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Abstract: The hydrokinetic turbine is used worldwide for electrical generation purposes, as such a
technology may strongly reduce environmental impact. Turbines designed using backward swept
blades can significantly reduce the axial load, being relevant for hydro turbines. However, few works
have been conducted in the literature in this regard. For the case of hydrokinetic rotors, backward
swept blades are still a challenge, as the authors are unaware of any optimization procedures available,
making this paper relevant for the current state of the art. Thus, the present work develops a new
optimization procedure applied to hydrokinetic turbine swept blades, with the main objective being
the design of blades with reduced axial load on the rotor and possibly a reduction in the cavitation.
The proposed method consists of an extension of the blade element momentum theory (BEMT)
to the case of backward swept blades through a radial transformation function. The method has
low computational cost and easy implementation. Once it is based on the BEMT, it presents good
agreement when compared to experimental data. As a result, the sweep heavily affects the chord
and twist angle distributions along the blade, increasing the turbine torque and power coefficient.
In the case of the torque, it can be increased by about 18%. Additionally, even though the bound
circulation demonstrates a strong change for swept rotors, Prandtl’s tip loss seems to be not sensitive
to the sweep effect, and alternative models are needed.

Keywords: swept blades; hydrokinetic turbines; blade optimization; blade element momentum
theory; tip loss

1. Introduction

It is well known that hydrokinetic turbine blades are responsible for converting the
kinetic energy transported by rivers into electrical energy. As reported by Rio Vaz et al. [1],
hydrokinetic rotors are similar to wind ones and their efficiency, without a doubt, is
limited to 59.3% [2]. There are currently different types of turbines, including those with
backward swept blades, which can significantly reduce the axial load. However, regarding
the optimization of hydrokinetic blades, only a few studies have been conducted in the
literature. In this context, a novel approach for the optimization of hydrokinetic turbines
with backward swept blades is proposed in this paper. The optimization procedure is
based on the blade element momentum theory (BEMT), which is extended to analyze
swept blades. In this case, a change is made on the radial coordinate of the rotor, in which
a transformation using a mathematical function dependent on the local swept angle is
employed. Such a transformation modifies the aerodynamic shape of the turbine blade,
through chord and twist angle distributions.

In the current literature, some works have been proposed for optimizing hydrokinetic
blades, but applied to rotors with straight blades only. For example, Silva et al. [3] showed
a model to design hydrokinetic blades considering cavitation. In their work, a methodology
for cavitation prevention was employed. Their results were compared with data from
hydrokinetic turbines designed using classical Glauert’s optimization, demonstrating
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good performance. In the work of Muratoglu et al. [4], an optimization of hydrokinetic
turbines using differential evolution algorithms was studied. The analysis was developed
specifically for stall-regulated turbines, considering high hydrodynamic forces, cavitation,
blade tip loss and optimal stall behavior. That paper described a parametric study of a
swept blade for a 750 kW machine and how the amount of tip sweep has the largest effect
on energy production [5].

In Sessarego et al. [6], a code called MIRAS was used to investigate the aerodynamic
performance of winglets and sweep on a horizontal axis wind turbine. The focus of the
work was to carry out a preliminary study of the effect of sweep and winglets compared
to straight blades in horizontal axis wind turbines. The results indicate that wind turbine
blades with sweep or winglets might be better in performance compared to the straight
blade. Their work suggests that the swept blade can improve the aerodynamic performance
of wind turbines at low speed conditions. Zuo et al. [7] presented a numerical study on
the effect of the swept blade on the aerodynamic performance of a wind turbine varying
the tip speed ratio (TSR). After comparing and analyzing the data from the swept blade
optimized with the straight blade, it was found that the output power of the swept blade
can be 12% higher than that of the straight blade. This shows that the optimized swept
blade can capture more energy for a high TSR.

