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Abstract: Making an accurate crop harvest time prediction is a challenge for agricultural manage-
ment. Previous studies of crop harvest time prediction were mainly based on statistical methods,
and the features (variables) affecting it were determined by experience, resulting in its inaccuracy.
To overcome these drawbacks, the objective of this paper is to develop a novel crop harvest time
prediction model integrating feature selection and artificial intelligence (long short-term memory)
methods based on real production and climate-related data in order to accurately predict harvest
time and reduce resource waste for better sustainability. The model integrates a hybrid search for
feature selection to identify features (variables) that can effectively represent input features (variables)
first. Then, a long short-term memory model taking the selected features (variables) as input is
used for harvest time prediction. A practical case (a large fruit and vegetable cooperative) is used to
validate the proposed method. The results show that the proposed method (root mean square error
(RMSE) = 0.199, mean absolute percentage error (MAPE) = 4.84%) is better than long short-term mem-
ory (RMSE = 0.565; MAPE = 15.92%) and recurrent neural networks (RMSE = 1.327;
MAPE = 28.89%). Moreover, the nearer the harvest time, the better the prediction accuracy. The RMSE
values for the prediction times of one week to harvesting period, two weeks to harvesting period,
three weeks to harvesting period, and four weeks to harvesting period are 0.165, 0.185, 0.205, and
0.222, respectively. Compared with other existing studies, the proposed crop harvest time prediction
model, LSTMFS, proves to be an effective method.

Keywords: a crop harvest time prediction model; feature selection; artificial intelligence; long short-
term memory; sustainability

1. Introduction

Making an accurate crop harvest time prediction is a challenge for sustainable agri-
cultural management, but it could eventually decrease resource waste [1]. For harvest
time prediction, previous studies have attempted to use statistical analyses to make predic-
tions [2–4]. In recent years an increasing number of scholars have been utilizing artificial
intelligence (AI) to solve the problem of harvest time prediction [1,5,6], and their results
show that artificial intelligence methods are better than statistical methods [1]. For example,
the long short-term memory (LSTM) model is used to construct a relationship between
data by integrating data from different sources for machine learning (ML) [7,8]. In addition,
essential features (variables) are mainly determined empirically, but they are not based on
crop characteristics and real data, resulting in relatively poor prediction accuracy [9]. To
overcome these drawbacks, the objective of this paper is to develop a novel crop harvest
time prediction model integrating feature selection and artificial intelligence methods based
on real production and climate-related data in order to accurately predict harvest time and
reduce resource waste for better sustainability.
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2. Contribution

Crop harvest time prediction is an important operation for agricultural management.
Previous studies of crop harvest time prediction were mainly based on statistical methods,
and the features (variables) affecting it were determined by experience, resulting in its
inaccuracy. To overcome these drawbacks, this paper develops a novel and effective crop
harvest time prediction model, LSTMFS, which integrates a hybrid search for feature
selection and a long short-term memory (LSTM) model based on real production and
climate-related data, in order to accurately predict harvest time and reduce resource waste
for better sustainability.

3. Literature Review
3.1. Artificial Intelligence for the Crop Harvest Time Prediction Model

Many studies have attempted to predict crop harvest time using statistical analyses
or time series analyses in the past [10], and some scholars have recently used artificial
intelligence (AI) methods to solve the problem of crop harvest time prediction [5]. de
Souza et al. [6] proposed artificial neural networks (ANNs) for predicting banana harvest
time. Furthermore, recurrent neural networks (RNNs) and convolutional neural networks
(CNNs) have been adopted to predict crop harvest time [1,11]. However, ANNs and
CNNs (more suitable for image data) cannot handle the pre–post relationship with the
presentation of time series. For time series, scholars have used RNNs or LSTM to control
the pre–post relationship between data, as their performance is better than that of ANNs
and CNNs [12]. According to previous studies, the LSTM prediction model is a modified
version of the RNN and has better accuracy than that of the RNN [13,14]; therefore, the
following discussion focuses on the LSTM prediction model. For example, Zhang et al. [12]
used sensors to collect various real-time information and trained LSTM to predict the
machine’s durability. Sagheer and Kotb [15] proposed a deep LSTM network for time
series to predict oil production. Karevan and Suykens [7] adopted LSTM to forecast
weather. Yadav et al. [16] adopted LSTM to forecast the Indian stock market. Chimmula
and Zhang [17] adopted LSTM to predict the propagation trend of COVID-19 in Canada
and received alerts before the crisis occurred. According to the review above, the LSTM
model is used as a prediction model because crop harvest time is a type of time series,
which is also suitable for LSTM to predict.

