second simulation: input and output data.

ID
PV

Production
(kWh)

N◦

Residential-
Dwellings-

Type

N◦

Commercial-
Dwellings-

Type

Consumption
Residential
Buildings

(kWh)

Consumption
Commercial

Buildings
(kWh)

CER Total
Consumption

Energy Self-
Sufficiency

Index

Annual CO2
Avoided

T_3436 63.523 56 4 184.128 99.600 331.395 16.59% 21.10

T_3458 63.523 42 4 138.096 99.600 285.363 18.80% 21.08

T_3459 63.523 32 4 105.216 99.600 252.483 20.50% 21.05

T_3460 63.523 16 4 52.608 99.600 199.875 23.96% 20.98

T_3568 221.153 56 4 184.128 99.600 331.395 32.43% 71.95

T_3576 158.807 42 4 138.096 99.600 285.363 30.53% 51.85

T_3577 128.222 32 4 105.216 99.600 252.483 29.64% 41.94

T_3578 90.579 16 4 52.608 99.600 199.875 28.72% 29.71
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Figure 15 compares the indexes to evaluate the Anzio port’s energy community. In
particular, the physical self-consumption index was constant when the PV production and
the port’s energy demand were fixed. The virtual self-consumption index and the total
self-consumption index increased according to the number of dwellings involved in the
EC. The energy shared with REC members increased as the exceeded energy supplying the
national power grid decreased, considering the same PV production.
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Figure 15. Anzio’s REC classification indexes.

Therefore, this trend results in autonomous energy production and self-consumption,
avoiding using expensive storage systems. The energy self-sustainability index had a
negative trend as the number of dwellings involved in the energy community increased.
However, this negative trend could be reduced by lowering total electricity consumption
through efficiency interventions on buildings’ envelopes and heating systems.

In Figure 15, the simulation results consider the port as a single prosumer of the EC
(with the same configuration as the Anzio port shown in Figure 15). In Figure 16, the
simulation results are shown, considering that all the buildings connected to the EC are
also energy prosumers. In the first scenario, the energy production was related to the port,
and it emerged that PV production was constant in all the simulations.
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The simulations differed only in the number of dwellings within the residential clus-
ter; consequently, the total REC electricity consumption was variable. The graph shows
that, without considering an increase in PV production, the amount of CO2 avoided was
constant. However, a slight upward trend emerged, related to an increase in the total
self-consumption index (TSCI). This is because the TSCI represents the energy from PV
directly consumed by the REC. Therefore, the cleaner energy consumed by the REC, the less
energy from fossil sources will be used to satisfy the REC’s electricity demand. Therefore,
increasing the TSCI corresponds to a decrease in the REC’s energy self-sufficiency index.

To further clarify:
The TSCI is the sum of the physical self-consumption index (PSCI) and the virtual

self-consumption index (VSCI). The PSCI is the PV production’s ratio to the total internal
PV energy used directly within the port. The VSCI is the PV production’s ratio to the total
internal PV energy used by the neighboring buildings’ consumers belonging to the REC. As
such, the TSCI corresponds to the internal PV energy percentage used by the community.
The energy self-sufficiency index (ESSI) is the total electricity-consumption ratio of the
community to the total internal PV energy used by the REC.

The simulation does not include storage systems for the energy produced by the REC,
so it emerged that the energy from the RES is self-consumed while it is produced. The
exceeded amount of energy is provided to the grid. As the REC increases user numbers,
consumer demand for electricity increases, causing the PSCI index to rise. On the other
hand, the VSCI index is constant, according to energy consumption. Consequently, the
total self-consumption Index increases. The increase in consumer demand for electricity
results in an increase in the REC total consumption, which is not matched by a consistent
increase in the total energy used by the community, resulting in a decrease in the ESSI.

According to the simulations performed in Figures 16 and 17, to increase the EC
sustainability factors, the CO2 reduction and the gap between the TSCI and ESSI were con-
sidered. Therefore, the RES-production systems’ installation in the new buildings included
in the energy community could be a solution, as assumed in the Terracina port’s second
scenario. Figure 17 shows that, in the second scenario, a more significant improvement
in the first two indexes can be identified in the simulations. As a result, all the trends in
the energy self-sustainability indexes were completely reversed, significantly increasing
according to the number of buildings involved in the REC.
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5. Conclusions

Ports are infrastructures which allow the integration of RES-production systems.
Discontinuity characterizes the infrastructure morphology in both daily and seasonal uses.
Large spaces and the proximity to the sea allow the implementation of RES-production
systems to use different sources, such as solar or/and wind. The RESs’ analysis can
effectively reduce project failure by providing decision-making support to stakeholders. In
this case, solar and wind were measured using the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2) data of ports. Furthermore, time-series
methods were considered to design better management of RESs for the energy-needs and
decision-making monitoring of the ports. Three different time resolutions were applied to
compare the complex relationship between the four ports. The analysis revealed how the
energy potential of ports can create a surplus of valuable energy for RESs’ configuration.
The simulations performed are related to renewable energy production from PV systems.
The energy-production systems’ implementation from wind sources would increase the
amount of energy produced, achieving better results in both self-consumption and energy
self-sufficiency, as the energy produced from wind sources is not limited to a condition of
cyclical production.

Moreover, the port infrastructure can be configured as the central hub of an REC, and
the efficient management of consumption and production are needed. The simulations
demonstrate that the transition of the REC’s users, from consumers to prosumers, is crucial
for sustainable development and energy efficiency in urban areas. As a final remark, this
study shows that the methodology proposed can help improve decision-making analysis
for port areas, including urban areas.
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