Contemporary optimization techniques have been developed in the literature, as
further described in [8–10], e.g., Sadollah et al. [11] proposed the use of optimization
algorithms based on the metaheuristic concept, which can be beneficial for hydro blade
optimization. Ding and Zhang [12] presented an ideal design method for horizontal
axis turbines with swept blades. They used a multi-objective algorithm, NSGA-II, for
optimization, which showed good behavior. The multi-objective algorithm was used to
improve the computational cost and accuracy of designing complex structures [13]. Such
structures are very common in hydro turbines. Additionally, modern techniques, such
as the optimizable image segmentation method, according to [14], have the potential
for dealing with the fatigue image identification of turbine blades. Fatigue failures are
important in hydro turbine, as microscopic damages and crack propagation can take
place in hydro blades [15]. Pavese et al. [16] investigated the use of backward swept
blades to relieve the aerodynamic load in wind turbines. Sweeping blades backward is
considered an aerodynamic load-relieving technique. Slightly backward swept shapes
are the best choice for the design of passively controlled wind turbines because they can
achieve load relief without causing large increases in blade root torque. Kaya et al. [17]
investigated the aerodynamic performance of horizontal axis wind turbines with forward
and backward swept blades. They found that forward swept blades have the ability to
increase performance, while backward swept blades tend to decrease the coefficient of
thrust, which can be important for starting the machine.

BEMT, although conceptually simple, is still highly useful for analyzing wind tur-
bine aerodynamics, and it is widely implemented in many designs and applications.
Ning et al. [18] analyzed the BEMT and several of the options available to assess the effect
of the sloping wind direction that arrives on the rotor. In that case, BEMT proves to be
quite efficient. Vaz and Wood [19] demonstrated a mathematical model based on the BEMT,
which includes diffuser efficiency to modify thrust and power with good agreement when
compared to experimental data. Therefore, in the present work, a new model, based on
BEMT, to optimize hydrokinetic turbines with backward swept blades is developed. The
importance of this model lies on the increased chord distribution for optimized swept
blades, as this increase seems to be beneficial for avoiding the cavitation phenomenon in
axial hydro turbines. Another relevant aspect of the model is that turbines with optimized
swept blades may reduce the resistive torque of the powertrain at any operating condition,
contributing to a better performance of the turbine. In order to evaluate the performance
gain and load reduction on the turbine rotor, comparisons with works available in the
literature are performed. As a result, the swept blade torque can be increased by about 18%,
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and the bound circulation suggests that Prandtl’s tip loss factor seems to be not the best
one for swept rotors.

2. Blade Element Momentum Theory for Swept Blades
2.1. Axial Momentum Theory With Sweep Effect

The axial momentum theory with sweep effect, considering the rotational velocity
component, is illustrated in Figure 1. In this case, the change is made only on the radial
position r, which is transformed through the function,

Φ
( r

R
, βi

)
=
( r

R

)βi
. (1)

Thus, the swept radial position ri is taken as

ri =
r
R

Φ
( r

R
, βi

)
, (2)

where R is the radius of the turbine at the blade tip, while βi is the local swept angle. As it
is well known from the literature, there is no rotation in the wake of a conventional actuator
disk, but rotation is an essential part of power extraction, in that the elemental torque,
dQ, is obtained directly from the angular momentum equation applied to an infinitesimal
control volume of area dA = 2πridri (Figure 1) [20].

dQ = ρV1wr2
i dA = 2ρa′(1− a)V0Ωr2

i dA, (3)

where ri is the swept radius, w = 2Ωa′ is the angular velocity in the near-wake, and Ω
is the rotor angular velocity, while a′ and a are the tangential and axial induction factors,
respectively. The torque coefficient is [21]

CQ =
dQ

1
2 ρV2

0 dA
=

4a′(1− a)Ωr2
i

V0
. (4)

u =V - v         0       
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R

r

dr

Elevation view

Cross section in the 
rotor plane

r
i

Swept radius

Ω

Figure 1. Simplified illustration of the velocities at the rotor plane and in the wake for a swept
radius [20].

