Preliminary Results of the Use of Sowing Time and Variety Choice as Techniques of Adaptability of Durum Wheat (Triticum durum Desf.) to Temperature Increases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design, and Crop Management
2.2. Crop Growth and Yield Measurements, and Nitrogen Content Determination
2.3. Statistical Analysis
3. Results
3.1. Climate Characteristics of Experimental Site
3.2. Growth Parameters as Affected by Temperature
3.3. Yield and Yield Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasad, P.V.V.; Bheemanahalli, R.; Jagadish, S.V.K. Field crops and the fear of heat stress—Opportunities, challenges and future directions. Field Crops Res. 2017, 200, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Singh, D.; Kang, J.S.; Aggarwal, N. Management practices to mitigate the impact of high temperature on wheat: A review. IIOAB J. 2011, 2, 11–22. [Google Scholar]
- Xynias, I.N.; Mylonas, I.; Korpetis, E.G.; Ninou, E.; Tsaballa, A.; Avdikos, I.D.; Mavromatis, A.G. Durum wheat breeding in the Mediterranean region: Current status and future prospects. Agronomy 2020, 10, 432. [Google Scholar] [CrossRef] [Green Version]
- ISTAT. 2021. Available online: http://dati.istat.it/Index.aspx?QueryId=33654&lang=en (accessed on 15 April 2022).
- Hay, R.K.M.; Walker, A.J. Dry Matter Partitioning. An Introduction to the Physiology of Crop Yield; Harlow and Longman Scientific & Technical: Harlow, UK, 1989; pp. 107–156. [Google Scholar]
- Porter, J.R.; Gawith, M. Temperatures and the growth and development of wheat: A review. Eur. J. Agron. 1999, 10, 23–36. [Google Scholar] [CrossRef]
- Pandey, G.C.; Mamrutha, H.M.; Tiwari, R.; Sareen, S.; Bhatia, S.; Siwach, P.; Tiwari, V.; Sharma, I. Physiological traits associated with heat tolerance in bread wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2015, 21, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, A.K.; Mishra, B.; Chatrath, R.; Ferrara, G.O.; Singh, R.P. Wheat improvement in India: Present status, emerging challenges and future prospects. Euphytica 2007, 157, 431–446. [Google Scholar] [CrossRef]
- Dubey, R.; Pathak, H.; Singh, S.; Chakravarti, B.; Thakur, A.K.; Fagodia, R.K. Impact of Sowing Dates on Terminal Heat Tolerance of Different Wheat (Triticum aestivum L.) Cultivars. Natl. Acad. Sci. Lett. 2019, 42, 445–449. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Klein Tank, A.M.G.; Rusticucci, M.; Alexander, L.V.; Brön-nimann, S.; Charabi, Y.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. Observations: Atmosphere and surface. In Climate Change 2013 The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: London, UK; New York, NY, USA, 2013; p. 159. ISSN 254. [Google Scholar] [CrossRef] [Green Version]
- Lyon, C.; Saupe, E.E.; Smith, C.J.; Hill, D.J.; Beckerman, A.P.; Stringer, L.C.; Marchant, R.; McKay, J.; Burke, A.; O’Higgins, P.; et al. Climate change research and action must look beyond 2100. Glob. Chang. Biol. 2022, 28, 349–361. [Google Scholar] [CrossRef]
- FAO. 2020. Available online: https://www.fao.org/publications/sofi/2020/en/ (accessed on 15 April 2022).
