Water, Energy, and Food Nexus in Pakistan: Parametric and Non-Parametric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Interactions between the Various Components (Inputs, Output, External Factors) in Local WEF Nexus Initially
2.2. Conceptual Framework
2.3. An Approach That Uses Three Stages of DEA Modeling
2.3.1. The Input-Oriented BCC Model
2.3.2. The SFA Model
2.4. Variables of the Study
2.4.1. Input–Output Variables
2.4.2. External Factors
3. Results
3.1. Regional Variation in Efficiency Based on Resource Endowment
3.2. Classification of Regions of Punjab Based on Their Natural Resources
3.3. Categories of Geographic Regions
3.4. Discrepancies between the “Real” and the “Comprehensive” Efficiency
3.5. External Environment Factors’ Effect
4. Conclusions and Policy Recommendations
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hoff, H. Understanding the Nexus, SEI Stockholm. Sweden. 2011. Available online: https://policycommons.net/artifacts/1359033/understanding-the-nexus/1972269/ (accessed on 20 October 2022).
- Ramos, E.P.; Sridharan, V.; Alfstad, T.; Niet, T.; Shivakumar, A.; Howells, M.I.; Gardumi, F. Climate, Land, Energy and Water systems interactions–From key concepts to model implementation with OSeMOSYS. Environ. Sci. Policy 2022, 136, 696–716. [Google Scholar] [CrossRef]
- Taghdisian, A.; Bukkens, S.G.; Giampietro, M. A Societal Metabolism Approach to Effectively Analyze the Water–Energy–Food Nexus in an Agricultural Transboundary River Basin. Sustainability 2022, 14, 9110. [Google Scholar] [CrossRef]
- Huang, D.; Li, G.; Chang, Y.; Sun, C. Water, Energy, and Food Nexus Efficiency in China: A Provincial Assessment Using Three-Stage Data Envelopment Analysis Model; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Zhang, Y.F.; Li, Y.P.; Huang, G.H.; Ma, Y. A copula-based stochastic fractional programming method for optimizing water-food-energy nexus system under uncertainty in the Aral Sea basin. J. Clean. Prod. 2021, 292, 126037. [Google Scholar] [CrossRef]
- Sušnik, J.; Staddon, C. Evaluation of Water-Energy-Food (WEF) Nexus Research: Perspectives, Challenges, and Directions for Future Research. JAWRA J. Am. Water Resour. Assoc. 2021. [Google Scholar] [CrossRef]
- Lu, J.; Lin, Y.; Wu, J.; Zhang, C. Continental-scale spatial distribution, sources, and health risks of heavy metals in seafood: Challenge for the water-food-energy nexus sustainability in coastal regions? Environ. Sci. Pollut. Res. 2021, 28, 63815–63828. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.C.; Jiang, P.; Yang, L.; Van Fan, Y.; Klemeš, J.J.; Wang, Y. Extended water-energy nexus contribution to environmentally-related sustainable development goals. Renew. Sustain. Energy Rev. 2021, 150, 111485. [Google Scholar] [CrossRef]
- Arnbjerg-Nielsen, K.; Gain, A.K.; Keskinen, M.; Varis, O.; McKnight, U.S. To what extent should we ensure the explicit inclusion of water quality within the WEF nexus? Discussion of “Water quality: The missing dimension of water in the water–energy–food nexus”. Hydrol. Sci. J. 2022, 67, 1287–1290. [Google Scholar] [CrossRef]
- Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Smajgl, A.; Ward, J.; Pluschke, L. The water–food–energy Nexus–Realising a new paradigm. J. Hydrol. 2016, 533, 533–540. [Google Scholar] [CrossRef]
