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Abstract: Exploring the urban carbon neutrality pathway is crucial to the overall achievement of
the net-zero emissions target in China. Therefore, taking Beijing as a case study, this paper firstly
analyzes the CO2 emission drivers by combining the Stochastic Impacts by Regression on Population,
Affluence, and Technology (STIRPAT) and partial least squares (PLS) methods. Subsequently, based
on the optimized extreme learning machine (ELM) model, this paper projects the CO2 emissions of
Beijing during 2021–2060 under different scenarios. The results show that controlling the total energy
consumption and increasing the proportion of non-fossil energy consumption and electrification level
should be the key measures to implement emission reduction in Beijing. Particularly, the proportion
of non-fossil energy consumption and electrification level should be increased to 65% and 73%,
respectively, in 2060. In addition, more stringent emission reduction policies need to be implemented
to achieve the carbon neutrality target. Under the H−EPS scenario, Beijing’s CO2 emissions peaked
in 2010 and will be reduced by a cumulative 109 MtCO2 during 2021–2060. Along with executing
emission mitigation policies, Beijing should actively increase carbon sinks and develop carbon
capture, utilization, and storage (CCUS) technology. Especially after 2040, the emission reduction
produced by carbon sinks and CCUS technology should be no less than 20 MtCO2 per year.

Keywords: carbon neutrality; driving factors; emission mitigation pathway; electrification; Beijing

1. Introduction

To cope with the increasingly severe climate change situation and achieve sustainable
development, China proposed to achieve carbon peaking by 2030 and carbon neutrality
by 2060 on 22 September 2020 [1]. Under the constraint of the carbon neutrality target, all
provinces and cities in China shoulder important responsibilities for emission abatement.
However, there are significant differences in resource endowments and economic devel-
opment levels in different urban areas, so it is necessary to formulate targeted emission
reduction policies and explore feasible carbon neutrality pathways. Beijing, the capital
of China and a low-carbon pilot city, should play a demonstrative and leading role in
achieving the carbon neutrality target. Therefore, taking Beijing as an example, this paper
examines the driving factors of CO2 emissions and investigates the best pathway to achieve
the goal of net-zero emissions.

With the proposal of the carbon neutrality target, scholars have performed an in-depth
exploration into the realization pathway of carbon neutrality. Some studies have analyzed
China’s overall carbon neutrality pathway and put forward targeted policy measures. For
instance, Zhang and Chen suggested that to achieve carbon neutrality, China needs to
increase the electrification rate and the proportion of renewable energy, and accelerate
technological breakthroughs [2]. He et al., analyzed the carbon emission pathways in
six long-term development scenarios under the condition of the carbon neutrality goal
and the temperature rise constraints required by the Paris Agreement [3]. Some scholars
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discussed the carbon neutrality target at the regional or city level. Combined with the
experience of low-carbon pilot provinces, Li et al., put forward feasible measures to achieve
the carbon neutrality goal from the perspectives of policy, industrial structure, population,
and carbon absorption [4]. In particular, several literature studies explored the carbon
neutrality pathway in Beijing. For example, Hu et al., constructed an energy structure
optimization model and projected the carbon emission reduction pathway of Beijing [5].
This study reveals that residents and transportation sectors will be the main sources of
emissions in the future. Huang et al., explored the key areas and methods of carbon
emission reduction in Beijing from 2015 to 2060 under six different policy scenarios [6]. The
above-mentioned studies analyzed the future emission reduction pathway of Beijing from
the perspective of sectors, while the carbon neutrality pathway in Beijing is evaluated in
this paper from an overall perspective. In addition, this paper introduces the proportion
of non-fossil energy consumption and electrification that represent the policy orientation
of carbon neutrality, and designs more possible scenarios. This can help achieve a more
comprehensive exploration of Beijing’s future carbon emission trajectory.

The Logarithmic mean Divisia index (LMDI) model [7–9], the Stochastic Impacts by
Regression on Population, Affluence, and Technology (STIRPAT) model [10–12], and the
input–output approach [13,14] are commonly used methods to study the impact factors
of CO2 emissions. It should be emphasized that the STIRPAT model is derived from the
impact, population, affluence, and technology (IPAT) model and has been extended and
enriched by scholars based on three important aspects: Population, wealth, and technology.
For instance, Shuai et al., adopted the STIRPAT model to identify five key factors affecting
China’s carbon emissions, including real per capita GDP, the urbanization rate, the ratio
of tertiary to secondary industry, renewable energy share, and fixed asset investment [15].
Based on the provincial panel data from 2005–2016, Li et al., analyzed the influencing
factors of carbon emissions through the STIRPAT model. It is found that the technical level
and government environmental supervision could restrain the increase in carbon emissions.
In contrast, population, affluence, energy intensity, industrial structure, urbanization level,
and investment in fixed assets play a role in promoting carbon emissions [16]. Many
studies indicate that the STIRPAT model has the advantage of flexible indicator selection,
which facilitates the inclusion of more influencing factors. Therefore, this paper intends
to adopt the STIRPAT method to quantitatively analyze the impact of selected factors on
CO2 emissions in Beijing. For the selection of influencing factors, besides the common
indicators such as population, per capita GDP, total energy consumption, and energy
intensity, the proportion of non-fossil energy consumption and electrification rate will
also be included. Under the constraints of the carbon neutrality target, improving the
electrification level is an effective way to reduce fossil energy consumption and curb carbon
emissions [17]. Several studies have concluded that electrification makes a significant
contribution to controlling carbon emissions [18,19]. The impact of non-fossil energy
consumption proportion, electrification, and other indicators on Beijing’s carbon emissions
needs to be further discussed. In addition, in order to achieve Beijing’s carbon neutrality
target, how to set the future target values of each indicator should be further studied.