3.2. Feature Selection Method

The selection of features (variables) for the crop harvest time prediction model has not
been explored in the past. Most features are decided by empirical rules, which reduces the
model’s accuracy (features selected empirically cannot change with real production and
climate-related data, resulting in relatively poor prediction accuracy [9]). The selection of
features (variables) is based on the selection of some features (variables) that can effectively
represent input features (variables) and reduce the effect of uncorrelated variables, thereby
allowing better prediction results to be obtained [18]. Feature (variable) selection is mainly
conducted via one of two methods: (1) the filter method and (2) the wrapper method. The
filter method determines each variable’s score based on the variable’s importance and
sets a threshold value. However, this method ignores the mutual influence of variables,
and this way of deciding on the variables makes the prediction results relatively poor.
The wrapper method considers all variables in the wrapper at the same time to overcome
the problem of the filtering method. However, the best solution lies in a combination of
problems (2N). The search method can be divided into two main types: the regional search
and the evolutionary search. The regional search method is mainly based on regional
solutions (such as variable neighborhood search (VNS), taboo search (TS), and simulated
annealing (SA)), which can search different dimensions quickly and express problems
easily [19]. The most commonly adopted methods include VNS [20], TS [21], and SA [22].
Related studies have shown that VNS is superior to TS and SA [23]. In recent years, particle
swarm algorithms (PSO) (evolutionary search methods) have been frequently mentioned
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in feature selection problems, and they are superior to region-based methods and genetic
algorithms (GA) [24] but have the drawback of converging too quickly. Hybrid algorithms
are increasingly being used to solve feature selection problems and have been proven to be
superior to single algorithms. Moradi and Gholampour [25] proposed a hybrid method for
feature selection, which integrates regional searches with PSO for full domain searches and
outperforms the GA, SA, ACO, and PSO methods. Esfandiarpour-Boroujeni et al. [26] used
a hybrid particle swarm optimization–imperialist competitive algorithm-supported vector
regression method to predict apricot production and identified 18 out of 61 variables as the
best features (variables) for predicting apricot production. Li and Becker [27] proposed a
mixed-mode integration of LSTM with the feature selection method of PSO for predicting
tariffs. Based on the discussion above, this paper proposes a hybrid search. The search uses
the PSO to search for the best solution. To avoid fast convergence, PSO integrates VNS to
skip the best solution in the region.

4. Materials and Methods
4.1. Crop Harvest Time Prediction Model

In recent years, there have been no comprehensive studies on the distinguishing fea-
tures affecting maturity (based on Elsevier Science, Springer-Verlag, EBSCO, ProQuest,
and Google search results), but there has been research on individual features affecting
growth; for instance, (1) Hatfield and Prueger [28] showed that temperature and accu-
mulated temperature significantly affect plant growth; (2) Punia et al. [29] showed that
solar radiation affects plant growth; (3) Ndamani and Watanabe [30] showed the effect of
rainfall on plant growth; (4) Hirai et al. [31] showed the effect of humidity on plant growth;
(5) Gardiner et al. [32] illustrated the relationship between wind speed and plant growth.
According to the aforementioned literature, the considered features include cumulative
accumulated temperature (according to Ref. [1]), accumulated temperature (according
to Ref. [1]), accumulated sunshine hours (according to Ref. [2]), accumulated total sky
radiation (according to Ref. [2]), accumulated radiation (according to Ref. [2]), cumulative
rainfall (according to Ref. [3]), cumulative precipitation hours (according to Ref. [3]), aver-
age humidity (according to Ref. [4]), and average wind speed (according to Ref. [5]). The
influential features associated with the crop harvest time prediction model were compiled
as follows: (1) cumulative accumulated temperature, (2) accumulated temperature, (3) ac-
cumulated sunshine hours, (4) accumulated total sky radiation, (5) accumulated radiation,
(6) accumulated rainfall, (7) cumulative precipitation hours, (8) average humidity, and
(9) average wind speed.