- Carvalho, P.N.; Finger, D.C.; Masi, F.; Cipolletta, G.; Oral, H.V.; Tóth, A.; Exposito, A. Nature-based solutions addressing the water-energy-food nexus: Review of theoretical concepts and urban case studies. J. Clean. Prod. 2022, 338, 130652. [Google Scholar] [CrossRef]
- Al-Saidi, M.; Hussein, H. The water-energy-food nexus and COVID-19: Towards a systematization of impacts and responses. Sci. Total Environ. 2021, 779, 146529. [Google Scholar] [CrossRef] [PubMed]
- Botai, J.O.; Botai, C.M.; Ncongwane, K.P.; Mpandeli, S.; Nhamo, L.; Masinde, M.; Mabhaudhi, T. A review of the water–energy–food nexus research in Africa. Sustainability 2021, 13, 1762. [Google Scholar] [CrossRef]
- Allouche, J.; Middleton, C.; Gyawali, D. The Water–Food–Energy Nexus: Power, Politics, and Justice; Routledge: London, UK, 2019. [Google Scholar]
- Moss, T.; Hüesker, F. Politicised nexus thinking in practice: Integrating urban wastewater utilities into regional energy markets. Urban Stud. 2019, 56, 2225–2241. [Google Scholar] [CrossRef]
- Diesendruck, C.E.; Dekel, D.R. Water–A key parameter in the stability of anion exchange membrane fuel cells. Curr. Opin. Electrochem. 2018, 9, 173–178. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, Y.; Zhou, Y.; Tan, Q.; Li, B.; Li, B.; Jia, Q.; Yang, Z. Quantifying the water-energy-food nexus in Guangdong, Hong Kong, and Macao regions. Sustain. Prod. Consum. 2022, 29, 188–200. [Google Scholar] [CrossRef]
- Khan, S. Policy diagnostics for Pakistan’s water security challenge. World Water Policy 2019, 5, 8–14. [Google Scholar] [CrossRef]
- Kirby, M.; Mainuddin, M.; Khaliq, T.; Cheema, M.J.M. Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050. Agric. Water Manag. 2017, 179, 34–46. [Google Scholar] [CrossRef]
- Laghari, A.N.; Vanham, D.; Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 2012, 16, 1063–1083. [Google Scholar] [CrossRef] [Green Version]
- Durrani, A.A.; Khan, I.A.; Ahmad, M.I. Analysis of Electric Power Generation Growth in Pakistan: Falling into the Vicious Cycle of Coal. Eng 2021, 2, 296–311. [Google Scholar] [CrossRef]
- Taiqi, Z. The impact of China-Pakistan Economic Corridor on Pakistan economy under the background of “One Belt And One Road”. Front. Soc. Sci. Technol. 2020, 2, 41–44. [Google Scholar]
- Arif, S.M.; Bannian, B. Water Management and Reservoirs in Pakistan: An Analysis of Legal Framework and Contemporary Challenges. Adv. State Stud. 2022, 1, 19–24. [Google Scholar]
- Ghani, H.U.; Silalertruksa, T.; Gheewala, S.H. Water-energy-food nexus of bioethanol in Pakistan: A life cycle approach evaluating footprint indicators and energy performance. Sci. Total Environ. 2019, 687, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Grigg, N.S. Fifty years of water research: Has it made a difference? Water Int. 2021, 46, 1087–1098. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Chang, Y.; Zhang, L. Industrial eco-efficiency in China: A provincial quantification using three-stage data envelopment analysis. J. Clean. Prod. 2017, 143, 238–249. [Google Scholar] [CrossRef]
- Wen, C.; Dong, W.; Zhang, Q.; He, N.; Li, T. A system dynamics model to simulate the water-energy-food nexus of resource-based regions: A case study in Daqing City, China. Sci. Total Environ. 2022, 806, 150497. [Google Scholar] [CrossRef] [PubMed]
- Hsien, C.; Low, J.S.; Chung, S.Y.; Tan, D.Z. Quality-based water and wastewater classification for waste-to-resource matching. Resour. Conserv. Recycl. 2019, 151, 104477. [Google Scholar] [CrossRef]