In terms of carbon emission forecast models, intelligent algorithms such as the back-
propagation neural network (BPNN) and ELM have been widely applied in recent years
because of their superior prediction accuracy. For example, Lu et al., employed the opti-
mized BPNN model to project carbon emissions for China’s heavy chemical industry and
verified the effectiveness of the constructed model [20]. Wang et al., predicted the carbon
emissions of China, the United States, and India based on the improved BPNN model, and
the results revealed that the forecast model displayed good prediction performance [21].
Han et al., applied the improved ELM model to analyze and predict the energy and carbon
emissions of petrochemical systems [22]. Additionally, a previous study has shown that
an extreme learning machine (ELM) network exhibits a robust performance in projecting
carbon emissions [23]. Therefore, the ELM is selected as the simulation model in this
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paper, and the pelican optimization algorithm (POA), newly developed in 2022, is used to
optimize the ELM network.

Generally, scholars mostly focus on the Beijing–Tianjin–Hebei region, exploring its
carbon emission influencing factors and emission reduction pathways [24–26]. However,
Beijing has a special political status, and its economic level and innovation ability are in a
leading position in China. Consequently, a series of emission reduction measures in Beijing
also deserve special attention. More importantly, Beijing is shouldering the important task
of taking the lead in achieving the goal of carbon neutrality. Based on this, this paper takes
Beijing as a case study to explore the possible carbon neutrality pathway. The contribution
of this paper is to construct the research framework for the realization pathway of urban
carbon neutrality and provide a reference for Beijing to formulate feasible and targeted
emission reduction measures. It is also useful for exploring the pathway of emission
reduction in other cities. Furthermore, this paper combines the POA technique with the
ELM model, which can further expand the application of both algorithms. Furthermore, it
can provide a new research method for projecting the future trajectory of CO2 emissions.

2. Materials and Methods
2.1. Study Area

Beijing is located at 39◦56′ N and 116◦20′ E at the northern end of the North China
Plain. As the capital of China, Beijing is in a leading position in terms of economic develop-
ment and technological innovation. In 2020, Beijing’s per capita GDP reached 164,889 Yuan
per person, and the urbanization rate was 87.55% [27]. However, along with the rapid
expansion of thee social economy and modern industry, Beijing is facing severe air pol-
lution issues [28]. In response to the pressure on resources and the environment, Beijing
has formulated a series of energy-saving and emission-reduction measures, which have
achieved remarkable results. In particular, the share of coal in the city’s energy consump-
tion was reduced from 13.1% in 2015 to 1.5% in 2020. During the 13th Five-Year Plan
period (2016–2020), the cumulative energy consumption per unit of gross regional product
dropped by 24% [29]. In the context of the proposed carbon neutrality target, Beijing, as
a low-carbon pilot city and a demonstration city for energy conservation and emission
reduction, has announced to take the lead in achieving carbon peaking and conducting
research on carbon neutrality pathways [30].

2.2. STIRPAT Model

The original IPAT model holds that the impact of human activities on the environment
is determined by the population, per capita wealth, and technological level [31]. The
STIRPAT model is developed from the IPAT model [32], and its basic form is expressed as
Equation (1). To eliminate the possible heteroscedasticity effect of the model and estimate
the coefficient, Equation (1) is usually converted into logarithmic form, as displayed in
Equation (2). With the aim of exploring the influence of more factors on CO2 emissions, the
STIRPAT model is expanded, as shown in Equation (3).

I = aPb AcTde (1)

ln I = a + b ln P + c ln A + d ln T + e (2)

where I indicates the environmental pressure; P, A, and T refer to population size, affluence
scale, and technological level, respectively; b, c, and d are the elastic coefficients of the
above indicators, respectively; and a and e represent the constant term and error term of
the model, respectively.

ln CDE = β0 + β1 ln POP + β2 ln GDP + β3lnTEC + β4lnNECP + β5lnEI + β6lnELE + e (3)
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where β1–β6 respectively represent the elastic coefficients of the corresponding variables; β0
refers to the constant term and e represents the residual error. The descriptions of variables
in Equation (3) are shown in Table 1.

