Converting Offshore Oil and Gas Infrastructures into Renewable Energy Generation Plants: An Economic and Technical Analysis of the Decommissioning Delay in the Brazilian Case
Abstract
:1. Introduction
2. Methodological Approach and Results
2.1. Decommissioning
2.2. Brazilian Context
Infrastructure Removal Cost Analysis
2.3. Methodology
2.3.1. Resource Assessment
2.3.2. Cost Estimation
2.4. Capital Expenditure
2.5. Operational Expenditure
3. Discussion
3.1. Suitability of Sites to Be Decommissioned for Offshore Wind Projects
3.2. Offshore Wind Project Cost Analysis
1-Turbine Project | USD/MW | HAWT | MW/Turbine | m | Contingency | Insurance/MW | Total Cost |
---|---|---|---|---|---|---|---|
Project development | USD 184,050 | 1 | 15 | 10% | USD 2680.00 | USD 3,036,825 | |
Turbine and tower | USD 1,441,725 | USD 23,788,463 | |||||
Electrical installation | USD 415,208 | USD 6,850,932 | |||||
Offshore installation | USD 36,149 | USD 596,459 | |||||
USD/m | |||||||
Onshore supply el. cables | USD 719 | 18,000 | USD 14,236,200 | ||||
Offshore supply el. cables | USD 719 | 6000 | USD 4,745,400 | ||||
One 15 MW HAWT—land supply | USD 48,549,078 | ||||||
One 15 MW HAWT—offshore supply | USD 39,058,278 | ||||||
11-Turbine Project | USD/MW | HAWT | MW/Turbine | m | Contingency | Insurance/MW | Total cost |
Project development | USD 184,050 | 11 | 15 | 10% | USD 2680.00 | USD 33,405,075 | |
Turbine and tower | USD 1,441,725 | USD 261,673,088 | |||||
Electrical installation | USD 415,208 | USD 75,360,252 | |||||
Offshore installation | USD 36,149 | USD 596,459 | |||||
USD/m | |||||||
Onshore supply el. cables | USD 719 | 83,000 | USD 65,644,700 | ||||
Offshore supply el. cables | USD 719 | 73,000 | USD 57,735,700 | ||||
One 15 MW HAWT—land supply | USD 39,738,343 | ||||||
One 15 MW HAWT—offshore supply | USD 39,019,343 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pedrolo, C. Hydrocarbons. Available online: http://www.infoescola.com/quimica-organica/hidrocarbonetos (accessed on 6 June 2022).
- Petrobras. Our History. Available online: https://petrobras.com.br/en/about-us/our-history/ (accessed on 6 June 2022).
- Martins, C.F. The Decommissioning of Offshore Production Structures in Brazil, Monograph-Postgraduate Course in Environmental Engineering; Federal University of Espírito Santo: Vitória, Brazil, 2015. [Google Scholar]
- ANP. Resolution 817/2020. Available online: https://www.in.gov.br/web/dou/-/resolucao-n-817-de-24-de-abril-de-2020-254001378 (accessed on 6 June 2022).
- Braga, J. Demobilization of the Field of Petroleum in Brazil: Lessons Learned from the North Sea. Master in Maritime Studies Dissertation, Naval War College, Rio of Janeiro, Brazil, 2018. Available online: https://www.repositorio.mar.mil.br/handle/ripcmb/844617 (accessed on 6 June 2022).
- Shadman, M.; Silva, C.; Faller, D.; Wu, Z.; Of Freitas Assad, L.P.; Landau, L.; Levi, C.; Estefen, S.F. Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil. Energies 2019, 12, 3658. Available online: https://www.mdpi.com/1996-1073/12/19/3658/htm (accessed on 6 June 2022). [CrossRef] [Green Version]
- Gustavson, M.R. Limits to Wind Power Utilization. Science 1979, 204, 13–17. [Google Scholar] [CrossRef]
- Li, L.; Taeihagh, A. An in-depth analysis of the evolution of the policy mix for the sustainable energy transition in China from 1981 to 2020. Appl. Energy 2020, 263, 114611. [Google Scholar] [CrossRef]
- Kalair, A.; Abas, N.; Saleem, M.S.; Kalair, A.R.; Khan, N. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 2020, 3, e135. [Google Scholar] [CrossRef] [Green Version]
- IEA. International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector. Available online: https://www.iea.org/reports/net-zero-by-2050.2021 (accessed on 6 June 2022).