The element power is obtained from [22]

dP = ΩdQ = 2ρa′(1− a)V0Ω2r2
i dA. (5)

By integrating this expression across the rotor, the power coefficient is given by [22]

CP =
P

1
2 ρAV3

0
=

8
λ2

λ∫
0

a′(1− a)x3dx, (6)
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where x = Ωri/V0 and λ = ΩR/V0 are the local-speed ratio and the tip-speed ratio,
respectively. The main change in Equation (6) is that CP is heavily dependent on the swept
radial position ri from Equation (2).

2.2. Blade Element Momentum Theory for Turbines with Swept Blades

To demonstrate the BEMT analysis to turbines with swept blades, Figure 2 depicts a
rotor with N = 2; this number is used in the figure only for convenience, as the following
analysis holds for any N. The transformations occur on the tangential velocity component,
chord, lift and drag forces. The mathematical transformations for the radius and chord,
respectively, are ri =

r
R Φ
( r

R , βi
)

and ci = c cos βi, where R is the radius at the blade tip, r
and c are the local radius and chord for a straight blade, and βi is the local swept angle.
The maximum swept angle at the blade tip is β, and βi = β/Nr, where Nr is the number of
blade elements. The transformation function at each radial position Φ

( r
R , βi

)
is given by

Equation (1). The following mathematical demonstrations are straightforward from the
BEMT analysis, where the major additional term is cos βi as in Figure 2, in which the flow
angle φ becomes

tan φ =
(1− a)V0

(1 + a′)Ωri cos βi
. (7)

The relative velocity W and the bound circulation of each element, Γ, are

W =

√
[(1− a)V0]

2
+ [(1 + a′)Ωri cos βi]

2
(8)

and [21]

Γ =
1
2

WciCl

(
1− Cd

Cl tan φ

)
, (9)

where Cl and Cd are the lift and drag coefficients, respectively. The normal and tangential
force coefficients Cn and Ct are [22]

Cn = (Cl cos φ + Cd sin φ) cos βi (10)

and
Ct = (Cl sin φ− Cd cos φ) cos βi (11)

Ω

ri

r

ϕ

α

rΩcosβi

(1-a)V0

W

Rotor plane

F

F

n

t

θϕ

aV0

w

Lcosβi

Dcosβi

rΩa'cosβi

Swept blade

βi

Figure 2. Simplified illustration of the variable transformations on a swept blade.

Extended formulations for axial and tangential flow velocities are given by

a
1− a

=
σiCn

4F sin2 φ
(12)
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and
a′

1 + a′
=

σiCt cos βi
4F sin φ cos φ

(13)

In order for Prandtl’s model to be adapted to the method of the blade element, Glauert
gave a different solution. In this case, he interpreted that the correction factor, FP, can be
approximated by the ratio between the induced velocity in the blades and the average of
the induced velocity between the blades [23]

FP =
ā

aB
, (14)

where

ā =
1

2π

∫ 2π

0
adθ (15)

is the average induced speed and aB is the blade induced speed. Glauert wrote the factor
FP in terms of the local flow angle, φ, leading to [23]

FP =
2
π

cos−1[exp(− f )], (16)

in which f , to the tip of the blade, assumes the expression

f =
N
2

R− r
r sin(φ)

. (17)

Note that σi = Nci/(2πri) is the local solidity for the swept blade. Whether βi = 0◦,
or ci = c, ri = r, Equations (12) and (13) reduce to the classical Glauert expressions. The
extended formulations for thrust and torque coefficients are

CT = 2
∫ 1

rh

(
W
V0

)2
σiCnridri (18)

and

CQ = 2
∫ 1

rh

(
W
V0

)2
σiCtr2

i dri, (19)

where rh is the radius of the hub normalized by R. The power coefficient is calculated
through CP = λCQ.