- Brouder, A. World economic forum. In Handbook of Transnational Economic Governance Regimes; Brill Nijhoff: Leiden, The Netherlands, 2010; pp. 279–303. [Google Scholar]
- Lawford, R.; Bogardi, J.; Marx, S.; Jain, S.; Wostl, C.P.; Knüppe, K.; Ringler, C.; Lansigan, F.; Meza, F. Basin perspectives on the water–energy–food security nexus. Curr. Opin. Environ. Sustain. 2013, 5, 607–616. [Google Scholar] [CrossRef]
- Conway, D.; Van Garderen, E.A.; Deryng, D.; Dorling, S.; Krueger, T.; Landman, W.; Lankford, B.; Lebek, K.; Osborn, T.; Ringler, C.; et al. Climate and southern Africa’s water–energy–food nexus. Nat. Clim. Change 2015, 5, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Weitz, N.; Strambo, C.; Kemp-Benedict, E.; Nilsson, M. Closing the governance gaps in the water-energy-food nexus: Insights from integrative governance. Glob. Environ. Change 2017, 45, 165–173. [Google Scholar] [CrossRef]
- Bigelow, D.P.; Chaudhry, A.M.; Ifft, J.; Wallander, S. Agricultural water trading restrictions and drought resilience. Land Econ. 2019, 95, 473–493. [Google Scholar] [CrossRef]
- Lv, H.; Yang, L.; Zhou, J.; Zhang, X.; Wu, W.; Li, Y.; Jiang, D. Water resource synergy management in response to climate change in China: From the perspective of urban metabolism. Resour. Conserv. Recycl. 2020, 163, 105095. [Google Scholar] [CrossRef]
- Kamrani, K.; Roozbahani, A.; Shahdany, S.M. Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus. Agric. Water Manag. 2020, 239, 106265. [Google Scholar] [CrossRef]
- Wu, L.; Elshorbagy, A.; Pande, S.; Zhuo, L. Trade-offs and synergies in the water-energy-food nexus: The case of Saskatchewan, Canada. Resour. Conserv. Recycl. 2021, 164, 105192. [Google Scholar] [CrossRef]
- Trainor, A.M.; McDonald, R.I.; Fargione, J. Energy sprawl is the largest driver of land use change in United States. PLoS ONE 2016, 11, e0162269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaeger, W.K.; Amos, A.; Bigelow, D.P.; Chang, H.; Conklin, D.R.; Haggerty, R.; Langpap, C.; Moore, K.; Mote, P.W.; Nolin, A.W.; et al. Finding water scarcity amid abundance using human–natural system models. Proc. Natl. Acad. Sci. USA 2017, 114, 11884–11889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, L.C.; Wang, Y.; Zuo, J. The nexus of water-energy-food in China’s tourism industry. Resour. Conserv. Recycl. 2021, 164, 105157. [Google Scholar] [CrossRef]
- Mohtar, R.H.; Lawford, R. Present and future of the water-energy-food nexus and the role of the community of practice. J. Environ. Stud. Sci. 2016, 6, 192–199. [Google Scholar] [CrossRef]
- Bellezoni, R.A.; Meng, F.; He, P.; Seto, K.C. Understanding and conceptualizing how urban green and blue infrastructure affects the food, water, and energy nexus: A synthesis of the literature. J. Clean. Prod. 2021, 289, 125825. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Moghadam, E.S.; Delavar, M.; Zarghami, M. Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale. Agric. Water Manag. 2020, 233, 106071. [Google Scholar] [CrossRef]
- Bakhshianlamouki, E.; Masia, S.; Karimi, P.; van der Zaag, P.; Sušnik, J. A system dynamics model to quantify the impacts of restoration measures on the water-energy-food nexus in the Urmia lake Basin, Iran. Sci. Total Environ. 2020, 708, 134874. [Google Scholar] [CrossRef]
Categories | Variables | Descriptions | |
