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Abstract: Even though tourism (both domestic and international) is one of the main triggering factors
of human mobility worldwide, some of its forms are unexplored. This can be partly linked with the
lack of reliable data and obstacles related to data processing and interpretation. Mobile Positioning
Data (MPD) allows us to identify various forms of tourism that are undetectable through traditional
data sources such as accommodation statistics. Using MPD, not only same-day tourists but also the
real time mobility patterns of tourists among various destinations can be revealed, and even hidden
(i.e., unobserved) forms of tourism can be detected. However, despite the obvious benefits of such
data, very few comprehensive studies exist to date on the processing, and interpretation of MPD
in tourism research. In this paper, a case study is presented on the challenges and opportunities of
processing MPD from raw to good quality researchable data offering a baseline tool for MPD-based
research in the field of tourism. With the methodology introduced in this paper, it is possible to
provide a more accurate picture of tourist flows regarding unobserved tourists, including same-
day visitors.

Keywords: mobile positioning data (MPD); tourism mobility; unobserved tourism; same-day tourists;
international tourism; domestic tourism

1. Introduction

With skyrocketing numbers of tourists and intensifying mobility flows, the tourism
industry has experienced an extraordinary growth over recent decades [1] and, despite
the significant fracture caused by the recent COVID-19 pandemic [2], the trend is likely to
increase in the future. Therefore, unfolding and better understanding the spatial behavior
of tourists is becoming increasingly important. On the one hand, for national and local
governments it is crucial to have up-to-date information on the spatio-temporal dynamics
and real time characteristics of international and domestic tourists at different destina-
tions. Such knowledge can contribute to a more efficient planning and management of
tourism-related infrastructure and transport facilities and can help elaborate national and
local policies to increase tourism revenues [3–6]. On the other hand, alongside the obvious
economic benefits, the rapid growth of tourism also brings challenges [7–9]. The nega-
tive impacts of tourism include the increasing carbon emission or damage to the natural
environment [10–12], over-tourism and the discontent of local communities with mass
tourism [13,14]. To make tourism development more sustainable, it is worth identifying
tourist destinations with rapidly expanding ecological footprint, congestion and social con-
flict in order to mitigate the negative environmental and social impacts of tourism [15,16].
In addition, private actors, such as representatives of the hospitality industry, event orga-
nizers etc., can also benefit from a more comprehensive knowledge regarding the spatial
and temporal behavior of tourists [17,18].
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While traditional data sources (accommodation and border crossing statistics) are
useful for macro-level analyses (countries, regions, larger administrative units) of the spatio-
temporal aspects of tourism [19–21], such data have several limitations when it comes to a
lower geographical scale such as the analysis of intra-urban tourist flows, intra-regional
moves of same-day visitors or cross-border day trippers [22,23]. To capture such statistically
unobserved forms of tourism, GIS-based data from a variety of sources can be used [24–30],
such as GPS-based tracking systems [31,32], wireless, Bluetooth [33] and geotagged social
media photos and posts [34], or mobile positioning data (MPD) [35–37]. With the spread
of new Information and Communication Technologies (ICT), a more accurate tracking
of human movements has become possible, especially with data obtained from mobile
positioning data (MPD).

Previous studies using mobile phone datasets have focused predominantly on the
possible methodological approaches of determining anchor points of users (most typically
home and work) in order to assess the spatio-temporal mobility of individuals [38]. For in-
stance, based on the analysis of communication data of 100,000 anonymized and randomly
chosen individuals in Portugal and with the help of clustering methods, Csáji et al. [39]
identified home and office locations of users and compared the results with official census
data. In the same vein, many studies using mobile positioning data have been concerned,
with either home detection [40–43] or flow detection [44–48] as a prerequisite of locating
users in real time.

Despite the growing body of literature on the possible use of MPD in tourism research,
there are still several methodological challenges and obstacles in the field [49]. According
to Li et al. [33], this can be linked partly with the fact that most of the studies focus
only on international visitors [37,50–53], which is also confirmed by Grassini et al., who
highlight the overrepresentation of the international context in MPD tourism research [49].
One of the reasons behind the scarcity of MPD analysis of domestic tourist flows is the
limitation regarding definitions, benchmarks and methodological considerations regarding
how to process, filter and analyze such data. To date, we know only one comprehensive
work focusing on methodological considerations related to MPD by Saluveer et al. [54];
however, domestic tourism is not considered by these authors either. This is the point of
departure for this paper, which aims to introduce a data processing method regarding
various forms of domestic and international tourism. This is a challenging task, because the
overwhelming majority of MPD are generated by domestic users, resulting in log files that
are Terabytes in size, which in turn makes data processing only possible if using big data
compatible algorithms. This methodological advancement is important also because the
role of domestic tourism has been on the rise recently due to the COVID-19 pandemic [55].

In addition to the analysis of domestic tourist flows, this paper also aims to provide
new methodological considerations regarding international visitors. In this study, each
event is attached to a municipality (i.e., settlement), instead of cell towers, resulting in more
interpretable and geographically precise information. Via this method, we are also able
to identify same-day visitors, day tripper shopping tourists from neighboring countries,
extending the method used by Saluveer et al. [54]. Our aim here is to provide a data
processing guideline through which not only domestic tourist flows can be understood
better, separating touristic and non-touristic daily movements of local people [56–58],
but also a more comprehensive picture on international tourist flows can be achieved,
separating ’tourism’ ‘from transit traffic’ or ‘migrant workers’[54].