2.3. Optimization Model for the Turbine Swept Blade

The aerodynamic optimization is performed by maximizing the power coefficient
through maximizing the integrand a′(1− a) in Equation (6). This requires [22]

d
da
[
a′(1− a)

]
=

[
(1− a)

da′

da
− a′

]
= 0 (20)

So, Equation (20) can be simplified to an equation that also applies to turbines with
straight blades as used by Rio Vaz et al. [1]:

(1− a)
da′

da
= a′ (21)

According to Hansen [22], if the local angles of attack are below stall, a and a′ are
not independent since the force according to potential flow theory is perpendicular to
the local velocity seen by the blade. The total induced velocity, w, must be in the same
direction as the force, as illustrated in Figure 3. On the other hand, when the local angle
of attack is above stall, Equation (21) becomes invalid since the drag, which is ignored in
the potential theory, becomes large. As noted by Wood [24], Equation (21) is only strictly
true if the vortex pitch is independent of r. In particular, for λ < 1, the behavior of the
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induced velocity field seems to be heavily dependent on the radius. Ref. [24] shows that the
numerical optimization of turbines with straight blades gave a constant pitch only when λ
was around one or greater. Therefore, it is important to note that the present optimization
procedure is valid for λ > 1 approximately, for which

x2
i a′(1 + a′) = a(1− a), (22)

where xi =
Ωri cos βi

V0
. Equation (22) is derived from the angle φ in Figure 3 in terms of

tan φ =
a′Ωri cos βi

aV0
. (23)

Equations (7) and (22), differentiated with respect to a, yield

(1 + 2a′)
da′

da
x2

i = 1− 2a. (24)

L

D

ϕ

αrΩa'

rΩ

(1-a)V0

W

Rotor plane

F

F

n

t

θϕ

aV0

w

Figure 3. Velocity diagram for the section of the rotor blade.

If Equations (21) and (24) are combined with Equation (22), the optimal relationship
between a and a′ becomes [22]

a′ = (1− 3a)/(4a− 1). (25)

Equation (25) is obtained by Glauert, as described in [20] for turbines with straight
blades. The optimal relationship between xi and a is calculated substituting Equation (25)
in Equation (22), resulting in

16a3 − 24a2 +
[
9− 3x2

i

]
a + x2

i − 1 = 0. (26)

Because Equation (26), the blade optimization procedure can be expressed as a func-
tion of the induction factors once the blade element lift and drag are available. So, the
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optimal chord and the twist angle at each blade section are calculated through the follow-
ing expressions:

c =
8πriF sin φ cos φ

BCn

a
1 + a

(27)

and [22]
θ = φ− α. (28)

Equation (27) comes from Equation (12), while Equation (28) comes direct from the
velocity diagram shown in Figure 3. In the high λ limit, Equation (26) requires a→ 1/3, as
expected, even for swept blades. According to Wood [24], as λ ↓ 0, a→ 1/4, whereas the
correct limit is 1/2 for an ideal turbine. This concern seems to be the same for the case of
the swept rotor; however further investigation is necessary. Note that the local speed ratio
xi is dependent on the local swept angle βi, whose effect is shown in the next section.

3. Results and Discussion
3.1. Validation

To validate the BEMT code developed in this work, a comparison with the experi-
mental data measured by John et al. [25] was performed. The experimental data were
made only for straight blades. In their work, it was used a typical curved plate airfoil for
turbines with multiple blades, most used in water pumping, whose lift and drag coefficients
were experimentally determined by Bruining [26] for Re = 60,000. The turbine tests were
performed at the University of Calgary Red Wind Tunnel (RWT) and the TU Delft Open
Jet Facility (OJF) [25]. Both tunnels are open jet. For the 15 m/s nominal wind speed
investigated, the combined unsteadiness and turbulence intensity, and non-flow uniformity
of the RWT were measured to be <0.3% and ±2%, respectively. The turbulent intensity
of the OJF was reported to be <0.25%. These data were inserted into the proposed BEMT
model, as described in Section 2 on the element moment theory with swept blades, in order
to determine the turbine power, torque and thrust coefficients. The results, in Figure 4,
demonstrate that power, torque and thrust coefficients increase for a tip speed ratio λ
greater than 1.65 for the rotor with swept blades (β = 30◦). For λ = 1.93, the increase
in power coefficient reaches 81% (Figure 4a). The same behavior occurs with the turbine
torque, as shown in Figure 4b. In Figure 4c, for values of λ greater than 1.65, the thrust on
the turbine with swept blades is greater than that of straight blades, demonstrating that the
reduction in the axial aerodynamic load on the rotor occurs only in a range of λ, that is, for
a certain turbine operating range. This result means that the thrust of turbines with swept
blades is not always less than the thrust of turbines with straight blades. Additionally, it
conflicts with that obtained by Zuo et al. [7], who point out that possibly the thrust in
swept blades would always be lower than in straight blades.