Table 1. Description of each variable.

Variable Description Unit

CDE Carbon dioxide emission MtCO2
POP Population 104 Person
GDP Gross Domestic Product per capita 104 Yuan/Person
TEC Total energy consumption 104 Tce

NECP Proportion of non-fossil energy consumption %
EI Energy intensity Tce/104 Yuan

ELE Electrification %

To solve a multiple regression equation such as Equation (3), the ordinary least square
(OLS) method is usually used. However, Table 2 reveals that the variance inflation factor
(VIF) values of all independent variables are greater than 10, indicating a multicollinearity
problem, and thus the OLS method cannot be adopted. Consequently, the partial least
squares (PLS) method is introduced, which incorporates principal component analysis,
typical correlation analysis, and multiple linear regression analysis [33]. In addition, the
variable importance for the projection (VIP) value is calculated to measure the explanatory
power of independent variables to dependent variables, as expressed in Equation (4).
Generally, if the VIP value of the independent variable is greater than 0.8, it is a significant
influencing factor [34].

VIPv =

√
u

∑M
f=1 r2

f
∑M

f=1 r2
f ω2

f v (4)

where u refers to the number of independent variables and v represents the v-th inde-
pendent variable; r2

f is the explanatory ability of the f -th component of the dependent

variable and ∑M
f=1 r2

f is the cumulative explanatory power of the PLS model; ω2
f v denotes

the f -th component of the ωv axis, which is used to measure the marginal contribution of
the variable to the component; ∑M

f=1 r2
f ω2

f v is the accumulative explanatory power of the
principal component to the dependent variable.

Table 2. Collinearity statistics of independent variables.

Variable Tolerance VIF Value

lnPOP 0.018 57.020
lnGDP 0.014 69.795
lnTEC 0.036 27.578

lnNECP 0.058 17.212
lnEI 0.000 −

lnELE 0.006 169.478
Notes: Tolerance is the inverse of VIF value. Particularly, the tolerance of lnEI reached the limit value of 0.000, and
the corresponding VIF value was not displayed in SPSS software.

2.3. POA-ELM Model
2.3.1. Extreme Learning Machine (ELM)

As a typical single-hidden layer forward network, the ELM model has the advantages
of fast operation and high generalization performance [35]. Since there is only a single
predicted variable in this paper, the structure of the ELM network with multiple inputs and
a single output is introduced, as depicted in Figure 1. In this study, the influencing factors
specified by the STIRPAT model are used as the input variables of the ELM model, and the
CO2 emission in Beijing is considered the output variable. The imported data set (from
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2000 to 2020) is first divided into a training set (from 2000 to 2017) and a testing set (from
2018 to 2020). Assuming that the training set sample is marked as {zk, ak|k = 1.2, . . . , S},
the output ok based on the ELM network is expressed as follows:

ok =
h

∑
q=1

λqg
(
wq · zk + θq

)
, k = 1, 2, . . . , S (5)

where h is the number of neurons in the hidden layer, which is initially determined to be
10 through multiple trials; wq refers to the connection weight between the input and hidden
layers, and θq denotes the threshold of the hidden layer; g(·) is the activation function, and
λq is the weight vector between the hidden and output layers.

Figure 1. Basic structure of ELM network with multiple-input and single-output.

The ELM model is characterized in that the weight wq and the threshold θq can be
generated randomly [36,37]. Besides, the connection weight λq is estimated by the least
square method to minimize the error between the output value ok and the actual value ak,
instead of being determined by multiple iterations [38]. Notably, to further improve the
prediction performance of the ELM model, the POA technique is introduced to provide the
optimal weight and threshold.

2.3.2. Pelican Optimization Algorithm (POA)

The population-based algorithm POA simulates the behaviors of pelicans when attack-
ing and hunting prey. The hunting behavior includes the exploration phase and exploitation
phase [39]. The exploration stage simulates the activity of moving towards the prey, while
the exploitation phase emulates the behavior of winging on the water surface and catching
prey [40]. The mathematical principle of POA is introduced as follows.

Firstly, the pelican population is initialized, as expressed in Equation (6).

xi,j = Lj + rand ·
(
Uj − Lj

)
, i = 1, 2, . . . , N, j = 1, 2, . . . , m (6)

where xi,j refers to the value of the j-th variable designated by the i-th candidate solution;
rand is a random number in the range of [0,1]; N and m represent the number of population
members and the number of problem variables, respectively; Lj and Uj are the j-th lower
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bound and the j-th upper bound of problem variables. Particularly, each population
member Xi is considered a candidate solution to the given problem. Besides, the objective
function value of the i-th candidate solution is marked as Fi. Particularly, the population
number is assigned to 30. The lower and upper bounds are 0 and 1, respectively.