- Leporini, M.; Marchetti, B.; Corvaro, F.; Polonara, F. Reconversion of Offshore Oil and Gas Oilrigs into Renewable Energy Sites Production: Assessment of Different Scenarios. Renew. Energy 2019, 135, 1121–1132. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0960148118315209 (accessed on 7 July 2022). [CrossRef]
- IEA. International Energy Agency. Offshore Energy Outlook 2018: World Energy Outlook Special Report. 2018. Available online: https://www.iea.org/reports/offshore-energy-outlook-2018 (accessed on 7 July 2022).
- Sedlar, D.K.; Vulin, D.; Krajačić, G.; Jukić, L. Offshore gas production infrastructure reutilization for blue energy production. Renew. Sustain. Energy Rev. 2019, 108, 159–174. [Google Scholar] [CrossRef]
- Xiao, X.; Roh, B.-M.; Zhu, F. Strength Enhancement in Fused Filament Fabrication via the Isotropy Toolpath. Appl. Sci. 2021, 11, 6100. [Google Scholar] [CrossRef]
- Xiao, X.; Joshi, S. Process planning for five-axis support free additive manufacturing. Addit. Manuf. 2020, 36, 101569. [Google Scholar] [CrossRef]
- Xiao, X.; Roh, B.-M.; Hamilton, C. Porosity management and control in powder bed fusion process through process-quality interactions. CIRP J. Manuf. Sci. Technol. 2022, 38, 120–128. [Google Scholar] [CrossRef]
- Xiao, X.; Joshi, S.; Cecil, J. Critical assessment of Shape Retrieval Tools (SRTs). Int. J. Adv. Manuf. Technol. 2021, 116, 3431–3446. [Google Scholar] [CrossRef]
- Xiao, X.; Waddell, C.; Hamilton, C.; Xiao, H. Quality Prediction and Control in Wire Arc Additive Manufacturing via Novel Machine Learning Framework. Micromachines 2022, 13, 137. [Google Scholar] [CrossRef]
- Martins, I.D.; Moraes, F.F.; Távora, G.; Soares, H.L.F.; Infante, C.E.; Arruda, E.F.; Bahiense, L.; Caprace, J.; Lourenço, M.I. A Review of the Multicriteria Decision Analysis Applied to Oil and Gas Decommissioning Problems. Ocean Coast. Manag. 2020, 184, 105000. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0964569119302960 (accessed on 6 June 2022). [CrossRef]
- Dourado, J.D.A. Risk and Opportunities in Oil Exploration in Brazil and South Atlantic. Ph.D. Thesis in Geology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 2007. Available online: http://livros01.livrosgratis.com.br/cp058178.pdf (accessed on 6 June 2022).
- Welstead, J.; Hirst, R.; Keogh, D.; Robb, G.; Bainsfair, R. Research and Guidance on Restoration and Decommissioning of Onshore Wind Farms; Scottish Natural Heritage Commissioned Report No. 591; Scottish Natural Heritage: Inverness, Scotland, 2013. [Google Scholar]
- IMO. Convention on the Prevention of Marine Pollution by Dumping of Wastes and other Matter. United Kingdom. 1972. Available online: https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/PROTOCOLAmended2006.pdf (accessed on 6 June 2022).
- UN. United Nations Convention on the Law of the Sea. Montego Bay. 1982. Available online: https://www.un.org/depts/los/convention_agreements/texts/unclos/unclos_e.pdf (accessed on 6 June 2022).