- Asseng, S.; Ewert, F.; Martre, P.; Rotter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Panozzo, J.; Walker, C.; Partington, D.; Neumann, N.; Tausz, M.; Seneweera, S.; Fitzgerald, G. Elevated carbon dioxide changes grain protein concentration and composition and compromises baking quality. A FACE study. J. Cereal Sci. 2014, 60, 461–470. [Google Scholar] [CrossRef]
- Röder, M.; Thornley, P.; Campbell, G.; Bows-Larkin, A. Emissions associated with meeting the future global wheat demand: A case study of UK production under climate change constraints. Environ. Sci. Policy 2014, 39, 13–24. [Google Scholar] [CrossRef]
- IPCC. Climate change 2014. In Fifth Assessment Synthesis Report (Longer Report) of Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- IPCC. Summary for Policymakers of IPCC Special Report on Global Warming of 1.5 °C Approved by Governments; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018. [Google Scholar]
- Doebley, J.F.; Gaut, B.S.; Smith, B.D. The Molecular Genetics of Crop Domestication. Cell 2006, 127, 1309–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubcovsky, J.; Dvorak, J. Genome plasticity a key factor in the success of polyploidy wheat under domestication. Science 2007, 316, 1862–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, L.T. Crop Evolution, Adaptation and Yield; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Guarda, G.; Padovan, S.; Delogu, G. Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels. Eur. J. Agron. 2004, 21, 181–192. [Google Scholar] [CrossRef]
- Giunta, F.; Motzo, R.; Pruneddu, G. Trends since 1900 in the yield potential of Italian-bred durum wheat cultivars. Eur. J. Agron. 2007, 27, 12–24. [Google Scholar] [CrossRef]
- Motzo, R.; Fois, S.; Giunta, F. Protein content and gluten quality of durum wheat (Triticum turgidum subsp. durum) as affected by sowing date. J. Sci. Food Agric. 2007, 87, 1480–1488. [Google Scholar] [CrossRef]
- Mukherjee, D. Effect of different sowing dates on growth and yield of wheat (Triticum aestivum) cultivars under mid-hill situation of West Bengal. Indian J. Agric. Sci. 2012, 57, 152–156. [Google Scholar]
- Singh, S.; Singh, G.; Singh, P.; Singh, N. Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat cultivars. Food Chem. 2008, 108, 130–139. [Google Scholar] [CrossRef]
- Shah, F.; Coulter, J.A.; Ye, C.; Wu, W. Yield penalty due to delayed sowing of winter wheat and the mitigatory role of increased seeding rate. Eur. J. Agron. 2020, 119, 126120. [Google Scholar] [CrossRef]
- Kantolic, A.G.; Slafer, G. Reproductive development and yield components in indeterminate soybean as affected by post-flowering photoperiod. Field Crops Res. 2005, 93, 212–222. [Google Scholar] [CrossRef]
- Ferrise, R.; Triossi, A.; Stratonovitch, P.; Bindi, M.; Martre, P. Sowing date and nitrogen fertilisation effects on dry matter and nitrogen dynamics for durum wheat: An experimental and simulation study. Field Crops Res. 2010, 117, 245–257. [Google Scholar] [CrossRef]
- Sattar, A.; Cheema, M.A.; Farooq, M.; Wahid, M.A.; Wahid, W.; Babar, H.B. Evaluating the performance of wheat cultivars under late sown conditions. Int. J. Agric. Biol. 2010, 12, 561–565. [Google Scholar]
- Garg, D.; Sareen, S.; Dalal, S.; Tiwari, R.; Singh, R. Grain filling duration and temperature pattern influence on the performance of wheat genotypes under late planting. Cereal Res. Commun. 2013, 41, 500–507. [Google Scholar] [CrossRef]
- Nahar, K.; Ahamed, K.U.; Fujita, M. Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L.) Cultivars under Normal and Late Sowing Mediated Heat Stress Condition. Not. Sci. Biol. 2010, 2, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Bergkamp, B.; Impa, S.; Asebedo, A.; Fritz, A.; Jagadish, S.K. Prominent winter wheat varieties response to post-flowering heat stress under controlled chambers and field based heat tents. Field Crops Res. 2018, 222, 143–152. [Google Scholar] [CrossRef]
- Feng, B.; Liu, P.; Li, G.; Dong, S.T.; Wang, F.H.; Kong, L.A.; Zhang, J.W. Effect of Heat Stress on the Photosynthetic Characteristics in Flag Leaves at the Grain-Filling Stage of Different Heat-Resistant Winter Wheat Varieties. J. Agron. Crop Sci. 2014, 200, 143–155. [Google Scholar] [CrossRef]
- Stone, P.; Nicolas, M. A survey of the effects of high temperature during grain filling on yield and quality of 75 wheat cultivars. Aust. J. Agric. Res. 1995, 46, 475–492. [Google Scholar] [CrossRef]