The data from three days of lag for the 9 selected features mentioned above are
considered as input (After testing for n days of lag, the input variables use the values of
previous observations (t − n, . . . ., t − 2, t − 1) at time t. These previous observations are
called lags one, two, and three. The RMSE (=0.565) of three days of lag for LSTM is the
smallest, and it is selected for harvest time prediction.). A total of 27 variables are used
as input xt at time t for LSTM, and the output variable yt at time t is the harvest time (the
number of days until harvesting from time t). Details of the variables are compiled in
Table 1.
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Table 1. Variables used for long short-term memory (LSTM).

Input Variables xt Output Variable yt

(1) Cumulative accumulated temperature one day ago The number of days until harvesting from time t
(2) Cumulative accumulated temperature two days ago

(3) Cumulative accumulated temperature three days ago

(4) Accumulated temperature one day ago

(5) Accumulated temperature two days ago

(6) Accumulated temperature three days ago

(7) Accumulative sunshine hours one day ago

(8) Accumulative sunshine hours two days ago

(9) Accumulative sunshine hours three days ago

(10) Accumulated total sky radiation one day ago

(11) Accumulated total sky radiation two days ago

(12) Accumulated total sky radiation three days ago

(13) Accumulated radiation one day ago

(14) Accumulated radiation two days ago

(15) Accumulated radiation three days ago

(16) Accumulated rainfall one day ago

(17) Accumulated rainfall two days ago

(18) Accumulated rainfall three days ago

(19) Cumulative precipitation hours one day ago

(20) Cumulative precipitation hours two days ago

(21) Cumulative precipitation hours three days ago

(22) Average humidity one day ago

(23) Average humidity two days ago

(24) Average humidity three days ago

(25) Average wind speed one day ago

(26) Average wind speed two days ago

(27) Average wind speed three days ago

The data from the previous three days for the 9 selected features mentioned above
are considered (after testing, three days is the best parameter). A total of 27 variables
(features) are used as input xt at time t for long short-term memory (LSTM) (i.e., cumulative
accumulated temperature one day ago, cumulative accumulated temperature two days
ago, cumulative accumulated temperature three days ago, accumulated temperature one
day ago, accumulated temperature two days ago, accumulated temperature three days
ago, accumulative sunshine hours one day ago, accumulative sunshine hours two days
ago, accumulative sunshine hours three days ago, accumulated total sky radiation one
day ago, accumulated total sky radiation two days ago, accumulated total sky radiation
three days ago, accumulated radiation one day ago, accumulated radiation two days ago,
accumulated radiation three days ago, accumulated rainfall one day ago, accumulated
rainfall two days ago, accumulated rainfall three days ago, cumulative precipitation hours
one day ago, cumulative precipitation hours two days ago, cumulative precipitation hours
three days ago, average humidity one day ago, average humidity two days ago, average
humidity three days ago, average wind speed one day ago, average wind speed two days
ago, and average wind speed three days ago), and the output variable yt at time t is the
harvest time (the number of days until harvesting from time t).