- UNEP. Basel Convention. Basel. 1992. Available online: https://www.basel.int/Portals/4/Basel%20Convention/docs/text/BaselConventionText-e.pdf (accessed on 6 June 2022).
- IMO. Resolution A.672(16)—Guidelines and Standards for the Removal of Offshore Installations. United Kingdom. 1989. Available online: http://www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Assembly/Documents/A.672(16).pdf (accessed on 6 June 2022).
- Bishop, M.J.; Mayer-Pinto, M.; Airoldi, L.; Firth, L.B.; Morris, R.L.; Loke, L.H.; Hawkins, S.J.; Naylor, L.A.; Coleman, R.A.; Chee, S.Y.; et al. Effects of ocean sprawl on ecological connectivity impacts and solutions. J. Exp. Mar. Biol. Ecol. 2017, 492, 7–30. [Google Scholar] [CrossRef] [Green Version]
- Cordes, E.E.; Jones, D.O.; Schlacher, T.A.; Amon, D.J.; Bernardino, A.F.; Brooke, S.; Carney, R.; Deleo, D.M.; Dunlop, K.M.; Escobar-Briones, E.G.; et al. Environmental impacts of the deep-water oil and gas industry: A review to guide management strategies. Front. Environ. Sci. 2016, 4, 58. [Google Scholar] [CrossRef]
- Heery, E.C.; Bishop, M.J.; Critchley, L.P.; Bugnot, A.B.; Airoldi, L.; Mayer-Pinto, M.; Sheehan, E.V.; Coleman, R.A.; Loke, L.H.L.; Johnston, E.L.; et al. Identifying the consequences of ocean sprawl for sedimentary habitats. J. Exp. Mar. Biol. Ecol. 2017, 492, 31–48. [Google Scholar] [CrossRef]
- Sommer, B.; Fowler, A.M.; Macreadie, P.I.; Palandro, D.A.; Aziz, A.C.; Booth, D.J. Decommissioning of Offshore Oil and Gas Structures—Environmental Opportunities and Challenges. Sci. Total Environ. 2018, 658, 973–981. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0048969718350551?via%3Dihub (accessed on 6 June 2022). [CrossRef]
- Chandler, J.; White, D.; Techera, E.J.; Gourvenec, S.; Draper, S. Engineering and legal considerations for decommissioning of offshore oil and gas infrastructure in Australia. Ocean. Eng. 2017, 131, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Lakhal, S.Y.; Khan, M.I.; Islam, M.R. An “Olympic” framework for a green decommissioning of an offshore oil platform. Ocean. Coast. Manag. 2009, 52, 113–123. [Google Scholar] [CrossRef]
- OIL & GAS AUTHORITY—OGA. UKCS Decommissioning Cost Estimate Report. United Kingdom. 2017. Available online: https://www.ogauthority.co.uk/media/4742/ukcs-decommissioning-cost-report-v2.pdf (accessed on 10 July 2021).
- CAPRACE; Davi, J. Overview of the Decommissioning of Offshore Structures. Rio of Janeiro: COPPE—UFRJ. 2017. Available online: https://drive.google.com/drive/folders/0BwlfGm7AYy5hTV8tRUxlOGdfSjA (accessed on 6 July 2022).
- ANP. Project Oil & Gas Decommissioning—From the UK’s North Sea to the Brazilian Atlantic. Rio de Janeiro. 2018. Available online: https://www.gov.br/anp/pt-br/centrais-de-conteudo/apresentacoes-e-palestras/2018/projeto-oil-gas-decommissioning-2013-from-the-uk2019s-north-sea-to-the-brazilian-atlantic/ (accessed on 6 July 2022).
- ANP. Decommissioning in Brazil: Opportunities and Challenges. Rio of Janeiro. 2019. Available online: https://www.gov.br/anp/pt-br/centrais-de-conteudo/apresentacoes-e-palestras/2019/descomissionamento-no-brasil-oportunidades-e-desafios (accessed on 6 July 2022).