Before introducing the methodology and describing the steps in data processing, it
is important to conceptualize and operationalize the terms used in this paper. We use the
UNWTO recommendations [59]—along with Mamei and Colonna [58]—to define tourism-
related terms, based on which a visitor is a person who travels for business, leisure or other
personal purposes for less than a year. The domestic tourist is the visitor if his/her trip
includes at least one overnight stay, while the same-day tourist (day trippers or excursionist)
is the visitor who does not spend a night, so the day of arrival and departure is the same.
With this interpretation, we follow the approach described by Saluveer et al. [54]. However,
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using MPD we can identify significantly more tourists than appear in official statistics, also
described by De Cantis et al. [60] as unobserved tourism, the extent of which has already
been quantified by Nyns and Schmitz [61] based on AirDNA and CDR data. During the
research, we apply the theoretical framework developed by De Cantis et al. for approaching
unobserved tourism.

In the remaining part of the paper, first the data acquisition procedure is presented,
with a general overview of the raw data. This is followed by the description of data
processing methodology. In the results and discussion section, we assess the final database
and shed light on the limitations of the proposed method. We use Hungary as a study area,
but the purpose is not a case-study unto itself. Instead, we intend to enrich the literature
with a detailed insight into every step of the data life cycle, focusing more on different
aspects of the data processing procedure, such as the identification of unobserved forms of
tourism, [50] rather than providing case-specific research findings.

2. Data Description

This research is based on a dataset obtained by the Hungarian Tourism Agency (HTA)
from one of Hungary’s mobile network operators (provider in the following), which had
a market share of 26% of domestic subscribers and 28% of international users in 2018.
Through a contract, HTA was able to get access to the full MPD of the provider stored
between 1 June and 31 December 2018. Thus, the dataset contains the full log data of
each SIM card that connected to the provider’s network in the 6-month period as well as
anonymized user meta information for the SIM cards. The MPD in this case is passive call
detail records (CDR), i.e., log events that are generated each time a user makes a phone call,
sends a text message or uses cellular data. In such events, the mobile phone connects to a
nearby mobile cell tower, usually to the closest one, which logs the event. While connecting
to the tower, the network is able to locate the position of the cell phone, with an accuracy
that depends on various attributes, most importantly on the distance between the mobile
phone and the tower.

The SIM cards present in the dataset are of two kinds: domestic and international.
Domestic cards belong to users living in Hungary who have an active subscription with
the provider. The international SIM cards correspond to foreigners who travelled to (or
through) Hungary and their phones connected to the provider’s network. These users are
usually subscribers of the providers’ partner networks in their home country. However,
tourists also have the option to manually choose among operators. Furthermore, there is
a random factor, determining which network a cell phone connects to when staying in a
foreign country.

In the raw data we have two comma separated value (CSV) files without headers for
each day in the 6-month period. One of them contains the log events for a particular day,
while the other file contains the anonymized user information for each user that had at
least one log event on that day. The log events file contains columns in the following order
separated by semicolons:

• The date of the event with minute precision in datetime format;
• The id of the user, which is a 38-digit number;
• The type of the event, i.e., whether it is a voice call, text message (SMS) or data usage;
• The latitude coordinates;
• The longitude coordinates;
• The precision of the location.

The exact location of an event was fixed inside a circle with the center defined by the
latitude and longitude coordinates and the radius defined by the precision variable (in
meters). Figure 1 shows a sample of the raw log data. Because of this, the use of Voronoi
tessellation algorithm (which was used through other CDR data processing [62–64]) is not
necessary, since the CDR data contained the precision value, so we were able to correctly
estimate the errors of the coordinates.
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Figure 1. Sample of the raw log data.

The user information files contain the following columns. Day; user id; whether the
user has a pre- or postpaid subscription plan; business type; business type code; the country
code of the SIM card; the name of the country where the SIM card was bought; whether
the SIM is domestic or international; age; gender; country of residence; postal code; brand
of the cell phone, if the user has a subscription, whether it is a smartphone or not; the
amount of last bill in Hungarian Forints; whether mobile parking, motorway ticket, or
other services have been bought through the subscription. However, not all information is
available for every user. In addition, the data were anonymized, so it was not possible to
identify a concrete person based on the attributes, and only the user id was used during the
data processing, along with the data management regulations set by the European Union’s
General Data Protection Regulation (GDPR).

One log event file is around 2.5–4 GB in size when compressed and around 6–9 GB
when uncompressed. For the user information files, these numbers are 110–140 and
500–600 MB, respectively. On average, a log event file contains around 100 million events,
while a user information file contains around 3–4 million users. This means, the uncom-
pressed raw log dataset was around 1.8 Terabytes, comprising around 18 billion events,
which is the final raw dataset that we rely on in this paper (Figure 2).
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3. Data Processing and Cleaning

Prior to the assessment of mobile positioning data, it is important to describe the logic
of data processing resulting in a reliable dataset. First, the steps of processing raw data
are summarized which can be useful for similar research in the future. Then the steps
of extending the database with user information and splitting it into international and
domestic parts are described. For research purposes it is necessary to separate the domestic
tourism-related movements from usual activities, for which the concept of network of usual
places (NUP) is applied, based on the existing literature. Finally, a detailed description
is provided regarding the filtering and cleaning of the two (domestic vs. international)
datasets, removing possible errors (Figure 3).
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3.1. Loading the Data into the SQL Database

As the first step of data processing, data were loaded into the sql database. To do this,
a data collector script was used that downloads and uncompresses the daily batch files in
chronological order, while splitting the data into rows and columns based on the separator
characters. Then, the script inputs were applied in the Kafka stream processing application.
The Kafka application uses a persistent storage, which means that it does not delete the
raw data while processing it.