---|---|---|---|
Input | WC | Water consumption | Water consumed in cubic tons in the districts of Punjab |
EC | Energy consumption | Coal consumption in tons in the districts of Punjab | |
FP | Food production | Grain production in tons in the districts of Punjab | |
WG | Emission level of gas wastage | Gas wastage emissions (tons) in the districts of Punjab | |
Output | PCGDP | PCGDP | The level of GDP per capita in the Punjab |
External Environmental Factors | UR | Urbanization rate | % of urban population |
MF | Manufactured industry | % manufactured | |
Pop | Population | Population in the districts of Punjab in thousands |
Districts of Punjab | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|
Bahawalnagar | 0.722 | 0.615 | 0.534 | 0.683 | 0.703 | 0.758 | 0.827 |
Bahawalpur | 0.882 | 0.814 | 0.563 | 0.748 | 0.768 | 0.852 | 0.648 |
Rahim Yar Khan | 0.697 | 0.617 | 0.754 | 0.785 | 0.805 | 0.834 | 0.794 |
Dera Ghazi Khan | 0.857 | 0.877 | 0.614 | 0.556 | 0.576 | 0.701 | 0.806 |
Layyah | 0.622 | 0.574 | 0.542 | 0.638 | 0.658 | 0.764 | 0.574 |
Muzaffargarh | 0.514 | 0.642 | 0.685 | 0.539 | 0.559 | 0.631 | 0.802 |
Rajanpur | 0.573 | 0.504 | 0.546 | 0.697 | 0.717 | 0.888 | 0.669 |
Chiniot | 0.782 | 0.504 | 0.626 | 0.768 | 0.788 | 0.733 | 0.908 |
Faisalabad | 0.423 | 0.465 | 0.521 | 0.763 | 0.783 | 0.832 | 0.792 |
Jhang | 0.664 | 0.79 | 0.744 | 0.584 | 0.604 | 0.768 | 0.844 |
Toba Tek Singh | 0.513 | 0.552 | 0.504 | 0.648 | 0.668 | 0.728 | 0.603 |
Gujranwala | 0.731 | 0.744 | 0.664 | 0.795 | 0.815 | 0.566 | 0.724 |
Gujrat | 0.742 | 0.769 | 0.532 | 0.659 | 0.679 | 0.547 | 0.646 |
Hafiz Abad | 0.645 | 0.667 | 0.795 | 0.629 | 0.649 | 0.691 | 0.752 |
Mandi Bahauddin | 0.536 | 0.571 | 0.608 | 0.756 | 0.776 | 0.627 | 0.681 |
Narowal | 0.767 | 0.789 | 0.619 | 0.655 | 0.675 | 0.712 | 0.756 |
Sialkot | 0.552 | 0.672 | 0.609 | 0.725 | 0.745 | 0.834 | 0.796 |
Lahore | 0.654 | 0.765 | 0.701 | 0.543 | 0.563 | 0.609 | 0.768 |
Nankana Sahib | 0.667 | 0.681 | 0.621 | 0.652 | 0.672 | 0.675 | 0.832 |
Qasur | 0.828 | 0.739 | 0.765 | 0.79 | 0.81 | 0.724 | 0.614 |
Sheikhupura | 0.468 | 0.49 | 0.617 | 0.754 | 0.774 | 0.834 | 0.698 |
Khanewal | 0.769 | 0.787 | 0.518 | 0.762 | 0.782 | 0.737 | 0.807 |
Lodhran | 0.736 | 0.857 | 0.687 | 0.713 | 0.733 | 0.781 | 0.635 |
Multan | 0.492 | 0.507 | 0.631 | 0.661 | 0.681 | 0.701 | 0.844 |
Vehari | 0.725 | 0.814 | 0.867 | 0.895 | 0.915 | 0.923 | 0.906 |
Attock | 0.758 | 0.882 | 0.718 | 0.867 | 0.887 | 0.548 | 0.619 |
Chakwal | 0.626 | 0.544 | 0.767 | 0.791 | 0.811 | 0.743 | 0.789 |
Jhelum | 0.551 | 0.676 | 0.711 | 0.866 | 0.886 | 0.833 | 0.791 |
Rawalpindi | 0.651 | 0.675 | 0.615 | 0.774 | 0.794 | 0.763 | 0.734 |
Okara | 0.699 | 0.723 | 0.748 | 0.887 | 0.907 | 0.853 | 0.715 |
Pakpattan | 0.822 | 0.765 | 0.834 | 0.758 | 0.778 | 0.758 | 0.627 |
Sahiwal | 0.782 | 0.614 | 0.663 | 0.648 | 0.668 | 0.852 | 0.901 |
Bhakkar | 0.797 | 0.617 | 0.725 | 0.785 | 0.805 | 0.734 | 0.894 |
Khushab | 0.857 | 0.777 | 0.614 | 0.656 | 0.676 | 0.801 | 0.736 |
Mianwali | 0.822 | 0.774 | 0.742 | 0.838 | 0.858 | 0.864 | 0.774 |
Sargodha | 0.714 | 0.842 | 0.685 | 0.739 | 0.759 | 0.831 | 0.902 |
Average | 0.684 | 0.686 | 0.658 | 0.722 | 0.742 | 0.751 | 0.756 |
Regions | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|---|
South | 0.690 | 0.692 | 0.631 | 0.698 | 0.718 | 0.779 | 0.756 |
Central | 0.663 | 0.665 | 0.657 | 0.707 | 0.727 | 0.726 | 0.745 |