3.2. Performance Analysis of the Proposed Optimization

To analyze the performance of the proposed optimization model, the design param-
eters in Table 1 are taken into account. In this case, SG6040 airfoil is used (Figure 5),
considering the low Reynolds number, given by Re = ρV0c/µ. This airfoil, according to
Wood [21] is one of the more modern SG aerofoils designed by Professor Michael Selig (S)
and Phillipe Giguere (G) of the University of Illinios at Urbana-Champaign, specifically for
small wind turbines. It is probably one of the first aerofoils designed for that purpose.

The optimal angle of attack (α = 8.8◦) is obtained from the maximum Cl/Cd ratio,
whose optimal value is 56, as shown in Figure 6. The optimization procedure is performed
considering α constant, while the twist angle θ changes as a function of the flow angle φ
along the blade length, from Equation (28). The SG6040 airfoil is used here just for the
purpose of assessing the behavior of the proposed optimization since it is not the objective
of the work to evaluate airfoils efficiencies, as well as the effect of 2D airfoil profiles.
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Figure 4. (a) Power, (b) torque, and (c) thrust coefficients.

Table 1. Design parameters and conditions of the turbine.

Parameters Value

Turbine diameter, m 0.8
Hub diameter, m 0.08
Number of blades 4
Stream velocity, m/s 1.0
water density, kg/m3 (1) 997
Angular velocity, rad/s 10.5
Swept angle, degrees 30

(1) at 25 ◦C.
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Figure 5. (a) SG6040 airfoil for the section of the rotor blade. (b) Cl/Cd ratio for the SG6040 foil
(Reynolds number of 150,000).
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Figure 6. (a) Chord and (b) twist angle distributions as functions of the radial position.

Figure 6 shows the optimized chord (Figure 6a) and twist angle (Figure 6b) distribu-
tions along the turbine blade length. The results are compared to the optimization models
developed by Glauert [27] and Burton et al. [28]. Note that, for the swept blade (β = 30◦),
the chord heavily increases, while the other optimizations applied to straight blades tend
to be narrower. This result is interesting because a larger chord distribution can avoid
cavitation in hydrokinetic turbines. This subject was also observed by Picanço et al. [29],
who developed an approach for the optimization of diffuser-augmented hydrokinetic
blades free of cavitation. In their work, to avoid cavitation, the chord distribution along
the blade needs to increase as a reaction to the changing of the relative velocity approach-
ing the rotor in order to keep the local pressure below the water vapor pressure. Here,
cavitation is not evaluated, being that this is an assumption for future work. However,
the result demonstrates that hydrokinetic turbines of swept blades deserve attention in
terms of hydrodynamic aspects. At the blade root, the optimization developed in [28],
the chord distribution is higher than the other models. This occurs because in [28], the
chord increases when the relative velocity, given by Equation (8), decreases, as it is at the
blade root. Figure 7 depicts the optimized shapes of the straight and swept blades. The
turbine with swept blade keeps the same diameter as the straight blade. However, the blade
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length is increased about 4%, consequently increasing the rotor torque. Torque and power
coefficients of the optimized rotors for λ = 4.19 are shown in Table 2, considering only the
optimal values of Equations (4) and (6). The torque of the turbine with swept blades is
about 18% higher than that with straight blades. Consequently, the power coefficient of the
rotor with swept blades is also higher than for straight blades, reaching 52.9%.
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Figure 7. Optimized shapes of (a) straight and (b) swept blades.

Table 2. Torque and power coefficients of the turbines.