During data processing, the log and user information data were handled separately.
Since the size of the user information files was relatively small, we were able to load
them simply into a postgresql database using the raw data columns without any further
modification. Next, the daily user information tables were merged into one table since the
daily tables contain many repetitions. The resulting table contained all the 7.3 million users
that appeared in the log events during the studied period.

To be able to load the huge log data into the database, the raw daily batch files had
to be processed. Using the Kafka application, data were split into 12 partitions based on
the user ids. This means that every event of a user was loaded into the same partition.
A random sampling method of the user ids was used to partition them, based on the
assumption that the ids are coming from a normal distribution.

Since the daily data batches are not grouped by user id, nor are they ordered by time,
during processing a grouping and ordering step for each batch had to be included. This was
done after partitioning the daily events based on the user ids, i.e., the events were grouped
and ordered for each user chronologically in each partition. This made the processing
significantly faster later, since the merge and heap ordering methods that were used have
quadratic time complexity in terms of the number of events. Since the daily packages
were processed in chronological order, in the final raw data tables the events of every user
appeared in daily batches and were ordered by time.

When events were merged during the grouping and sorting process, the number of
distinct events were also reduced for scalability reasons. Our aim was to merge several
events into one robust event, which in itself contains all the information that the merged
events contained, but in a denser format. Since the whole time series of a user could not be
processed in one step due to the enormous size of the data, the merging was done right after
processing each daily batch log file. In this way we were able to work with the grouped and
sorted daily events while they were still in the Kafka stream and loaded only the merged
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data into the sql database. The idea was that successive events of a user that happen at the
same place are merged. A counter was kept that tracked how much time the user spent at a
specific location in order not to lose any information from the raw data.

3.2. Merging Events

The input data for our proposed algorithm is a time series of circles on the map defined
by their center and their radius. The output is a time series of points on the map with
an extra attribute that refers to the time spent at the corresponding location. Events were
iterated through each user and each day when the user had at least one event.

Our algorithm used four variables. The first one is the ‘current place circle’, where the
user is assumed to be currently. The second is a ‘time spent’ variable that measures how
much time the user spent at the current place. Third, a ‘temporary circle’ was used that
was compared to the current place variable. Finally, a ‘temporary set of circles’ was used to
calculate the exact place of the user in the merged event (Figure 4).
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For each user, the first circle was started with the first occurrence in the daily log data.
The current place was set to the first circle and the time spent attribute to zero. This circle
was also added to the temporary set of circles. Then, whether the subsequent circle of the
user in the data intersected with the current place circle was checked (In practice, we used
the maximum norm instead of the Euclidean norm, since it scales much better). If they
intersected, this circle was merged into the current place; this circle was inserted into the
temporary set of circles and updated the time spent attribute to the time difference between
this and the current place event. The merging process was continued until a circle did
not intersect with the current place circle or the user did not have any circles left. When
this happened, first a new data point was created for the user, based on the current set of
temporary circles and the time spent variable. The latitude and longitude coordinates for
this new point were set to be the averages of the latitude and longitude coordinates of the
temporary set of circles, respectively. The time spent attribute for this data point was set to
be the current value of the time spent variable. Second, the current place variable was set
to the temporary circle that did not intersect with the previous current place. The circles
were also deleted from the temporary set of circles while adding this circle to the set, and
the time spent variable was set to zero. The merging process was iterated for all the circles
in the input for each user (Algorithm 1).
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Algorithm 1. The pseudo code of the merging algorithm.

forall USER do:
Input: USER_circles[]
Output: USER_points_with_time_spent[]

current_place_circle <- USER_circles [0]
time_spent <- 0
temporary_circle <- USER_circles[0]
temporary_set_of_circles.append(USER_circles[0])

for circle_i in USER_circles[1:] do:
if circle_i INTERSECT temporary_circle do:

temporary_set_of_circles.append(circle_i)
time_spent += circle_i.time - temporary_circle.time
temporary_circle <- circle_i

else:
current_location <- AVG(temporary_set_of_circles.location)
USER_points_with_time_spent.append(current_location, time_spent)
current_place_circle <- circle_i
time_spent <- 0
temporary_circle <- circle_i
temporary_set_of_circles.clear()
temporary_set_of_circles.append(circle_i)

end if;
end for;
return USER_points_with_time_spent;

end forall;

Those events that were close to each other were merged, while keeping track of how
much time the user spent at the place of the merged events. In summary, our algorithm
compressed the data from 16 billion events to around 3.5 billion events, with almost a one
to five compression rate. After the merging process the output data was loaded into the
postgresql database and split into partitions.