During the exploration phase, the pelicans move towards the identified location of the
prey, as indicated in Equation (7).

xP1
i,j =

{
xi,j + rand ·

(
pj − I · xi,j

)
, FP < Fi

xi,j + rand ·
(
xi,j − pj

)
, else

(7)

where xP1
i,j represents the new status of the i-th pelican in the j-th dimension during the

exploration phase; pj denotes the location of prey in the j-th dimension and FP refers to the
objective function value corresponding to the prey; I refers to the adjustment parameter of
a pelican’s exploration ability, which is a random number equal to 1 or 2.

Subsequently, the candidate solution is updated when the objective function value is
improved in that position, which can be shown using Equation (8).

Xi =

{
XP1

i , FP1
i < Fi

Xi, else
(8)

where XP1
i denotes the new position of the i-th pelican and FP1

i represents the objective
function value in the exploration phase.

During the exploitation phase, the pelicans capture more prey in the hunting area.
This behavior could drive the proposed algorithm to converge to a better solution, which is
modeled in Equation (9).

xP2
i,j = xi,j + R ·

(
1− t

mi

)
· (2 · rand− 1) · xi,j (9)

where xP2
i,j refers to the new status of the i-th pelican in the j-th dimension during the

exploitation phase; R is a constant equal to 0.2; t and mi denote the iteration counter
and the maximum number of iterations, respectively; the item R ·

(
1− t

mi
)

indicates the
neighborhood radius of the population members to be searched locally, which makes each
member converge to a better solution nearby.

Similarly, the new position is accepted if the objective function is improved, as illus-
trated in Equation (10).

Xi =

{
XP2

i , FP2
i < Fi

Xi, else
(10)

where XP2
i indicates the new position of the i-th pelican and FP2

i denotes the objective
function value in the exploitation phase.

The update process based on two phases will be repeated until the termination condi-
tion is met. The maximum number of iterations is 100. Finally, the best candidate solution
is obtained, which represents the best weights and thresholds of the ELM network in this
paper. Figure 2 shows the flow chart of the ELM model optimized by the POA algorithm.
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Figure 2. Flow chart of POA−ELM model.

Especially, to evaluate the reliability of the improved ELM model, several metrics are
introduced, including the mean absolute error (MAE), the mean absolute percentage error
(MAPE), the root mean square error (RMSE), and the determination coefficient (R2). The
calculation formulas are shown in Equations (11)–(14).

MAE =
1
n

n

∑
ε=1

∣∣ypv − yav
∣∣ (11)

MAPE = ∑n
ε=1

∣∣∣∣ypv − yav

yav

∣∣∣∣ ∗ 100% (12)

RMSE =

√
1
n

n

∑
ε=1

(
ypv − yav

)2 (13)

R2 = 1− ∑n
ε=1
(
yav − ypv

)2

∑n
ε=1(yav − y)2 (14)

where n denotes the number of samples in the test set; yav and ypv represent the actual
values and predicted values, respectively, and y is the average of actual values.

2.4. Date Source

In this paper, the direct CO2 emissions from energy consumption are estimated using
Equation (15).

CDE = ∑8
l=1 ECl ∗ NCVl ∗ CCl ∗ORl ∗

44
12

(15)

where l (l=1,2, . . . ,8) stands for the variety of energy, which refers to coal, coke, crude
oil, fuel oil, gasoline, kerosene, diesel, and natural gas, respectively; CDE is the energy-
related CO2 emissions in Beijing; ECl and NCVl refer to the consumption and net calorific
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value of the energy source e, respectively, and their data are all obtained from the China
Energy Statistical Yearbook (2001–2021) [41]; CCl and ORl represent the carbon content
per unit calorific value and the carbon oxidation rate, respectively. The above data come
from the Guidelines for the Compilation of Provincial Greenhouse Gas Inventory (for
Trial Implementation) [42]; 44/12 indicates the conversion factor for converting carbon to
carbon dioxide.

In terms of the drivers of CO2 emissions, the data on the population and GDP are
collected from the Beijing Statistical Yearbook (2001–2021) [27]. Specifically, GDP per capita
is obtained by dividing the real GDP (2000 base year) by the population. The total energy
consumption data come from the China Energy Statistics Yearbook (2001–2021) [41], and
energy intensity is the ratio of total energy consumption to actual GDP. The proportion of
non-fossil energy consumption is the ratio of total non-fossil energy consumption to total
energy consumption, and the data come from the iNEMS database of the Center for Energy
and Environmental Policy Research, Beijing Institute of Technology [43], and the Beijing
Statistical Yearbook (2001–2021) [27]. Electrification refers to the proportion of electricity
consumption to terminal consumption, and the relevant data are derived from the China
Energy Statistical Yearbook (2001–2021) [41].