The structure of LSTM is shown in Equations (1)–(6). There are four components in the
LSTM: a forget gate (ft), an input gate (it), an output gate (ot), and a memory cell (C̃t). This
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cell retains values over time intervals, and the three gates are responsible for controlling
the flow of information into and out of the cell. At time t, the cell is fed with input xt and
the hidden state ht−1 at time t − 1. The forget gate ft, the input gate it, the output gate ot,
and the memory cell C̃t are calculated as follows:

ft = σ(Wf × [ht−1, xt] + bf) (1)

it = σ(Wi × [ht−1, xt] + bi) (2)

ot = σ(Wo × [ht−1, xt] + bo) (3)

C̃t = tan h(Wc × [ht−1, xt] + bc) (4)

where σ and tanh are the sigmoid and hyperbolic tangent activation functions, respectively.
The weights and biases of the input gate, output gate, forget gate, and memory cell are
denoted by Wi, Wo, Wf, and Wc and bi, bo, bf, and bc, respectively.

Then, the output cell state Ct and the hidden state ht at time t can be calculated
as follows:

Ct = ft × Ct−1 + it × C̃t (5)

ht = ot × tan h(Ct) (6)

There are five layers for the harvest time prediction in the Keras sequential model
(Figure 1): Input layer, one LSTM layer, Dropout layer, Dense layer, and Output layer. In the
implementation of the model, the input data xt in the Input layer include the 27 variables
mentioned above. The LSTM layer is adopted with 30 hidden nodes. The activation
function used in this layer is a rectified linear unit. A dropout mechanism in the Dropout
layer is applied to the inputs of the Dense layer to prevent over-fitting, and the dropout
rate is set to 0.4. The Dense layer with a linear activation function is used to return a
single continuous value. The adaptive moment estimation function is used in the optimizer
parameter. This function defines how the weights of the neural network are updated. The
output data yt in the Output layer represent the predicted harvest time (the number of days
until harvesting from time t).
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4.2. Feature Selection Method for the Crop Harvest Time Prediction Model

After the crop harvest time prediction model is determined, the feature (variable)
selection method is used to remove some irrelevant input variables in order to improve
the accuracy of the prediction. Since the search for the best solution for all variable
combinations is a combinatorial problem (complexity is 2N, where N is the number of all
input variables), the proposed method is a hybrid search method integrating a particle
swarm search and a large neighborhood search (LNS, a variant of variable neighborhood
search (VNS)). First, the parameters are set. Then, the particle position and velocity at the
first iteration (generation) are generated (there are psize particles). The particle adaptation
values for psize particles are calculated. LNS is executed for the new iteration (generation),
and, then, Pbest and Gbest are updated. Has iter reached the default value (=isize)? If it
has, (1) stop; otherwise, (2) update the particle velocity and position, (3) execute LNS for
Gbest, (4) calculate iter = iter + 1, and (5) go back to calculate the particle adaptation values
(Figure 2).
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4.2.1. Set the Parameters

Set the initial parameters: current iteration (generation) count pointer, iter (=1); current
particle pointer, pindex; upper iteration (generation) count, isize; number of particles, psize;
inertia weight, w; learning factors c1 and c2; number of variable skips, LNSsize; and M.

Generate the particle position and velocity:
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Xiter=1
pindex (representing the pindex particle at the first iteration for 1 ≤ pindex ≤ psize)

is expressed as follows: (v1, v2, . . . , vi, . . . , vN) there are N dimensions; for 1 ≤ i ≤ N,
vi can be 0 (variable combination without variable i) or 1 (variable combination with
variable i), and psize particles are chosen randomly as Xiter=1

pindex (the position). The velocity

Viter=1
pindex is randomly selected from the range U[−Vmax, Vmax], and Vmax is set according to

15% of the range of variables in each dimension [33].

4.2.2. Calculate the Particle Adaptation Values

The variables in the specific particle Xiter
pindex (for 1 ≤ iter ≤ isize, 1 ≤ pindex ≤ psize)

are used as the inputs for long short-term memory (LSTM). After training and testing from
real data, the root mean square error (RMSE) for Xiter

pindex is calculated and adopted as the
particle adaptation value.