3.3. Adding User Information and Interpreting Coordinates

Although the dataset became denser after the first stage of processing, further steps
were needed to make it more compact and researchable. For example, the data types of
the user id and the coordinate variables had to be changed, since they were not efficient,
which made querying slow. Thus, a new user id was created that is a 32bit integer, instead
of the large integer used previously; in addition, a 16 bit floating point number was used
for the coordinates moving forward. The information contained in the log events and
the user information tables were joined, in order to make querying possible based on, for
example, the users’ country of origin. At this point, although it was possible, no additional
information on the users was added to the tables in order to keep the size relatively small.

The next step was to connect the coordinates of each event to a local municipality.
This enabled later querying and filtering of events based on their location. This was
done by using an additional data source that contained the polygon coordinates of all
municipalities (3155) in Hungary and each event was assigned to a polygon of a settlement
(i.e., municipality). Finally, based on the municipality where the event took place, the code
of the county and the region of the event also added. These attributes helped us later to
easily find all the tourists in a certain region or to identify tourist flows between counties or
municipalities.

Consequently, there were 11 attributes for the final baseline sql tables; a new user id
that is an 8-digit integer; the time of the event; the day of the event; the country of origin of
the user; the time spent attribute; the latitude and longitude coordinates; the municipality,
the postal code, the county and the region.
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3.4. Identifying Domestic and International Users

After processing the raw data and loading the results into the sql database using the
Kafka stream processing framework, the data processing was continued in the postgresql
environment. First of all, the data were split into two groups according to the nationality
of the users: domestic and international. This was important because the overwhelming
majority of the domestic data was not tourism-related, while most of the foreign user data
belonged to this category. Hence, these two groups had to be handled separately and
processed differently.

Figure 5 shows that the datasets of domestic and foreign users differ significantly.
First of all, the number of events generated by domestic users (3.5 billion) is almost a
hundred-fold that of foreign users (37 million). However, the number of distinct users is
almost the same in the two groups (3.8 and 3.5 million users, respectively). The average
number of events per user is 947 with a median of 387 for the domestic users and 10.7
with a median of 4 for the foreign users. This difference is, however, quite intuitive, since
domestic users were present in the country for the whole period, while international users
were captured only for a shorter period of time. Domestic users had events in 68 different
days on average with a median of 62 days, while the same value for international users
was 4 and 2, respectively. The event density (i.e., the number of events per day) was 14 for
the domestic and 3 for the international users. This means, that not only the number of
events, but their density is also significantly higher among domestic users. More than half
of the international users had only less than 5 events (Figure 6). For domestic users, the
numbers were much more balanced, but in this case also more than one-third of the users
had less than 180 events in total, which is less than one event per day.
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3.5. Defining the Touristic Activities of Domestic Users

Since our aim was to create a database that would provide meaningful insights on
tourism-related movements, not only for international but also for domestic users, we
had to clean the dataset further to get rid of the bad quality and noisy data. For domestic
users, those intervals had to be defined that could be related to tourism activities and they
had to be separated from the usual environment, following the UNWTO approach [59]. A
conceptual framework has already been developed for the detection of the usual environ-
ment [65,66], which we also used to select tourism events, but we had to adapt it to our own
database and purposes. A table was created to support the labelling as follows: first, the
number of events was counted for each user as well as the number of distinct days at every
location the user visited. Based on these data, we could define for each user the Usual Place
(‘UP’), Near Usual Place (‘NUP’) or Touristic Place (‘T’) and label the municipalities. The
motivation of the labelling was to identify those places where a user usually spent longer
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time and more frequently, such as the users’ home and workplaces or places they regularly
visited. In defining these places, existing conceptual frameworks and the principles of the
concept of network of usual places (NUP) [65,66] were considered, although the thresholds
were determined based on the natural breaks shown in our dataset. These events should
not be considered as touristic movements. At the same time, all other events that were not
at or near usually visited places were considered as tourism-related activity.
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For a user, we labelled a location UP if at least one of the following held:

• It was (one of) the users most visited place(s), based on the number of days the user
spent there;

• The user had an event on at least 25 distinct days;
• The user had an event on at least 20% of his/her total number of days.

A location was labelled NUP, if it was less than 15 km away from the place labelled
as UP. The intuition with the NUP label was that certain movements in the narrower
home/work environment could not be considered as tourism-related events, such as, for
example, if the user went home on a different route or visited a nearby shopping mall or
sport facility. Every other place was labelled as T.

As a next step, in order to separate tourism-related activities of a user, events that took
place in a location labelled either UP or NUP were deleted. Doing so, the users’ timeline
was split into touristic intervals, i.e., such intervals that were consecutive events with T
labels. As a result, every interval could be considered as a possible touristic visit for each
user. Each such visit could be considered a separate entity, similar to an international visit,
and a special ID was assigned for each of them. This means that a distinct touristic visit
could be examined without considering the users’ other visits.

In order to detect the usual places properly, every user was filtered out with less than
100 distinct days. This was necessary to be able to work with only those users that had
events throughout most of the examined period. Users with less distinct days also tended
to have proportionally more touristic visits, because of the definition of the usual place.

Obviously, this labelling is not perfect, for example, rare occasions such as family visits
or work trips are not distinguishable from touristic visits, since they have very similar
patterns. Although the original aim of the research was precisely to explore unobserved
tourism (which contains these activities), and in practice our methodology works well for
identifying touristic visits, and because of the size of the domestic data, more sophisticated
filtering methods would not be scalable.