Swept Blades Straight Blades

CQ 0.13 0.11
CP 0.529 0.46

Figure 8a shows the sweep effect on the behavior of Prandtl’s tip loss factor, FP, which
goes to zero at the blade tip. Note that FP seems to be not sensitive to the sweep effect,
as the curves for both, swept and straight blades are almost the same. On the other hand,
in Figure 8b, the bound circulation, Γ, demonstrates a strong change for swept rotors.
Clearly, the sweep effect increases the circulation at the middle and close to the tip of the
blade. This increase in circulation increases the power extraction, but it also may increase
the effect of cavitation. This is a very important phenomenon for hydrokinetic turbine
blade optimization, which is intensified when operating at a tip speed ratio lower than
1. This result suggest that Prandtl’s tip loss factor seems to be not the best one for swept
rotors. Possibly, methods based on finite blade functions, as stated in [30,31] are more
appropriate, as they are dependent on the circulation, Γ. However, they are more complex
in their implementation.

Figure 9a shows a comparison of the power coefficient for both swept and straight
blades. For λ > 4.1, the turbine with swept blade is more efficient. So, depending on the
operating condition of the turbine, it can be better to use swept blades instead straight ones.
Figure 9b depicts the result on the impact of the axial load (thrust coefficient CT) on the
rotor. The thrust is reduced for any λ. This is important because turbines with swept blades
may reduce the resistive torque of the powertrain at any operating condition, contributing
to a better performance of the rotor drivetrain.
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Figure 8. (a) Prandtl’s tip loss, FP, and (b) bound circulation, Γ.
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Figure 9. (a) Potência e (b) thrust coeficients as functions of the tip-speed ratio λ.

4. Conclusions

This work presents a new optimization procedure applied to hydrokinetic turbines
with swept blades. A comparison with an optimized hydrokinetic straight blade is per-
formed, showing interesting results with good contributions to the current state of the
art. The model has low computational cost and easy numerical implementation. The
proposed methodology consists of an extension of the axial and blade element theories
to the case of backward swept blades through a radial transformation function. Such a
transformation heavily affects the chord and twist angle distributions along the blade,
increasing the turbine torque and power coefficient. In the case of the torque, it can be
increased by about 18%. Additionally, optimized swept blades seem to reduce cavitation on
the hydrokinetic turbine, as the chord heavily increases at the blade tip. Another important
result of the model is that the thrust of turbines with swept blades is not always less than
the thrust of turbines with straight blades when using curved plate airfoils (Figure 4c). This
seems to be due to the complex behavior of the boundary layer detachment on the airfoil
at low Reynolds number. On the other hand, when the turbine uses SG6040 airfoil, the
thrust is reduced for any operating condition, as shown in Figure 9b. For future works, a
cavitation criterion based on the minimum pressure coefficient at each blade section will
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be implemented, in order to assess the cavitation effect in hydrokinetic swept blades. In
addition, turbine performance in off-design conditions for different values of the tip speed
ratio will be studied.
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Nomenclature
Latin Symbols
a, a′ Axial and tangential induction factors at the rotor
aopt Optimal axial induction factor
B Number of blades
c Chord (m)
CD Drag coefficient
CL Lift coefficient
CM Torque coefficient
Cn Normal force coefficient
CP Power coefficient
CPopt Optimal power coefficient
Ct Tangential force coefficient
CT Thrust coefficient
dA Elementary area (m2)
F Prandtl tip-loss factor
p0 Pressure in the external flow (Pa)
p2 Pressure at the turbine upstream (Pa)
p3 Pressure at the diffuser outlet (Pa)
P Output power (W)
r Radial position at the rotor plane (m)
R Radius of the rotor (m)
V0 Freestream wind velocity (m/s)
V3 Axial velocity at the diffuser outlet (m/s)
w Total induced velocity (m/s)
W Relative velocity (m/s)
x Local speed ratio
Greek Symbols
α Angle of attack (rad)
β Twist angle (rad)
λ Tip speed ratio
ρ Density of the fluid (kg/m3)
σ Solidity of the turbine
φ Flow angle (rad)
Ω Angular speed of the turbine (rad/s)
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