- KINCAID. Decommissioning of Oilrigs. VIII Maritime Law Workshop. 2019. Available online: https://www.marinha.mil.br/tm/sites/www.marinha.mil.br.tm/files/file/noticias/Decomissioning%20de%20Oilrigs.pdf (accessed on 20 July 2020).
- Carvalho, A.B. Economy of the Sea: Concept, Value and Importance for Brazil. Ph.D. Thesis, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil, 2018. [Google Scholar]
- Annual Work Plan. Regulatory Requirement in Brazil. Available online: https://app.powerbi.com/view?r=eyJrIjoiZjFlMWI0MDgtNWNiNC00OTZlLWI3NGQtOGM3MjQwODhjMTMwIiwidCI6IjQ0OTlmNGZmLTI0YTYtNGI0Mi1iN2VmLTEyNGFmY2FkYzkxMyJ9 (accessed on 6 July 2022).
- Petrobras. Program of Deactivation of Facilities in the Production Phase: Field of Production of Cação; Version, A., Ed.; ANP Contract N. 48000.003735/97-91; Petrobras: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- PETROBRAS. SIC Petrobras Protocol N.05032/2017. 2017. Electronic mail (e-mail) received by <[email protected]> on. 3 October 2017. [Google Scholar]
- PETRONECT. Contract ICJ 5900.0113994.19.2. Disclosure Report—Decommissioning of Fixed Cação Oilrigs. 2019. Available online: https://transparencia.petrobras.com.br/licitacoes-contratos/contratos (accessed on 7 July 2022).
- Brazilian Navy. Platforms, Drill Ships, FPSO and FSO Report. Ports and Coasts Directorate. 2021. Available online: https://www.marinha.mil.br/dpc/sites/www.marinha.mil.br.dpc/files/decl_conform/PLATAFORMAS%2520PETR%25C3%2593LEO17SET2021.pdf (accessed on 20 June 2022).
- ANP. Executive Summary of Development Plans. Rio of Janeiro. 2021. Available online: https://www.gov.br/anp/pt-br/assuntos/exploracao-e-producao-de-oleo-e-gas/gestao-de-contratos-de-e-p/fase-de-producao/planos-de-desenvolvimento (accessed on 7 July 2020).
- MARINHA DO BRASIL—MB. Reports of the Oil Rigs, Drill Ships, FSP e FPSO. 2022. Available online: https://www.marinha.mil.br/dpc/sites/www.marinha.mil.br.dpc/files/PLATAFORMAS%20PETR%C3%93LEO06JUL2022.pdf (accessed on 7 July 2022).
- AUKE VISSER. Bright Jewel. Available online: http://www.aukevisser.nl/supertankers/VLCC%20T-V/id1124.htm (accessed on 7 July 2022).
- AUKE VISSER. Esso Freeport. Available online: http://www.aukevisser.nl/inter-2/id295.htm (accessed on 7 July 2022).
- AUKE VISSER. FPSO Marlim Sul. Available online: http://www.aukevisser.nl/supertankers/FPSO-FSO/id657.htm (accessed on 7 July 2022).
- AUKE VISSER. Petrobras 32. Available online: http://www.aukevisser.nl/supertankers/FPSO-FSO/id523.htm (accessed on 7 July 2022).
- AUKE VISSER. Petrobras 35. Available online: http://www.aukevisser.nl/supertankers/FPSO-FSO/id521.htm (accessed on 7 July 2022).
- AUKE VISSER. Petrobras 37. Available online: http://www.aukevisser.nl/supertankers/FPSO-FSO/id580.htm (accessed on 7 July 2022).
- AUKE VISSER. Petrobras 33. Available online: http://www.aukevisser.nl/supertankers/FPSO-FSO/id542.htm (accessed on 7 July 2022).
- AUKE VISSER. Settebello. Available online: http://www.aukevisser.nl/supertankers/id63.htm (accessed on 7 July 2022).