3. Results
3.1. Analytical Results of the STIRPAT Model

Based on the constructed STIRPAT model, PLS regression analysis is performed using
SIMCA software. As illustrated in Table 3, when the number of extracted components is
4, the value of Q2 is less than the critical value and fails the significance test. Therefore,
the cross-validation results show that the optimal number of components is 3. In addition,
when the number of components is 3, the values of R2Y (cum) and Q2 (cum) exceed 0.9,
indicating that the constructed PLS regression equation has excellent explanatory and
predictive power.

Table 3. Cross-validation test results of PLS model.

Component R2Y R2Y (cum) Q2 Limit Q2 (cum) Significance

1 0.7040 0.7040 0.6600 0.0500 0.6600 R1
2 0.2250 0.9280 0.6460 0.0500 0.8790 R1
3 0.0408 0.9690 0.5140 0.0500 0.9410 R1
4 0.0023 0.9710 −0.0606 0.0500 0.9380 NS

Notes: Component refers to the number of extracted components. R2Y and R2Y (cum) indicate the fraction of Y
variation modeled in the component and the cumulative R2Y up to the specified component, respectively. Q2 and
Q2(cum) represent the overall cross-validated R2 for the component and the cumulative Q2 up to the specified
component, respectively. Limit denotes the critical value of Q2 under which the component is insignificant
according to CV rule 1 and Significance refers to CV insignificant (NS) or significant according to rule R1.

In addition, SIMCA software also generates a scores scatter plot, as shown in Figure 3a.
According to Hotelling’s T2 rule, observations far from the ellipse are regarded as outliers.
It is obvious that the sample points are in the ellipse or near the ellipse line, and no
abnormal points exist. Figure 3b displays that there is a strong linear relationship between
the respective first components of the independent and dependent variables.
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Figure 3. Flow chart of POA-ELM model. (a) Scores scatter plot (t1 vs. t2) (also called T2 ellipse plot);
(b) Scores Scatter plot (t1 vs. u1). Notes: The scores t1, t2, etc., are new variables summarizing the
X−variables. The scatter plot of t1 vs. t2 shows the possible presence of outliers, groups, similarities,
and other patterns in the data. The scatter plot of t1 vs. u1 displays the relationship between the first
summary of all the Y−variables (u1) and the first summary of all the X−variables (t1).

Table 4 demonstrates the elastic coefficient and VIP value of each variable. The varia-
tions in population, total energy consumption, the share of non-fossil energy consumption,
and energy intensity contribute to CO2 emissions in Beijing. Particularly, each 1% increase
in total energy consumption can lead to a 0.87% increase in CO2 emissions. In contrast, GDP
per capita and electrification level are inhibitory factors for CO2 emissions, corresponding
to elastic coefficients of −0.02% and −0.13%, respectively. It reveals that economic growth
in Beijing is likely to have been decoupled from CO2 emissions. Furthermore, in terms
of VIP values, the six variables selected are all important influencing factors of CO2 emis-
sions in Beijing. Especially, the VIP values of total energy consumption and the share of
non-fossil energy consumption are both greater than 1, which has a significant effect on
CO2 emissions.

Table 4. Coefficient and VIP value of each variable.

Variable Coefficient VIP Value Sort

lnPOP 0.3670 0.9715 3
lnGDP −0.0188 0.9261 4
lnTEC 0.8702 1.2674 1

lnNECP 0.0127 1.0192 2
LnEI 0.1417 0.8980 5

lnELE −0.1296 0.8644 6
Note: The sort refers to ranking based on VIP values.

3.2. Error Evaluation Results of the POA−ELM Model

To verify the superiority of the POA−ELM model, the original ELM network is con-
sidered the comparison model. The two models are run 30 times each, and the estimation
results of the average error based on test data are obtained. Figure 4 shows that the simula-
tion value of the POA−ELM model is closer to the real data than that of the single ELM
model. As revealed in Table 5, the prediction accuracy of the improved ELM model is
greatly increased compared to that of the original ELM network. Specifically, the MAE
and RMSE of the POA−ELM model are less than 1 MtCO2, and the MAPE is below 1%.
Additionally, the goodness of fit of the improved model is higher than that of the original
model. Based on this, the POA−ELM model can be used to project future CO2 emissions
in Beijing.
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Figure 4. Prediction results of ELM and POA-ELM models based on test group data (2018–2020).

Table 5. Error estimation results for different models.

Evaluation Metrics ELM POA−ELM

MAE (MtCO2) 7.6791 0.4606
MAPE (%) 5.4203 0.3017

RMSE (MtCO2) 9.7231 0.3251
R2 0.9390 0.9989

3.3. Simulation Results Based on the POA−ELM Model
3.3.1. Scenarios Setting

As illustrated in Figure 5, three development modes of low, medium, and high for the
variation of each indicator are designed in this paper, labeled “L”, “M”, and “H”, respec-
tively. In the medium-speed pattern, the changes in various variables are referred to as the
relevant formulated plans for Beijing. The low and high development modes float up and
down by a certain value or proportion based on the medium-speed pattern, respectively.