- Talukder, A.; McDonald, G.K.; Gill, G.S. Effect of short-term heat stress prior to flowering and at early grain set on the utilization of water-soluble carbohydrate by wheat genotypes. Field Crops Res. 2013, 147, 1–11. [Google Scholar] [CrossRef]
- Rossini, F.; Provenzano, M.E.; Sestili, F.; Ruggeri, R. Synergistic Effect of Sulfur and Nitrogen in the Organic and Mineral Fertilization of Durum Wheat: Grain Yield and Quality Traits in the Mediterranean Environment. Agronomy 2018, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- López-Bellido, L.; Fuentes, M.; Castillo, J.E.; López-Garrido, F.J.; Fernández, E.J. Long-term tillage, crop rotation, and nitrogen fertilizer effects on wheat yield under rainfed Mediterranean conditions. Agron. J. 1996, 88, 783–791. [Google Scholar] [CrossRef]
- Migliorini, P.; Spagnolo, S.; Torri, L.; Arnoulet, M.; Lazzerini, G.; Ceccarelli, S. Agronomic and quality characteristics of old, modern and mixture wheat varieties and landraces for organic bread chain in diverse environments of northern Italy. Eur. J. Agron. 2016, 79, 131–141. [Google Scholar] [CrossRef]
- Boyer, J.S. Plant Productivity and Environment. Science 1982, 218, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Asner, G.P. Climate and management contributions to recent trends in U.S. agricultural yields. Science 2003, 299, 1032. [Google Scholar] [CrossRef]
- Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, P.J.; Nicolas, M.E. Effect of timing of heat stress during grain filling on two wheat varieties differing in heat tolerance. I. Grain growth. Aust. J. Plant Physiol. 1995, 22, 927–934. [Google Scholar] [CrossRef]
- Stone, P.J.; Nicolas, M.E. Comparison of sudden heat stress with gradual exposure to high temperature during grain filling in two wheat varieties differing in heat tolerance. I. Grain growth. Aust. J. Plant Physiol. 1995, 22, 935–944. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen Jr, L.H.; Sheehy, J.E.; Thomas, J.M.G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res. 2006, 95, 398–411. [Google Scholar] [CrossRef]
- De Vita, P.; Nicosia, O.L.D.; Nigro, F.; Platani, C.; Riefolo, C.; Di Fonzo, N.; Cattivelli, L. Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur. J. Agron. 2007, 26, 39–53. [Google Scholar] [CrossRef]
- Jat, L.K.; Singh, S.K.; Latare, A.; Singh, R.S.; Patel, C. Effect of date of sowing and fertilizer on growth and yield of wheat in an inceptisol of varanasi. Indian J. Agron. 2014, 58, 611–614. [Google Scholar]
- Haj, H.M.; Mohamed, H.A.; Eltayeb, E.I. Effect of sowing date and irrigation interval on growth and yield of wheat and its thermal time requirement under New Halfa. J. Sci. Technol. 1990, 8, 1–4. [Google Scholar]
- Dias, A.S.; Lidon, F.C. Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. J. Agron. Crop Sci. 2009, 195, 137–147. [Google Scholar] [CrossRef]
- Tashiro, T.; Wardlaw, I. The Response to High Temperature Shock and Humidity Changes Prior to and During the Early Stages of Grain Development in Wheat. Aust. J. Plant Physiol. 1990, 17, 551–561. [Google Scholar] [CrossRef]
- Corbellini, M.; Canevar, M.G.; Mazza, L.; Ciaffi, M.; Lafiandra, D.; Borghi, B. Effect of the duration and intensity of heat shock during grain-filling on dry matter and protein accumulation, technological quality and protein composition in bread and durum wheat. Aust. J. Plant Physiol. 1997, 24, 245–260. [Google Scholar] [CrossRef]
- Ashraf, M. Stress-Induced Changes in Wheat Grain Composition and Quality. Crit. Rev. Food Sci. Nutr. 2014, 54, 1576–1583. [Google Scholar] [CrossRef] [PubMed]
- Fois, S.; Schlichting, L.; Marchylo, B.; Dexter, J.; Motzo, R.; Giunta, F. Environmental conditions affect semolina quality in durum wheat (Triticum turgidum ssp. durum L.) cultivars with different gluten strength and gluten protein composition. J. Sci. Food Agric. 2011, 91, 2664–2673. [Google Scholar] [PubMed]
- Branković, G.R.; Dodig, D.; Zorić, M.Z.; Šurlan-Momirović, G.G.; Dragičević, V.; Đurić, N. Effects of climatic factors on grain vitreousness stability and heritability in durum wheat. Turk. J. Agric. For. 2014, 38, 429–440. [Google Scholar] [CrossRef]
- GRIS. Genetic Resources Information System for Wheat and Triticale. Available online: http://wheatpedigree.net (accessed on 13 May 2022).