- SHIPSPOTTING. Che Guevara. Available online: http://www.shipspotting.com/gallery/photo.php?lid=307109 (accessed on 7 July 2022).
- SEVANS SP. Piranema Spirit. Available online: https://sevanssp.com/piranema-spirit/ (accessed on 7 July 2022).
- Guilbert, D.; Vitale, G. Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon. Clean Technol. 2021, 3, 881–909. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2019, 146, 1999–2049. [Google Scholar] [CrossRef]
- Center for Sustainable Systems—CSS. Wind Energy Factsheet. University of Michigan. 2021. Pub. No. CSS07-09. Available online: https://css.umich.edu/factsheets/wind-energy-factsheet (accessed on 7 July 2022).
- Rao, K.R. Wind Energy for Power Generation: Meeting the Challenge of Practical Implementation; Springer Nature: Berlin/Heidelberg, Germany, 2019; p. 1443. ISBN 9783319751344. [Google Scholar]
- EMEIS, S. Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2018; p. 255. ISBN 9783319728599. [Google Scholar]
- Gaertner, E.; Rinker, J.; Sethuraman, L.; Zahle, F.; Anderson, B.; Barter, G.E.; Abbas, N.J.; Meng, F.; Bortolotti, P.; Skrzypinski, W.; et al. IEA Wind TCP Task 37: Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine (No. NREL/TP-5000-75698); National Renewable Energy Lab (NREL): Golden, CO, USA, 2020. [Google Scholar]
- Kumar, S.V.A.; Nagababu, G.; Sharma, R.; Kumar, R. Synergetic use of multiple scatterometers for offshore wind energy potential assessment. Ocean. Eng. 2020, 196, 106745. [Google Scholar] [CrossRef]
- Heptonstall, P.; Gross, R.; Greenacre, P.; Cockerill, T. The cost of offshore wind: Understanding the past and projecting the future. Energy Policy 2012, 41, 815–821. [Google Scholar] [CrossRef]
- Bjerkseter, C.; Ågotnes, A. Levelized Cost of Energy for Offshore Floating Wind Turbine Concepts. Master’s Thesis, Department of Mathematical Sciences and Technology, University of Life Sciences, Poznań, Poland, 2013; p. 206. [Google Scholar]
- Mone, C.; Hand, M.; Bolinger, M.; Rand, J.; Heimiller, D.; Ho, J. 2015 Cost of Wind Energy Review (No. NREL/TP-6A20-66861); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2017. [Google Scholar]
- Valpy, B.; Hundleby, G.; Freeman, K.; Roberts, A.; Logan, A. Future Renewable Energy Costs: Offshore Wind: 57 Technology Innovations That Will Have Greater Impact on Reducing the Cost of Electricity from European Offshore Wind Farms. BVG Associates, Inno Energy. 2017. Available online: https://bvgassociates.com/wp-content/uploads/2017/11/InnoEnergy-Offshore-Wind-anticipated-innovations-impact-2017_A4 (accessed on 6 June 2022).
- Beiter, P.; Musial, W.; Smith, A.; Kilcher, L.; Damiani, R.; Maness, M.; Scott, G. A Spatial-Economic Cost-Reduction Pathway Analysis for US Offshore Wind Energy Development from 2015–2030 (No. NREL/TP-6A20-66579); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2016. [Google Scholar]
- Hurley, W.L.; Nordstrom, C. Pelastar cost of energy: A cost study of the Pelastar floating foundation system in UK waters. In Offshore Wind Floating Platform Demonstration Project FEED Study; Energy Technologies Institute: Loughborough, UK, 2014; p. 12004. [Google Scholar]
- Hassan, D. The Great Barrier Reef-Maritime Spatial Planning. Environ. Policy Law 2013, 43, 259. [Google Scholar]
- CRAFT, G. Offshore Wind Cost Reduction Pathways Study; Technical Report; The Crown State: London, UK, 2013. [Google Scholar]
- Scottish Enterprise. Offshore Wind Key Facts; Scottish Enterprise: Glasgow, Scotland, 2011. [Google Scholar]
- Dalgic, Y.; Lazakis, I.; Turan, O. Vessel Charter Rate Estimation for Offshore Wind O&M Activities. In Proceedings of the 15th International Congress of the International Maritime Association of the Mediterranean IMAM 2013, Coruna, Spain, 14–17 October 2013. [Google Scholar]
- PETROBRAS. Portal de Transparência—PLSV Contracts. Available online: https://transparencia.petrobras.com.br/licitacoes-contratos/contratos (accessed on 7 July 2022).