4.2.3. Execute LNS for the New Iteration

M particles are randomly selected from the new iteration (generation) of psize particles.
LNSsize variables are arbitrarily selected for diversity for each selected particle in the
N-dimensional variables. The value of the relevant variable is changed to 1 if it is 0 or to 0
if it is 1. We update these variables to generate a new solution, X. If the adaptation value of
X is better than Xiter

pindex, then replace Xiter
pindex(Xiter

pindex = X), and if the adaptation value of X is

worse than Xiter
pindex, then replace Xiter

pindex(Xiter
pindex = X) with the probability of e

f(X)−f(Xiter
pindex)

iter .

4.2.4. Update Pbest and Gbest

We determine whether the adaptation value of each particle Xiter
pindex (for 1 ≤ pindex ≤ psize)

in iteration (generation) iter is better than Pbestpindex (set Pbestpindex = Xiter
pindex if it is the first

generation of particles). If it is, then replace Pbestpindex; thereafter, determine whether the
Gbest update condition is met (if it is the first generation of particles, then set Gbest = best
solution for all first-generation particles). If the particle is inferior to Gbest, then Gbest
remains unchanged; if the particle is not inferior to Gbest, then the particle replaces Gbest,
the particle updates the velocity and position, and LNS is performed for the particle (see
Execute LNS for the New Iteration).

Has iter reached the default value (=isize)?
Has iter reached the default value of isize? If it has, (1) stop; otherwise, (2) update the

particle velocity and position, (3) execute LNS for Gbest, (4) calculate iter = iter + 1, and
(5) go back to calculate the particle adaptation values.

Update the particle position and velocity
Update the particle position Xiter

pindex and velocity Viter
pindex according to the current

position and velocity of each particle in the iteration (see Equations (7) and (8)) and check
whether the combination of variables is out of range (0 and 1 for each variable). If the
velocity is out of range, then the out-of-range velocity value is expressed as the maximum
(out of maximum) or minimum (out of minimum) of the range. If the particle position
(variable) out of Xiter

pindex has a non-integer variable (between 0 and 1), the upper limit (1) or
lower limit (0) is used according to the nearest-distance principle:

Viter+1
pindex = w × Viter

pindex + c1 × rand1 ×
(

Pbestpindex − Xiter
pindex

)
+ c2 × rand2×(

Gbest − Xiter
pindex

) (7)

Xiter+1
pindex = Xiter

pindex + Viter+1
pindex (8)

4.2.5. Set the Related Parameters

Related parameters: number of particles, psize; number of iterations, isize; inertia
weight, w; learning factors, c1 and c2; LNSsize; and M. The study carried out by Rabbani
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et al. [33] was used to set the inertia weight w = 0.975 and the learning factors c1 = 2
and c2 = 2. Other values were determined experimentally based on the minimal RMSE
criterion. The number of particles (psize) is tried from 50 to 150 (50, 100, and 150); the
number of iterations (isize) is attempted from 100 to 300 (100, 200, and 300); LNSsize is
attempted from 3 to 7 (3, 5, and 7); and M is attempted from 10 to 30 (10, 20, 30). The
following hyperparameters of the LSTM prediction model are used in this paper after the
experiments: activation function: rectified linear units (Relu), optimizer: Adam, number of
hidden layers: one, hidden nodes: 30, epoch: 50, batch size: 10, learning rate: 0.001, and
dropout rate: 0.4. The following values are determined after the experiments: psize = 50,
isize = 200, LNSsize = 5, and M = 10.

4.3. The Data for the Crop Harvest Time Prediction Model

Bok choy, one of the most popular and important vegetables in Taiwan, was selected
to verify the proposed model. The relevant data were mainly obtained from the production
records of a large fruit and vegetable production cooperative in Yunlin County (Taiwan) for
the past few years, together with the public climate-related database of the nearby Central
Weather Bureau meteorological station. The proposed prediction model was trained with
10,000 data items, and 5025 data items were tested (some summary data samples from the
production records and the public climate-related database mentioned above are listed in
Table 2; all data samples are available upon request).