Specifically, the changes in population and GDP per capita are set with reference to the
Outline for the 14th Five-Year Plan for Economic and Social Development and Long-Range
Objectives Through the Year 2035 in Beijing [30]. It is assumed that population growth
tends to be slow or even shows a downward trend. Under the constraints of low and
medium modes, the population will peak in 2040 and 2050, respectively, with peak levels
of 24.4 million and 25.6 million, respectively. Conversely, the population of Beijing will
continue to grow but at a slower pace under the high-speed patterns. During the period
of 2021–2025, the increase rate of GDP per capita is 4%, 5%, and 6% in the three scenarios,
respectively. It is supposed that the growth rate of GDP per capita will gradually decrease
under different scenarios.

The changes in the other four variables are set according to Beijing’s latest energy
conservation and emission reduction policies. According to Beijing’s Climate Change and
Energy Conservation Plan during the 14th Five-Year Plan Period [44], the total energy
consumption in Beijing should be controlled at approximately 80.5 million tons of standard
coal, and the proportion of non-fossil energy consumption should be increased to 14.4% in
2025. Besides, the cumulative decline rate of energy intensity during the 14th Five-Year
Plan period (2021–2025) should be 14%. It is assumed that the decline rate of energy
intensity will gradually accelerate in the future scale. In addition, the increased scope of
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electrification is in line with Beijing’s Energy Development Plan during the 14th Five-Year
Plan Period [29], and it is assumed that the electrification level will be improved faster.

Figure 5. The variations of driving factors under different scenarios from 2021 to 2060.

In order to explore more possible trajectories of CO2 emissions in Beijing, nine sce-
narios are designed, as shown in Table 6. Since the different variations of TEC, NECP, EI,
and ELE represent the different policy implementation, three scenarios are defined, namely,
the baseline scenario, policy scenario, and enhanced policy scenario (marked as “BS”,
“PS”, and “EPS”, respectively). Under the policy scenario, the changes in each variable
are set according to the medium development pattern. Conversely, the baseline scenario
and the enhanced policy scenario represent no policy intervention and enhanced policy
implementation, respectively. In addition, various scenarios are named according to the
different development patterns of each variable. For example, “L−BS” represents that the
population and GDP per capita are at a low development level, while other indicators are
in a mode without policy intervention.

Table 6. Specific scenario settings.

Scenarios POP GDP TEC NECP EI ELE

L−BS L L H L L L
L−PS L L M M M M

L−EPS L L L H H H
M−BS M M H L L L
M−PS M M M M M M

M−EPS M M L H H H
H−BS H H H L L L
H−PS H H M M M M

H−EPS H H L H H H

3.3.2. Simulation Results under Different Scenarios

Figure 6 demonstrates that under different scenarios, Beijing’s CO2 emissions will not
show an obvious downward trend after 2020 but will experience a plateau transition period.
During the plateau period, only the maximum values of M−EPS and H−EPS scenarios will
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not exceed the historical peak value of 158.71 MtCO2 in Beijing. On the contrary, the peak
values of other scenarios are higher than the historical peak level. Under the L−BS scenario
especially, CO2 emissions will peak at 169.08 MtCO2 in 2026. Furthermore, Figure 6 also
reveals that along with the increase in policy implementation, the peak value reached in
the platform period will be lower, and the emission reduction achieved will be greater.
Specifically, under the constraints of baseline, policy, and enhanced policy scenarios, the
range of CO2 emissions in 2060 will be 113.13–112.46 MtCO2, 71.08–82.79 MtCO2, and
9.68–24.53 MtCO2, respectively.

Figure 6. The future CO2 emissions in Beijing under different scenarios in 2021–2060.

Table 7 manifests the change rates and cumulative emissions of CO2 emissions in
Beijing during the rising and declining stages in the forecast interval (2021–2060). It
can be seen that in the rising stage, M−BS and H−EPS scenarios achieve the highest
and lowest variations of 4.31% and 2.41%, respectively. In the descending stage, the
maximum (−7.56%) and minimum (−0.85%) change rates are reflected in the L−EPS and
H−BS scenarios, respectively. Furthermore, the H−EPS scenario achieves the minimum
cumulative emissions of 3387.50 MtCO2. In turn, the maximum cumulative emissions of
5841.06 MtCO2 will be realized in the L−BS scenario.
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Table 7. Change rate and cumulative amount of Beijing’s CO2 emissions in different scenarios.