- Crown Estate. A guide to an offshore wind farm. Power 2010, 2010, 1–70. [Google Scholar]
- Gonzalez-Rodriguez, A.G. Review of offshore wind farm cost components. Energy Sustain. Dev. 2017, 37, 10–19. [Google Scholar] [CrossRef]
- Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.H. Electrical Collection and Transmission Systems for Offshore Wind Power. In Offshore Technology Conference; OnePetro: Richardson, TX, USA, 2007. [Google Scholar]
- Nagababu, G.; Kachhwaha, S.; Savsani, V. Estimation of technical and economic potential of offshore wind along the coast of India. Energy 2017, 138, 79–91. [Google Scholar] [CrossRef]
- Heidari, S. Economic Modelling of Floating Offshore Wind Power: Calculation of Levelized Cost of Energy. Master’s Thesis, Mälardalen University, School of Business, Society and Engineering, Industrial Economics and Organisation, Västerås, Sweden, 2017; p. 82. [Google Scholar]
- Brazilian Navy Hydrography Center. Raster Navigation Chart. Available online: https://www.marinha.mil.br/chm/dados-do-segnav/cartas-raster (accessed on 7 July 2022).
- Google Earth. Available online: https://earth.google.com/web/@-4.21116555,-36.82512656,192.53708252a,776223.40078332d,35y,17.83350564h,0.48119176t,0r (accessed on 7 July 2022).
- BRASIL; Federal Senate. Bill n° 576: Discipline the Granting of Authorizations for the Use of Offshore Energy Potential. Brasilia. 2021. Available online: https://www25.senado.leg.br/web/atividade/materias/-/materia/146793 (accessed on 7 July 2022).
- IBAMA. Offshore Wind Complexes. Brasilia. 2021. Available online: https://www.ibama.gov.br/laf/consultas/mapas-de-projetos-em-licenciamento-complexos-eolicos-offshore (accessed on 7 July 2022).
Supplier | Equalized Global Value (USD) |
---|---|
Triunfo Logística Ltd.a. | 38,354,483.95 |
Westshore do Brasil Ltd.a. | 38,475,813.30 |
Allseas Brasil S/A | 41,650,179.51 |
Empresa Construtora do Brasil S/A | 43,994,646.09 |
Saipem do Brasil Ltd.a. | 46,933,383.02 |
Alphatec S/A | 51,147,663.48 |
Sapura Energy do Brasil Ltd.a. | 52,290,464.91 |
McDermott do Brasil Ltd.a. | 74,797,895.42 |
Sacanb Engenharia Ltd.a. | 78,752,539.48 |
SS Naval Serviços Ltd.a. | 203,492,008.78 |
Production | Type of Platform | Field of Operation | Sedimentary | Decom. Status | Water Depth (m) | Latitude | Longitude | Built | Age |
---|---|---|---|---|---|---|---|---|---|
Unit | Basin | 2019 | Year | ||||||
Piranema Spirit | FPSO | Piranema | Sergipe | Approved | 1100 | −11:22:12,282 | −36:59:18,444 | 2006 | 13 |
PCA-1 | Jacket | Cação | Espírito Santo | Approved | 19 | −19.09927 | −39.65423 | 1978 | 41 |
PCA-2 | Jacket | Cação | Espírito Santo | Approved | 19 | −19.09927 | −39.65423 | 1978 | 41 |