Table 2. Some summary data samples for model training and testing.

Date
Cumulative

Accumulated
Temperature

Accumulated
Tempera-

ture

Accumulated
Sunshine

Hours

Accumulated
Total Sky
Radiation

Accumulated
Radiation

Accumulated
Rainfall

Cumulative
Precipitation

Hours

Average
Humidity

Average
Wind
Speed

Harvest
Time

28 June 2019 333.2 20.4 11.1 23.5 3.0 0 0 71.8 305.8 14
29 June 2019 353.6 20.4 9.1 20.2 2.6 0 0 70.7 267.5 13
30 June 2019 373.5 19.9 7.1 16.9 2.5 0 1.4 74.8 195 12
1 July 2019 394.0 20.5 9.4 20.4 3.0 0 0 71.1 264.6 11
2 July 2019 413.3 19.3 2.6 13.8 2.3 0 1.4 72.8 315.8 10
3 July 2019 429.9 16.6 0 6.6 1.0 0 16.4 81.7 215 9
4 July 2019 449.4 19.5 4.9 16.3 2.4 0 0.2 68.3 226.7 8

5. Results

In this paper, three sets of model validation were designed: the recurrent neural
network (RNN), long short-term memory without feature selection (LSTM), and long
short-term memory with feature selection (LSTMFS, proposed in this paper and mentioned
in Sections 4.1 and 4.2). The system environment of the experimental platform consisted of
an Intel® CoreTM i7-8700 CPU at 3.20GHz with 16GB RAM, and all validation programs
and systems were built using Python 3.9.

Table 3 shows that the accuracy of LSTMFS (RMSE = 0.199; MAPE = 4.84%) is
better than that of LSTM (RMSE = 0.565; MAPE = 15.92%) and RNN (RMSE = 1.327;
MAPE = 28.89%). The best variable combination found by LSTMFS includes (1) cumu-
lative accumulated temperature one day ago, (2) cumulative accumulated temperature
two days ago, (3) cumulative accumulated temperature three days ago, (4) accumulative
sunshine hours one day ago, (5) accumulative sunshine hours two days ago, (6) accumu-
lative sunshine hours three days ago, (7) accumulated total sky radiation one day ago,
(8) accumulated total sky radiation two days ago, and (9) accumulated total sky radiation
three days ago.
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Table 3. Comparison of prediction models.

Model RMSE 1 MAPE 2

RNN 1.327 28.89%
LSTM 0.565 15.92%

LSTMFS 0.199 4.84%

1 RMSE =

√
1
K

N
∑

i=1
(hi

∗ − hi)
2, K: the number of testing data items, hi

*: actual value, hi: predicted value.

2 MAPE = 1
K

N
∑

i=1

∣∣∣ hi
∗−hi
hi

∗

∣∣∣, K: the number of testing data items, hi
*: actual value, hi : predicted value.

Table 4 shows the results of the RMSE prediction error analysis for LSTM and LSTMFS.
The analysis result is significant (F = 949,017.2, significance < 0.001), and, therefore, the null
hypothesis is rejected; i.e., the RMSE of LSTMFS is significantly lower than that of LSTM.
LSTMFS is significantly better than LSTM.

Table 4. An ANOVA analysis for LSTM and LSTMFS.

Sum of Squares Degree of Freedom Mean Square F Significance

Model 335.552 1 335.552 949,017.2 0.000
Error 3.553 10,048 0.000
Total 339.104 10,049

In this paper, we investigated whether the prediction model LSTMFS improves in
accuracy as the prediction time to the harvesting period decreases from four weeks to three
weeks, two weeks, and one week before harvesting. Table 5 shows the accuracy of the
model’s prediction regarding the prediction time to the harvesting period. It was found
that the nearer the harvest time, the better the prediction accuracy. The RMSE values for
the prediction times of one week before harvesting, two weeks before harvesting, three
weeks before harvesting, and four weeks before harvesting, are 0.165, 0.185, 0.205, and
0.222, respectively.