Scenarios Average Annual Rate of Change in the
Rising Stage (%)

Average Annual Rate of Change in the
Declining Stage (%)

Cumulative CO2
Emissions (MtCO2)

L−BS 3.52 −1.17 5841.06
L−PS 3.91 −2.37 4943.78

L−EPS 3.41 −7.56 3603.50
M−BS 4.13 −1.04 5726.41
M−PS 3.51 −2.19 4800.97

M−EPS 2.90 −6.56 3423.06
H−BS 3.89 −0.85 5703.15
H−PS 3.15 −1.86 4772.01

H−EPS 2.41 −5.11 3387.50

From the perspective of emission reductions in different intervals shown in Figure 7,
the CO2 emissions in Beijing show an increasing trend in all scenarios from 2020 to 2030.
Particularly, the H−EPS achieves the lowest increase amount of 3.28 MtCO2. During the
period of 2030–2040, a significant downward trend of CO2 emissions is reflected under the
designed scenarios, and the emission reduction varies from 7.85 MtCO2 to 63.53 MtCO2.
From 2040 to 2050, the minimum (16.69 MtCO2) and maximum (43.17 MtCO2) emission
reductions are achieved under H−BS and L−EPS, respectively. Similarly, during the period
of 2050–2060, the worst emission reduction effect is reflected in the H−BS scenario, while
the L−EPS scenario achieves the largest emission reduction of 36.31 MtCO2. Overall,
compared with 2020, the cumulative emission reduction under each scenario ranges from
11.11 MtCO2 to 123.90 MtCO2.

Figure 7. Emission reduction of Beijing during different intervals under designed scenarios.

4. Discussion

From the perspective of influencing factors, the total energy consumption and the
proportion of non-fossil energy consumption should be the primary indicators of concern
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for Beijing. During the research period of 2000–2020, Beijing’s energy consumption and
carbon emissions show a similar development trend. This reveals that the relationship
between them is closely linked. To further promote energy conservation and emission
reduction, Beijing not only needs to control the growth of total energy consumption,
but also needs to vigorously develop renewable energy. Several scholars have proved
that the application of renewable energy is significant for Beijing to achieve the goal of
carbon neutrality [6,45]. In the historical dimension, the proportion of non-fossil energy
consumption could promote carbon emissions, but the corresponding elasticity coefficient
is small. This is likely because the proportion of non-fossil energy consumption in Beijing is
still at a low level currently. With the development and progress of technology, renewable
energy will gradually replace fossil energy and be vigorously developed and applied, which
will become a restraining factor of CO2 emissions in Beijing. In addition, the elasticity
coefficient of per capita GDP to carbon emissions is negative, which proves that Beijing’s
economic growth and carbon emissions are likely decoupled, which is consistent with
previous studies [46,47]. Beijing should continue to achieve high-quality economic growth
and strive to build a coordinated development relationship between energy, environment,
and economy. Furthermore, given the remarkable inhibition effect of electrification on CO2
emissions, Beijing must vigorously carry out electric energy substitution and accelerate the
improvement of its electrification level.

The prediction results of Huang et al., demonstrate that under the comprehensive
policy scenarios, Beijing’s carbon emissions will begin to decline after 2025 [6]. The future
trajectory of CO2 emissions projected in this paper is consistent with the above research. It
can be speculated that the population and total energy consumption will increase rapidly
between 2021 and 2025, so the CO2 emissions in Beijing show an increasing trend. Fur-
thermore, according to the simulation results, without policy intervention, Beijing’s CO2
emissions will still be at a high level in 2060. Therefore, in order to accomplish the net-zero
emissions target, Beijing should formulate more stringent emission reduction measures.
More importantly, it is difficult to achieve carbon neutrality by 2060 only by reducing
emissions. While implementing emission reduction, efforts should be made to expand
forest carbon sinks, and carbon capture, utilization, and storage (CCUS) technology should
be actively developed and applied.

In addition, according to the peak value in the plateau period and cumulative emis-
sions, the CO2 emission trajectory under the constraint of the H−EPS scenario is considered
the optimal emission reduction pathway for Beijing. Under this scenario, CO2 emissions
will not be at the lowest level in 2060, which may be attributed to the increasing population
and rapid economic growth. Although the emission reduction driven by policy is limited
in the H−EPS scenario, the extensive application of CCUS technology in the future will
provide an important guarantee for Beijing to achieve the carbon neutrality target. If Beijing
pursues a steady and high-quality economic growth pattern, and the population does not
continue to grow, the M−EPS scenario can be used as the optimal emission abatement
pathway. Combined with the emission reductions in the optimal scenario, the abatement
of CCUS technology and carbon sinks should be more than 20 MtCO2 per year, so as to
achieve the carbon neutrality goal earlier.