PCA-3 | Jacket | Cação | Espírito Santo | Approved | 19 | −19.09927 | −39.65423 | 1986 | 33 |
P-7 | Semi Sub | Bicudo | Campos | Under Analysis | 162 | −22.75961 | −40.68359 | 1974 | 45 |
P-12 | Semi Sub | Linguado | Campos | Under Analysis | 100 | −2,276,002 | −40.81648 | 1981 | 38 |
P-15 | Semi Sub | Piraúna | Campos | Under Analysis | 250 | −22.67892 | −40.60436 | 1982 | 37 |
PARB-3 | Jacket | Arabaiana | Potiguar | Under Analysis | 30 | −4.699183 | −36.7506 | 2001 | 18 |
P-33 | FPSO | Marlim | Campos | Under Analysis | 780 | −22:22:15,714 | −40:01:37,609 | 1978 | 41 |
P-18 | Semi Sub | Marlim | Campos | Forecast | 910 | −22:25:38,135 | −40:01:49,135 | 1994 | 25 |
P-19 | Semi Sub | Marlim | Campos | Forecast | 770 | −22:23:29,307 | −40:03:23,333 | 1983 | 36 |
P-20 | Semi Sub | Marlim | Campos | Forecast | 610 | −22:21:28,298 | −40:05:26,945 | 1992 | 27 |
P-26 | Semi Sub | Marlim | Campos | Forecast | 990 | −22:28:02,870 | −40:01:49,854 | 1984 | 35 |
P-32 | FSO | Marlim | Campos | Forecast | 163 | −22:20:51,042 | −40:14:31,830 | 1974 | 45 |
P-35 | FPSO | Marlim | Campos | Forecast | 850 | −22:26:08,914 | −40:04:11,622 | 1974 | 45 |
P-37 | FPSO | Marlim | Campos | Forecast | 905 | −22:29:02,411 | −40:05:51,419 | 1976 | 43 |
P-47 | FPSO | Marlim | Campos | Forecast | 190 | −22:20:31,080 | −40:11:42,754 | 1976 | 43 |
Capixaba | FPSO | Jubarte | Espírito Santo | Forecast | 1350 | −21:14:16,783 | −39:57:46,397 | 1974 | 45 |
PRB-1 | Jacket | Salgo | Sergipe | Forecast | 13 | −10:39:12,455 | −36:38:02,530 | 1978 | 41 |
PPE-3 | Jacket | Pescada | Potiguar | Forecast | 25 | −04:41:03,913 | −36:49:29,409 | 2001 | 18 |
PBIQ-1 | Caisson | Biquara | Potiguar | Forecast | 20 | −04:51:25,280 | −36:33:37,815 | 2005 | 14 |
PAG-1 | Jacket | Agulha | Potiguar | Forecast | 16 | −04:54:25,412 | −36:15:46,281 | 1978 | 41 |
PAG-2 | Concret Gravity | Agulha | Potiguar | Forecast | 16 | −4.876266 | −36.2688 | 1978 | 41 |
PAG-3 | Jacket | Agulha | Potiguar | Forecast | 16 | −4.916317 | −36.25618 | 1985 | 34 |
POUB-1 | Caisson | Oeste de Ubarana | Potiguar | Forecast | 17 | −04:53:13,779 | −36:25:59,970 | 2005 | 14 |
POUB-2 | Caisson | Oeste de Ubarana | Potiguar | Forecast | 17 | −04:53:30,122 | −36:27:10,815 | 2005 | 14 |
PARB-1 | Jacket | Arabaiana | Potiguar | Forecast | 30 | −4.694716 | −36.72458 | 2001 | 18 |
PART-2 | Jacket | Aratum | Potiguar | Possible | 6 | −5.057 | −36.53963 | 1984 | 35 |
PCB-2 | Jacket | Caioba | Sergipe | Possible | 27 | −11:00:01,656 | −36:55:29,285 | 1974 | 45 |
PCB-3 | Jacket | Caioba | Sergipe | Possible | 27 | −10.99598 | −36.92368 | 1978 | 41 |
PCM-4 | Jacket | Camorim | Sergipe | Possible | 18 | −10:59:07,736 | −36:57:53,042 | 1975 | 44 |