Table 5. Accuracy of the prediction time to harvesting period.

Prediction Time to the Harvesting Period RMSE

Four weeks 0.222
Three weeks 0.205
Two weeks 0.185
One week 0.165

Table 6 shows an ANOVA analysis for different prediction times to the harvesting
period, in which the results are significant (F = 21,114.62, significance < 0.001), thus re-
jecting the null hypothesis that the four datasets are significantly different and indeed
significantly different at different times. In addition, according to the pair comparison,
the analysis results are significant for all pairs (Table 7). (1) For the one-week prediction
time and the two-week prediction time, mean difference (I − J) = −0.019916745, standard
error = 0.0002414928, and significance < 0.001. Therefore, the null hypothesis is rejected; i.e.,
the RMSE of the one-week prediction time is significantly lower than that of the two-week
prediction time. The one-week prediction time is significantly better than the two-week pre-
diction time. (2) For the one-week prediction time and the three-week prediction time, mean
difference (I − J) = −0.039959544, standard error = 0.0002413134, and significance < 0.001.
Therefore, the null hypothesis is rejected; i.e., the RMSE of the one-week prediction time is
significantly lower than that of the three-week prediction time. The one-week prediction
time is significantly better than the three-week prediction time. (3) For the one-week pre-
diction time and the four-week prediction time, mean difference (I − J) = −0.057357473,
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standard error = 0.0002415528, and significance < 0.001. Therefore, the null hypothesis is
rejected; i.e., the RMSE of the one-week prediction time is significantly lower than that of
the four-week prediction time. The one-week prediction time is significantly better than
the four-week prediction time. (4) For the two-week prediction time and the three-week
prediction time, mean difference (I − J) = −0.020042799, standard error = 0.0002411932,
and significance < 0.001. Therefore, the null hypothesis is rejected; i.e., the RMSE of the
two-week prediction time is significantly lower than that of the three-week prediction time.
The two-week prediction time is significantly better than the three-week prediction time.
(5) For the two-week prediction time and the four-week prediction time, mean difference
(I − J) = −0.037440728, standard error = 0.0002414327, and significance < 0.001. Therefore,
the null hypothesis is rejected; i.e., the RMSE of the two-week prediction time is signifi-
cantly lower than that of the four-week prediction time. The two-week prediction time is
significantly better than the four-week prediction time. (6) For the three-week prediction
time and the four-week prediction time, mean difference (I − J) = −0.017397929, standard
error = 0.0002412532, and significance < 0.001. Therefore, the null hypothesis is rejected; i.e.,
the RMSE of the three-week prediction time is significantly lower than that of the four-week
prediction time. The three-week prediction time is significantly better than the four-week
prediction time.

Table 6. An ANOVA analysis for different prediction times to the harvesting period.

Sum of Squares Degree of Freedom Mean Square F Significance

Prediction time 1.856 3 0.619 21,114.62 0.000
Error 0.118 4020 0.000
Total 1.974 4023

Table 7. Multiple comparisons of the prediction time to the harvesting period.

Week (I) Week (J) Mean Difference (I − J) Standard Error Significance

1 2 −0.019916745 * 0.0002414928 0.000
3 −0.039959544 * 0.0002413134 0.000
4 −0.057357473 * 0.0002415528 0.000

2 1 0.019916745 * 0.0002414928 0.000
3 −0.020042799 * 0.0002411932 0.000
4 −0.037440728 * 0.0002414327 0.000

3 1 0.039959544 * 0.0002413134 0.000
2 0.020042799 * 0.0002411932 0.000
4 −0.017397929 * 0.0002412532 0.000

4 1 0.057357473 * 0.0002415528 0.000
2 0.037440728 * 0.0002414327 0.000
3 0.017397929 * 0.0002412532 0.000

Note: 1: previous one week, 2: previous two weeks, 3: previous three weeks, 4: previous four weeks. *: the mean
difference is significant at the 0.05 level.