As a final step of the labelling of domestic data, the resulting dataset was divided
into two tables: same-day visitors and tourists, based on whether the user had at least one
sleeping event (stay overnight) during the visit or not. For some research questions, these
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two tables were merged; however, for certain questions it was more meaningful to work
with two separate tables.

3.6. Filtering the Data

The next step was to clean the datasets, extracting the touristic movements of domestic
users and international visitors from roaming activities. For this, the following heuristic
was used to filter bad quality users and events. First, the variables of ‘time difference’,
‘distance’ and ‘velocity’ were created. The time difference variable refers to the time
difference between the current and the previous event. The distance variable is the distance
between the locations of the current and the previous event. The velocity variable equals
the distance divided by the time difference. These parameters were created to filter such
errors in the dataset where the users travelled very long distances during a very short
period of time. These events usually came in bunches for certain users, with the user
jumping back-and-forth between places far from each other.

Next, different variables were created with the help of experts from the Hungarian
Tourism Agency (HTA) that helped identify meaningful events at certain places, such as:
‘1 h spent’, ‘4 h spent’ and ‘sleeping’. These variables were experimented and calculated
beforehand based on the time spent variable, which indicated for a particular event how
much time the user stayed at a certain place. If the time spent variable for an event was
greater than 1 h or 4 h, then we assigned the value ‘True’ to these variables. The value
‘False’ was assigned otherwise. As for the sleeping event, we assigned ‘True’ to either the
very first event after 4 am in the morning or the last event before 4 am, based on which
place is more common for the users, based in turn on his/her visit. If these two events were
at the same place then the user obviously slept there. However, when the place of these
two events differed, it was not obvious which place should be chosen as a sleeping place.
In these cases, the heuristic above proved to work the best in finding the sleeping place.

These variables could be used in further steps of the research to answer the questions:
‘Where did those people stay overnight who spent at least 4 h in a specific location but did
not sleep there?’ or ‘Have the tourists staying at a particular location taken same-day trips
in neighboring places?’.

As a first step, those visits were filtered for which at least one of the following criteria
was fulfilled:

• It has less than five events,
• It does not contain at least one event where the 1 h spent variable is true,
• The difference between the latest and earliest event is less than 12 h,
• The speed variable in one of the events exceeds 500 km/h,
• The speed variable exceeds 300 km/h and the time difference variable is at most 3 in

multiple events.

The last two conditions aimed to filter visits that contained errors. On the one hand,
where the speed exceeded 500 km/h, the user travelled way too fast for the event not to be
an error. On the other hand, the last condition filtered out those back-and-forth movements
that usually are the result of two users having the same user id.

All the thresholds above are purely based on heuristics and can be changed when
using other datasets. At the same time, these numbers were those that worked the best for
us on this particular dataset in terms of the resulting data quantity and quality trade-off.
To answer specific research questions, obviously other threshold settings can be used. For
example, to examine a place with only few tourists, the settings can be loosened, allowing
consideration of more users in the filtered dataset. However, analyzing such problems
where the number of users was big enough, stricter filtering settings could be applied for
the sake of better data quality.

For the international users, our assumption was that, except for some special cases
(e.g., truck drivers), every visit can be considered as tourism-related activity. However,
similarly to the domestic users, we had to filter the data to keep only those that reflect tourist
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visits. Every international user was disregarded for whom at least one of the following was
fulfilled:

• The user had less than five events in total,
• The user had an event per day ratio less than 1.5,
• The user had events on more than 25 distinct days,
• The user did not have a sleeping event.

The first two conditions are straightforward data quality requirements. The third one
makes sure that users who stay in the country for a longer period of time (e.g., Erasmus
students) are not considered, since they are not tourists by strict definition. Finally, the
last criterion filters out the same-day visitors. Separate tables were created for the users
with at least 25 distinct days and one day tourists in order to be able to gain insight also
into their spatial behavior [6]. Figure 7 shows the overall event distribution for the filtered
international and domestic events and users within Hungary.
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3.7. Validation of the Final Database

In order to assess the reliability and representativeness of the filtered database, official
tourism-related statistics of the Hungarian Central Statistical Office (HCSO) were used.
During the assessment, the official data of guests and spent guest nights of a given period
at the municipal level was compared to the dataset based on MPD. While the former
contains only data of tourists who were officially registered by commercial accommodation
services, the latter includes the data of those who used the services of the provider (between
27 and 45% of all domestic mobile users [67]). However, we must keep in mind that in
the case of international tourists it is not straightforward which network their mobile
phone connects to when they arrive to a given country. Therefore, the shares of the total
visitors that connected to our network provider for each country had to be calculated.
In addition to representativeness at the macro-scale, spatial and temporal validation of
domestic and international tourists is also important. For this purpose, correlation and
regression coefficients were calculated regarding the spatial (settlement level) and temporal
(monthly) distribution of guests and guest nights derived from the HCSO and the MPD
datasets, in order to determine to what extent the filtered database differs from official
statistics. However, certain biases do not necessarily mean that the database is of bad
quality, as several tourism-related activities can be detected with the MPD, which are not
included in commercial statistics (e.g., unobserved tourism which can be linked with family
relations, or private accommodation services, or same-day visits).