North | 0.722 | 0.723 | 0.697 | 0.790 | 0.810 | 0.765 | 0.780 |
Provinces of Punjab | 1st Stage | 3rd Stage | Rank Change | ||
---|---|---|---|---|---|
Mean | Ranks | Mean | Ranks | ||
Bahawalnagar | 0.639 | 28 | 0.763 | 36 | −8 |
Bahawalpur | 0.752 | 7 | 0.756 | 35 | −28 |
Rahim Yar Khan | 0.713 | 14 | 0.811 | 34 | −20 |
Dera Ghazi Khan | 0.726 | 12 | 0.694 | 33 | −21 |
Layyah | 0.594 | 31 | 0.665 | 32 | −1 |
Muzaffargarh | 0.595 | 30 | 0.664 | 31 | −1 |
Rajanpur | 0.580 | 33 | 0.758 | 30 | 3 |
Chiniot | 0.670 | 24 | 0.810 | 29 | −5 |
Faisalabad | 0.543 | 36 | 0.802 | 28 | 8 |
Jhang | 0.696 | 18 | 0.739 | 27 | −9 |
Toba Tek Singh | 0.554 | 35 | 0.666 | 26 | 9 |
Gujranwala | 0.733 | 10 | 0.702 | 25 | −15 |
Gujrat | 0.676 | 23 | 0.624 | 24 | −1 |
Hafiz Abad | 0.684 | 19 | 0.697 | 23 | −4 |
Mandi Bahauddin | 0.618 | 29 | 0.695 | 22 | 7 |
Narowal | 0.708 | 16 | 0.714 | 21 | −5 |
Sialkot | 0.640 | 27 | 0.792 | 20 | 7 |
Lahore | 0.666 | 25 | 0.647 | 19 | 6 |
Nankana Sahib | 0.655 | 26 | 0.726 | 18 | 8 |
Qasur | 0.781 | 5 | 0.716 | 17 | −12 |
Sheikhupura | 0.582 | 32 | 0.769 | 16 | 16 |
Khanewal | 0.709 | 15 | 0.775 | 15 | 0 |
Lodhran | 0.748 | 8 | 0.716 | 14 | −6 |
Multan | 0.573 | 34 | 0.742 | 13 | 21 |
Vehari | 0.825 | 1 | 0.915 | 12 | −11 |
Attock | 0.806 | 2 | 0.685 | 11 | −9 |
Chakwal | 0.682 | 20 | 0.781 | 10 | 10 |
Jhelum | 0.701 | 17 | 0.837 | 9 | 8 |
Rawalpindi | 0.679 | 21 | 0.764 | 8 | 13 |
Okara | 0.764 | 6 | 0.825 | 7 | −1 |
Pakpattan | 0.795 | 3 | 0.721 | 6 | −3 |
Sahiwal | 0.677 | 22 | 0.807 | 5 | 17 |
Bhakkar | 0.731 | 11 | 0.811 | 4 | 7 |
Khushab | 0.726 | 13 | 0.738 | 3 | 10 |
Mianwali | 0.794 | 4 | 0.832 | 2 | 2 |
Sargodha | 0.745 | 9 | 0.831 | 1 | 8 |
South | 0.671 | 2 | 0.737 | 2 | 0 |
Central | 0.662 | 3 | 0.726 | 3 | 0 |
North | 0.714 | 1 | 0.785 | 1 | 0 |
External Factors | C | MR | UR | WWTC | σ2 | Γ | LR Test |
---|---|---|---|---|---|---|---|
Water Consumption | 262.741 | 0.517 | 0.713 | 0.035 | 30534.315 | 0.768 | 1141.351 |
(201.61) ** | (7.251) *** | (5.241) ** | (3.504) ** | ||||
Energy Consumption | 78.612 | 0.820 | 5.261 | 0.058 | 34510.280 | 0.814 | 618.636 |
(5.130) *** | (4.150) ** | (13.210) *** | (13.281) ** | ||||
Food Production | 41.271 | −0.181 | 0.523 | 0.024 | 521.824 | 0.768 | 871.250 |
(26.537) *** | (−5.130) *** | (5.473) ** | (4.723) *** | ||||
Wastage of Gas | 152.601 | 0.157 | 1.524 | 0.136 | 17142.125 | 0.584 | 351.041 |
(6.374) ** | (0.157) | (4.138) ** | (1.821) *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Anjum, M.N.; Shangguan, D.; Hussain, S. Water, Energy, and Food Nexus in Pakistan: Parametric and Non-Parametric Analysis. Sustainability 2022, 14, 13784. https://doi.org/10.3390/su142113784
Ali M, Anjum MN, Shangguan D, Hussain S. Water, Energy, and Food Nexus in Pakistan: Parametric and Non-Parametric Analysis. Sustainability. 2022; 14(21):13784. https://doi.org/10.3390/su142113784
Chicago/Turabian StyleAli, Majid, Muhammad Naveed Anjum, Donghui Shangguan, and Safdar Hussain. 2022. "Water, Energy, and Food Nexus in Pakistan: Parametric and Non-Parametric Analysis" Sustainability 14, no. 21: 13784. https://doi.org/10.3390/su142113784
APA StyleAli, M., Anjum, M. N., Shangguan, D., & Hussain, S. (2022). Water, Energy, and Food Nexus in Pakistan: Parametric and Non-Parametric Analysis. Sustainability, 14(21), 13784. https://doi.org/10.3390/su142113784