6. Discussion

The proposed model can predict the harvesting period accurately (RMSE = 0.199;
MAPE = 4.84%) so as to help achieve a balance between production and sales in the sus-
tainable supply chain and reduce resource waste for better sustainability [1,11,34].The
feature selection (variable selection) method was adopted to select the features (variables)
that can effectively represent input features (variables) of the model and reduce the com-
plexity of the model, and better prediction results were obtained (LSTMFS is significantly
better than LSTM. Please refer to Tables 3 and 4 for details.) [18]. Furthermore, it was
observed that LSTM (RMSE = 0.565; MAPE = 15.92%) is a better prediction model than
the RNN (RMSE = 1.327; MAPE = 28.89%). The results are the same as those in previous
studies [13,14]. Moreover, since the harvest time is nearer in the case of LSTMFS, this model
can obtain more related data and learn more from the data, and the prediction accuracy
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is better (Please refer to Tables 5–7 for details). In addition, better sustainability can be
achieved since the accuracy of the prediction model is improved [1,11].

Table 8 shows a comparison of crop harvest time prediction in different studies.
Compared with other existing studies, the proposed model, LSTMFS, which integrates a
hybrid search for feature selection and a long short-term memory (LSTM) model, proved
to be a novel and effective method. The RMSE (=0.199) for LSTMFS is much better than
those reported by [1] (RMSE = 2.58), [2] (RMSE = 5.5), and [5] (RMSE = 0.5176). The MAPE
(=4.84%) for LSTMFS is better than that reported by [6] (MAPE = 6%).

Table 8. Comparison of harvest time prediction in different studies.

Source Crop Prediction Method Feature Selection Method Metric for Methods

This paper Bok choy LSTM A hybrid search (PSO and LNS) RMSE (=0.199), MAPE (=4.84%)
[1] Apple RNN Empirical RMSE (=2.58)
[2] Barley, wheat Statistical method No RMSE (=5.5 for both)
[5] Lettuce ANN Empirical RMSE (=0.5176)
[6] Banana ANN Empirical MAPE (=6%)
[10] Broccoli Statistical method No RMSD, RMAE
[11] Tomato CNN No Accuracy

7. Conclusions

This paper develops a novel crop harvest time prediction model, LSTMFS, which
integrates a hybrid search for feature selection and a long short-term memory (LSTM)
model based on real production and climate-related data, in order to accurately predict
harvest time and reduce resource waste for better sustainability. Based on the results,
LSTMFS is significantly better than long short-term memory (LSTM) and recurrent neural
networks (RNNs). Moreover, the nearer the harvest time, the better the prediction accuracy.
In addition, compared with other existing studies, the proposed model, LSTMFS, proves to
be an effective method.

In a future research direction, we hope to combine different sensors (such as soil and
ultraviolet light) to collect more distinguishing features that affect the harvesting period,
which will be helpful in improving the accuracy of the model prediction. In addition to
harvest time, other important growth indicators (such as crop harvest rate, crop growth
rate, and yield) can also be investigated.
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Abbreviations

ACO Ant colony optimization algorithm
AI Artificial intelligence
ANN Artificial neural networks
ANOVA Analysis of variance
CNN Convolutional neural networks
GA Genetic algorithms
LNS Large neighborhood search
LSTM Long short-term memory
LSTMFS Long short-term memory with feature selection
MAPE Mean absolute percentage error
ML Machine learning
MLP Multilayer perceptron
PSO Particle swarm algorithms
RMSD Root mean square deviation
RMSE Root mean square error
RNN Recurrent neural networks
SA Simulated annealing
TS Taboo search
VNS Variable neighborhood search
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