4. Results and Discussion: Assessment of the Final Database

In this section we aim to assess the reliability and representativeness of the final
database. For the validation, we use official statistics collected by the Hungarian Central
Statistical Office at the settlement level. Data on international and domestic tourists staying
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at commercial accommodation establishments (hotels, pensions, camp-sites, hostels, bed-
and-breakfasts, etc.) cover the period 1 July–31 December 2018. The share of officially
recorded international tourists captured by MPD differs very much by country (Table 1).
According to our dataset, more than two thirds of tourists arriving from France, Cyprus
and Bulgaria were connected to the network of our provider, whereas only 6% from the
USA, and even fewer from Japan and Norway. This means that MPD of a single service
provider can be highly representative for some countries, whereas it has limitations for
others. Our estimation is that, below 20% representativeness, the data of foreign visitors
should be handled with caution. For a full coverage of international tourism, obviously,
data of all mobile network operators (in Hungary there are three) should be collected and
processed, which means not only a methodological, but also a financial and organizational
challenge.

Table 1. Share of tourists by countries tracked by MPD.

Country Ratio (%) Country Ratio (%) Country Ratio (%)

France 77.38 Estonia 36.41 Turkey 23.7
Cyprus 74.04 Croatia 35.52 Israel 20.29
Bulgaria 73.36 Switzerland 35.16 Serbia 16.66
Poland 58.28 Ukraine 35.07 United Kingdom 14.94

Belgium 53.13 Latvia 34.06 Sweden 12.73
Slovenia 50.3 Italy 33.68 Canada 11.81
Portugal 47.39 India 33.18 Brazil 9.87

South Africa 46.75 Russia 32.2 South Korea 9.67
Romania 41.55 Ireland 29.59 Australia 8.13
Iceland 39.49 Slovakia 28.99 Finland 8.03
Malta 38.89 Denmark 28.94 China 7.28

Austria 38.8 Czech Republic 27.66 USA 6.34
Greece 38.05 Spain 26.38 Japan 2.15

Netherlands 37.38 Germany 25.12 Norway 1.16

As a next step, the filtered datasets (both domestic and international tourists) were
evaluated with correlation coefficients at the settlement level (Table 2). Regarding the
number of domestic tourists, the correlation coefficient is 0.733 and the slope of the regres-
sion line is 0.24. The latter means that, on average, 24% of tourists were detected using
MPD, while the former shows how accurately the tourist pattern was captured by the
filtered database when compared to the official statistics. The degree of correlation can be
considered good, especially since the figure shows that the MPD tended to overestimate
the number of tourists at those settlements where the number of visitors was low, and
hence they are probably more exposed to unobserved tourism (i.e., tourists not appearing
in accommodation statistics) [68]. The values were similar in the case of the number of
guest nights, but this was estimated with a slightly higher efficiency (R = 0.766), but to a
lesser degree (19%). With the exclusion of those municipalities where the number of guests
was zero in commercial accommodation, but the MPD detected tourist movements, the
efficiency of the estimation increases (R = 0.771 and R = 0.779).

The spatial concentration of international tourists is very high in Hungary, but Bu-
dapest, the capital city, attracts a disproportionately large share of foreign visitors, which
thus, distorts the correlation and regression calculations which are highly sensitive to
outliers. Therefore, the efficiency of the estimation was also examined without Budapest.
Nonetheless, the calculated correlation coefficients and the slope of the regression lines also
provided useful information, as according to both official statistics and MPD more than
half of the international tourists concentrated in the capital city and 21% of these guests and
17% of guest-nights were captured by MPD (Table 2). These values significantly decrease
with the exclusion of Budapest (16% and 7%, respectively).
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Table 2. Correlation coefficients.

R Constant Slope

Domestic tourists 0.733 ** 708.793 0.24
Domestic tourists (without zero values) 0.771 ** 1500.525 0.23

Domestic nights 0.766 ** 1417.592 0.19
Domestic nights (without zero values) 0.779 ** 2117.036 0.19

International tourists 0.998 ** 109.760 0.21
International tourists without Budapest 0.764 ** 137.980 0.16

International nights 0.996 ** 9.723 0.17
International nights without Budapest 0.711 ** 194.776 0.07

** Correlation is significant at the 0.01 level (2-tailed).

We were also interested in the geographical pattern of unobserved tourism. Based
on Figure 8, our preliminary assumption was that unobserved tourists concentrate pre-
dominantly outside major tourist hotspots. To test this hypothesis, we separated the
data of Budapest and the 100 biggest destinations based on the number of officially reg-
istered tourists (both international and domestic) within the country. As Table 3 shows,
the 101 most important tourist destinations concentrated 93.5% of the international and
76.6% of the domestic tourists officially registered in the country in the second half of 2018.
Our MPD dataset captured 28.2% of the officially recorded international visitors in the
period, which is very similar to the market share of the provider. However, the spatial
distribution of international SIM cards was significantly different from national statistics
on tourism, since, as opposed to 93.5%, only 70.9% of the international tourists could be
linked with major tourist destinations. In our opinion, a substantial part of international
visitors travelling to regions/settlement less frequented by tourism normally stay with
friends, relatives, or at private accommodation facilities. In this way most of them remain
hidden for tourism statistics. According to our data, the share of unobserved visitors is
even higher in domestic tourism. There were 3.7 million domestic tourists in Hungary in
the studied period, out of which MPD recorded 3.1 million, again predominantly outside
the most frequented tourist destinations. These results shed light on the limitations of
accommodation statistics and confirm the usefulness of MPD as a proxy for the actual
number of tourists in a given location/region.
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Table 3. Official and unobserved tourism in Hungary.