PCM-5 | Jacket | Camorim | Sergipe | Possible | 20 | −10:59:58,193 | −36:58:19,505 | 1977 | 42 |
PCM-6 | Jacket | Camorim | Sergipe | Possible | 26 | −10:58:59,914 | −36:55:58,199 | 1984 | 35 |
PCM-8 | Jacket | Camorim | Sergipe | Possible | 28 | −10:59:17,025 | −36:56:16,719 | 1985 | 34 |
PCM-10 | Jacket | Camorim | Sergipe | Possible | 21 | −10:58:38,748 | −36:57:04,099 | 1989 | 30 |
PCIO-1 | Jacket | Cioba | Potiguar | Possible | 6 | −04:57:59,395 | −36:25:18,197 | 2005 | 14 |
PDO-1 | Jacket | Dourado | Sergipe | Possible | 27 | −11:05:54,130 | −36:57:35,127 | 1974 | 45 |
PDO-2 | Jacket | Dourado | Sergipe | Possible | 28 | −11:06:53,946 | −36:57:59,440 | 1983 | 36 |
PDO-3 | Jacket | Dourado | Sergipe | Possible | 28 | −11:07:06,721 | −36:58:48,867 | 1974 | 45 |
PGA-2 | Jacket | Guaricema | Sergipe | Possible | 25 | −11:09:52,004 | −37:03:09,486 | 1971 | 48 |
PGA-4 | Jacket | Guaricema | Sergipe | Possible | 24 | −11:07:54,130 | −37:02:51,362 | 1974 | 45 |
PGA-5 | Jacket | Guaricema | Sergipe | Possible | 25 | −11:09:13,012 | −37:03:42,995 | 1974 | 45 |
PGA-7 | Jacket | Guaricema | Sergipe | Possible | 27 | −11:12:08,177 | −37:04:46,675 | 1989 | 30 |
PGA-8 | Jacket | Guaricema | Sergipe | Possible | 38 | −11:10:38,947 | −37:01:06,846 | 1989 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braga, J.; Santos, T.; Shadman, M.; Silva, C.; Assis Tavares, L.F.; Estefen, S. Converting Offshore Oil and Gas Infrastructures into Renewable Energy Generation Plants: An Economic and Technical Analysis of the Decommissioning Delay in the Brazilian Case. Sustainability 2022, 14, 13783. https://doi.org/10.3390/su142113783
Braga J, Santos T, Shadman M, Silva C, Assis Tavares LF, Estefen S. Converting Offshore Oil and Gas Infrastructures into Renewable Energy Generation Plants: An Economic and Technical Analysis of the Decommissioning Delay in the Brazilian Case. Sustainability. 2022; 14(21):13783. https://doi.org/10.3390/su142113783
Chicago/Turabian StyleBraga, Jime, Thauan Santos, Milad Shadman, Corbiniano Silva, Luiz Filipe Assis Tavares, and Segen Estefen. 2022. "Converting Offshore Oil and Gas Infrastructures into Renewable Energy Generation Plants: An Economic and Technical Analysis of the Decommissioning Delay in the Brazilian Case" Sustainability 14, no. 21: 13783. https://doi.org/10.3390/su142113783
APA StyleBraga, J., Santos, T., Shadman, M., Silva, C., Assis Tavares, L. F., & Estefen, S. (2022). Converting Offshore Oil and Gas Infrastructures into Renewable Energy Generation Plants: An Economic and Technical Analysis of the Decommissioning Delay in the Brazilian Case. Sustainability, 14(21), 13783. https://doi.org/10.3390/su142113783