5. Conclusions and Policy Recommendations
5.1. Conclusions

This paper aimed to explore the realization pathway of the urban carbon neutrality
target by taking Beijing as an example. The driving factor research model was constructed
based on the STIRPAT and PLS methods and the key factors affecting Beijing’s CO2 emis-
sions were identified. Subsequently, a new carbon emission prediction model was devel-
oped, and the validity and superiority of the POA−ELM model were verified by error
analysis and comparative analysis. Then, this paper set different development scenarios
and explored the emission reduction pathway for Beijing under the carbon neutrality target
constraint. The relevant conclusions are described as follows.
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Firstly, the total energy consumption and the proportion of non-fossil energy consump-
tion have a significant impact on Beijing’s CO2 emissions, which should be regarded as the
key guiding indicators for Beijing to formulate energy conservation and emission-reduction
policies. Upgrading the electrification level has a dampening effect on CO2 emissions in
Beijing. Consequently, accelerating electric energy replacement is also seen as an important
emission reduction strategy. In addition, Beijing’s economic growth is likely decoupled
from CO2 emissions, and efforts should be made to maintain the coordinated development
of energy, the economy, and the environment in the future.

Secondly, the peak time of Beijing’s CO2 emissions is delayed to 2025 or 2026, and the
carbon neutrality target cannot be achieved in 2060 under the baseline scenario without
policy intervention. Beijing’s carbon emission reduction will be elevated along with the in-
crease in policy implementation. Therefore, in order to achieve the carbon neutrality target,
Beijing should formulate stricter policies on energy conservation and emission reduction.

Finally, the minimum peak level in the plateau period and the minimum cumulative
emissions are achieved in the H−EPS scenario, which can be regarded as the best emission-
reduction scenario. Under this scenario, Beijing’s CO2 emissions reached a peak in 2010
and reach a cumulative reduction of 109 MtCO2 during the period of 2021–2060. However,
in this scenario, the realization of the carbon neutrality target depends on the support of
CCUS technology and forest carbon sinks in the later stage. Consequently, driven by a
combination of strict emission reduction policies, increased forest carbon sinks, and the
development of CCUS technology, Beijing is likely to achieve carbon neutrality by 2060.
Notably, the cumulative emission reduction of carbon sinks and CCUS technology should
be greater than 20 MtCO2 per year after 2040.

5.2. Policy Recommendations

Based on the above conclusions, policy recommendations are proposed to promote
the realization of Beijing’s carbon neutrality goal.

Firstly, importance should be attached to the policy of “double control” of the total
energy consumption and energy consumption intensity. Beijing should strictly control
the total energy consumption, and especially strengthen the monitoring and management
of energy consumption in high-energy-consuming industries such as petrochemical and
cement. Beijing’s total energy consumption is required to reach its peak around 2030 and
reduce to 74.5 million tons of standard coal by 2060. Meanwhile, Beijing should strive
to improve energy efficiency and promote the rapid decline of energy intensity. During
the 14th Five-Year Plan period, the cumulative decrease rate of energy intensity should
reach more than 16%, and by 2060, the energy intensity should decrease by more than 80%
compared with 2020.

Secondly, efforts should be made to develop renewable energy, gradually reduce
the use of fossil energy, and increase the proportion of non-fossil energy consumption.
The proportion of non-fossil energy consumption should be increased to 65% in 2060.
Beijing should make full use of advanced technology resources to promote the large-scale
application of renewable energy technologies. In addition, Beijing needs to speed up
the improvement of the electrification level and expand the scale of transferring green
electricity outside while promoting the local development of green electricity. By 2060, the
proportion of electricity in terminal energy consumption should be increased to 73%.

Third, Beijing should improve the coordinated development network among energy,
the economy, and the environment. Beijing should strive for high-quality economic growth
under the impetus of scientific and technological innovation. Under the support of the
Beijing–Tianjin–Hebei development strategy, Beijing needs to strengthen scientific and
technological cooperation with Tianjin and Hebei. It is necessary to develop high-tech
enterprises and cultivate high-end talents.

Finally, as the capital of China, Beijing should take the lead in achieving the goal of
carbon neutrality and provide a model and leading role for other provinces and cities. Other
cities can learn from Beijing’s development experience and emission reduction policies and
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integrate their own advantages. For example, Shanghai, Guangzhou, and Shenzhen, which
are also low-carbon pilot cities, can establish a close cooperative relationship with Beijing
through the development of low-carbon pilot projects. Furthermore, the Yangtze River
Delta region has significant potential for renewable energy development and advanced
technological development level. Therefore, the Yangtze River Delta urban agglomeration
should also be the pioneer to achieve the goal of carbon neutrality.
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Abbreviations

LMDI Logarithmic mean Divisia index
IPAT Impact, population, affluence, and technology
STIRPAT Stochastic Impacts by Regression on Population, Affluence and Technology
BPNN Back propagation neural network
ELM Extreme learning machine
POA Pelican optimization algorithm
OLS Ordinary least square
PLS Partial least squares
VIP Variable importance for the projection
CDE Carbon dioxide emission
POP Population
GDP Gross Domestic Product per capita
TEC Total energy consumption
NECP Proportion of non-fossil energy consumption
EI Energy intensity
ELE Electrification
CCUS Carbon capture, utilization and storage
MAE Mean absolute error
MAPE Mean absolute percentage error
RMSE Root mean square error
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