Major Tourist
Destinations Rest of the Country

Total
Number Ratio (%) Number Ratio (%)

Number of municipalities 101 3.2 3054 96.8 3155
Number of domestic tourists by official

statistics 2,848,648 76.6 871,708 23.4 3,720,356

Number of domestic tourists by MPD 942,569 30.1 2,189,202 69.9 3,131,771
Number of international tourists by

official statistics 3,097,826 93.5 215,854 6.5 3,313,680

Number of international tourists by MPD 664,806 70.9 272,533 29.1 937,339

The correlation coefficients calculated on a monthly basis reflect the spatial accuracy
of the estimation in time. Based on this calculation, we can say that there was no significant
change in the case of domestic tourism, i.e., the MPD database estimated the official statistics
with similar efficiency in every month (Table 4). However, the accuracy of international
tourism estimates is steadily declining over time in terms of both the number of guests and
the guest nights. This may be the result of the high seasonality of international tourism in
Hungary [69], i.e., it is easier to create a geographically accurate database from MPD for a
larger number of tourists in the summer period (Figure 9). Thus, for the late fall and winter
months, our dataset is less accurate.

Table 4. Correlations between the spatial distribution of tourism data by official statistics and MPD.

Time Period Domestic
Tourists

Domestic
Nights

International
Tourists *

International
Nights *

All 0.733 ** 0.766 ** 0.764 ** 0.711 **
July 0.738 ** 0.735 ** 0.790 ** 0.785 **

August 0.768 ** 0.771 ** 0.786 ** 0.746 **
September 0.751 ** 0.748 ** 0.769 ** 0.676 **

October 0.761 ** 0.767 ** 0.717 ** 0.638 **
November 0.766 ** 0.757 ** 0.693 ** 0.629 **
December 0.803 ** 0.777 ** 0.613 ** 0.540 **

* Without Budapest. ** Correlation is significant at the 0.01 level (2-tailed).

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 21 
 

Number of international tourists 
by MPD 

664,806 70.9 272,533 29.1 937,339 

The correlation coefficients calculated on a monthly basis reflect the spatial accuracy 
of the estimation in time. Based on this calculation, we can say that there was no signifi-
cant change in the case of domestic tourism, i.e., the MPD database estimated the official 
statistics with similar efficiency in every month (Table 4). However, the accuracy of inter-
national tourism estimates is steadily declining over time in terms of both the number of 
guests and the guest nights. This may be the result of the high seasonality of international 
tourism in Hungary [69], i.e., it is easier to create a geographically accurate database from 
MPD for a larger number of tourists in the summer period (Figure 9). Thus, for the late 
fall and winter months, our dataset is less accurate. 

Table 4. Correlations between the spatial distribution of tourism data by official statistics and MPD. 

Time Period Domestic Tourists Domestic 
Nights 

International 
Tourists * 

International 
Nights * 

All 0.733 ** 0.766 ** 0.764 ** 0.711 ** 
July 0.738 ** 0.735 ** 0.790 ** 0.785 ** 

August 0.768 ** 0.771 ** 0.786 ** 0.746 ** 
September 0.751 ** 0.748 ** 0.769 ** 0.676 ** 

October 0.761 ** 0.767 ** 0.717 ** 0.638 ** 
November 0.766 ** 0.757 ** 0.693 ** 0.629 ** 
December 0.803 ** 0.777 ** 0.613 ** 0.540 ** 

* Without Budapest. ** Correlation is significant at the 0.01 level (2-tailed). 

 
Figure 9. Temporal distribution of users by MDP. 

The difference between the number of guests predicted by the regression line and 
detected by the MPD has distinct spatial variations for both domestic and international 
tourists (Figure 10a,c). In the case of domestic tourists, the inaccuracy of the estimate is 
minimal for major tourist destinations (i.e., regional centres), while in the case of medium-
size towns and smaller settlements, where the phenomenon of unobserved tourism is 
more likely, the number of guests was overestimated (Figure 10a). This can also be ob-
served in the case of Lake Balaton (for the estimation of international tourists too), where 
a significant part of guest nights is not recorded in commercial accommodations [70,71]. 
The spatial configuration of international tourists shows a similar but much more concen-
trated pattern, where flows related to the concentrations of foreign direct investments (i.e., 
business and logistic centres) may play a role in the overestimation (for example, the Mer-
cedes plant in Kecskemét) (Figure 10c). In addition, there are several settlements in Hun-
gary without commercial accommodation services (where no guests can officially be reg-
istered), but we could detect tourists on the basis of MPD (Figure 10b,d). Out of the 3155 

Figure 9. Temporal distribution of users by MDP.

The difference between the number of guests predicted by the regression line and
detected by the MPD has distinct spatial variations for both domestic and international
tourists (Figure 10a,c). In the case of domestic tourists, the inaccuracy of the estimate is
minimal for major tourist destinations (i.e., regional centres), while in the case of medium-
size towns and smaller settlements, where the phenomenon of unobserved tourism is more
likely, the number of guests was overestimated (Figure 10a). This can also be observed in
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the case of Lake Balaton (for the estimation of international tourists too), where a significant
part of guest nights is not recorded in commercial accommodations [70,71]. The spatial
configuration of international tourists shows a similar but much more concentrated pattern,
where flows related to the concentrations of foreign direct investments (i.e., business and
logistic centres) may play a role in the overestimation (for example, the Mercedes plant in
Kecskemét) (Figure 10c). In addition, there are several settlements in Hungary without
commercial accommodation services (where no guests can officially be registered), but we
could detect tourists on the basis of MPD (Figure 10b,d). Out of the 3155 Hungarian settle-
ments, international tourists were captured in 1531, and domestic tourists in 1404 locations,
i.e., 48.5% and 44,5% of the settlements, respectively. According to our understanding, they
can be defined as unobserved tourists. This phenomenon is more prevalent in the central
part of the country, in the wider urban agglomeration of Budapest, and in the eastern part
of the country [72]. In our opinion, most of these visitors are either people staying with
relatives or friends, or use some alternative (non-registered) accommodation, or they are
transit travelers (especially near the border crossings) (Figure 10b).
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5. Conclusions

Even though this research had clear methodological considerations, the presented
results also have some conceptual and policy implications. As was demonstrated, official
statistics on tourism have many shortcomings and ambiguities that can be eliminated by
new research technologies, such as mobile positioning data. Knowledge of the real-time
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activities of tourists at a certain location and their spatio-temporal behavior can provide
much added value for sustainable tourism policy and destination management [73]. As
was highlighted in the introduction of this paper, despite the growing importance of Big
Data sources in tourism research, a comprehensive overview of the processing and filtering
of mobile positioning data to capture various unobserved forms of tourist movements is
by and large missing from the literature. Therefore, the main aim of this paper was to
present a case-study on the processing and cleaning mechanisms of mobile positioning
data to gain reliable information about the actual number of visitors (both domestic and
international) at a certain location. Such data sources can extend the knowledge provided
by accommodation statistics, improving the timeliness and spatiotemporal resolution of
the data.

While the majority of previous studies in the field used only data for a shorter period of
time (e.g., two weeks or the time of specific events) [74] or focused exclusively on inbound
international tourism [75], this research was based on the full dataset of one of Hungary’s
mobile network operators for six months in 2018. Our main aim was to shed light on
the challenges and opportunities of MPD processing, especially regarding statistically
unobserved forms of tourism (e.g., day trippers, family visitors), and to provide possible
benchmarks and solutions. On the one hand, we presented solutions to challenges caused
by the size and structure of the dataset (e.g., data management, filtering, cleaning, etc.), and
on the other hand, we demonstrated how a more accurate picture of the spatio-temporal
dimensions of tourist movements can be achieved. The novelty of the research lays in (1) the
definition of thresholds for data filtering, (2) a more sophisticated and accurate definition
of possible errors in the dataset, (3) the introduction of new variables that facilitate data
reduction in tourism-related analyses, (4) an accurate identification of unobserved (same
day) tourism. The definition of the thresholds is well-grounded due to the size and the
time-span of the dataset. After defining the key variables, it was possible to identify and
analyze the flows of various user groups (i.e., domestic and international tourists). As
was shown with the inclusion of the 1-h and 4-h spent variables (and the merging of these
events), a significant data reduction could be achieved, while the new dataset offered good
opportunities for measuring hidden forms of touristic activities (e.g., cross border trips,
one day visitors) [76]. Thus, we can say that through the application of our approach, the
study of various forms of unobserved tourism at the intra-urban and intra-regional level
becomes possible.

Furthermore, the delimitation of secondary destinations without officially registered
tourist visitors became possible and the spatio-temporal characteristics of the related
tourist flows could also be measured [6]. Such locations can gain useful information
about the actual number of tourists (both international and domestic) visiting them, their
seasonality and spatio-temporal behavior. This knowledge can help less frequented tourist
destinations elaborate their own tourism policies and pursue sustainable tourism planning
and destination development. Altogether, the methodological procedure presented in this
study can help increase the efficiency and reliability of the use of MPD and contribute to
the standardization of the methods used in Big Data tourism research. The methodology
can support the analysis of local tourism flows; thus, it may lead to better management and
more optimal policy formulations at the local level. At the macro-geographical (national,
regional) scale, the analysis of MPD with the suggested methodology can help track tourism
flows more accurately, identifying secondary tourism hot spots that remain very often
hidden in statistics [16]. Challenges related to the recent COVID-19 pandemic also increased
the importance of such analyses [15,77]. Tracking the tourism-related spread of infections
or monitoring the effects of changing travel regulations on tourism activities has great
potential in future studies [2]. Future research could also refine the data cleaning process,
for example, filtering transit traffic (e.g., truck drivers) that cross the country without any
tourism-related activity.

As with other research in the field, this study has also certain limitations. First of all,
we used data only from one network provider and the clienteles of the other two operators
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have not been covered. As was shown by our assessment, using the data of one single
operator may lead to bias. This is important to note because the structure of the data and
the problems arising during data processing may be different in the case of other providers.
In addition, the sending countries are not equally represented either, because this depends
on the provider’s international collaborations, so this distortion should be considered
in the interpretation of results. Furthermore, the simultaneous use of data from various
providers may positively affect the reliability and comparability of such data. Last, but
not least, while MPD offers useful insights to tourism flows, their underlying causes and
motivations remain unexplored, thus the presented Big Data method should be extended
by conventional methodologies (e.g., surveys) to obtain a comprehensive picture of the
driving forces of tourism related mobility.
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