- Aprile, A.; Sabella, E.; Vergine, M.; Genga, A.; Siciliano, M.; Nutricati, E.; Rampino, P.; De Pascali, M.; Luvisi, A.; Miceli, A.; et al. Activation of a gene network in durum wheat roots exposed to cadmium. BMC Plant Biol. 2018, 18, 238. [Google Scholar] [CrossRef] [PubMed]
Soil Properties | Units | Mean Values |
---|---|---|
Coarse sand | % | 35.7 |
Fine sand | % | 42.5 |
Silt | % | 14.9 |
Clay | % | 6.9 |
N—total (Kjeldahl method) | % | 0.15 |
P2O5 (Olsen method) | ppm | 104.7 |
K2O (Tetraphenylborate method) | ppm | 2578.5 |
Organic matter (Bichromate method) | % | 3.66 |
NO3-N | ppm | 27.32 |
NH4-N | ppm | 16.23 |
pH | 7.10 | |
Electrical conductivity | dS m−1 | 0.26 |
Treatments | Leaves | LAI | ALA | ||
---|---|---|---|---|---|
n° pt−1 | m2 m−2 | cm2 Leaf−1 | |||
HT | OS | Ofanto | 4.3 cd | 6.3 a | 10.2 b |
Cappelli | 5.0 a | 5.5 ab | 7.3 c | ||
Mix | 4.8 ab | 6.4 a | 10.1 b | ||
DS | Ofanto | 3.6 f | 2.8 e | 9.9 b | |
Cappelli | 3.9 df | 4.2 cd | 12.1 a | ||
Mix | 3.8 ef | 3.3 de | 9.3 b | ||
OT | OS | Ofanto | 4.1 ce | 4.8 bc | 9.6 b |
Cappelli | 3.7 ef | 4.8 bc | 13.0 a | ||
Mix | 3.9 d | 4.6 bc | 12.5 a | ||
DS | Ofanto | 4.5 bc | 2.6 e | 4.8 d | |
Cappelli | 4.5 bc | 2.8 e | 5.5 cd | ||
Mix | 4.1 ce | 2.4 e | 5.5 cd | ||
Significance | |||||
Environment (E) | NS | * | NS | ||
Sowing (S) | NS | ** | ** | ||
Variety (V) | NS | NS | * | ||
E x S | * | NS | * | ||
E x V | * | ** | ** | ||
S x V | NS | ** | ** | ||
E x S x V | * | ** | ** |
Treatments | Height | Stems | Spikes | Biomass | HI | Yield | ||
---|---|---|---|---|---|---|---|---|
cm | n° m−2 | n° m−2 | kg m−2 | % | kg m−2 | |||
HT | OS | Ofanto | 55.1 fg | 506.8 ab | 368.2 ab | 1.70 b | 22.9 ef | 0.39 b |
Cappelli | 90.6 a | 531.8 a | 154.5 f | 2.13 a | 5.2 h | 0.11 ef | ||
Mix | 72.1 bc | 525.0 a | 143.2 f | 1.27 c | 4.7 h | 0.06 f | ||
DS | Ofanto | 54,1 fg | 531.8 a | 268.2 de | 1.00 de | 18.0 fg | 0.18 d | |
Cappelli | 71.4 bc | 520.5 a | 272.7 de | 1.41 c | 16.3 g | 0.23 cd | ||
Mix | 59.1 ef | 504.5 ab | 259.1 e | 1.19 cd | 14.3 g | 0.17 de | ||
OT | OS | Ofanto | 52.6 gh | 477.3 ac | 375.0 ab | 1.38 c | 44.9 a | 0.62 a |
Cappelli | 96.1 a | 459.1 bd | 336.4 c | 2.26 a | 24.8 de | 0.56 a | ||
Mix | 66.8 cd | 411.4 de | 393.2 a | 1.66 b | 33.7 c | 0.56 a | ||
DS | Ofanto | 48.1 h | 340.9 f | 172.7 f | 0.41 g | 43.9 ab | 0.18 de | |
Cappelli | 75.5 b | 427.3 ce | 350.0 bc | 0.92 e | 29.3 cd | 0.27 c | ||
Mix | 63.4 de | 372.7 ef | 290.9 d | 0.66 f | 39.4 b | 0.26 c | ||
Significance | ||||||||
Environment (E) | NS | ** | ** | * | ** | ** | ||
Sowing (S) | * | NS | NS | * | NS | * | ||
Variety (V) | ** | NS | NS | * | ** | ** | ||
E x S | NS | * | ** | * | ** | ** | ||
E x V | NS | * | ** | NS | ** | ** | ||
S x V | NS | * | ** | NS | ** | ** | ||
E x S x V | ** | ** | ** | ** | ** | ** |
Treatments | Weight | Shrinking | Vitreousness | U | Protein | ||
---|---|---|---|---|---|---|---|
g 1000 kernels−1 | % | % | % | % | |||
HT | OS | Ofanto | 51.1 h | 8.0 a | 7.5 ab | 8.8 d | 16.5 f |
Cappelli | 57.5 b | 8.0 a | 7.0 ac | 9.5 c | 20.7 b | ||
Mix | 44.5 i | 9.0 a | 3.5 d | 8.8 d | 22.5 a | ||
DS | Ofanto | 55.2 d | 2.0 ce | 7.0 ac | 7.0 h | 19.0 d | |
Cappelli | 60.3 a | 3.0 cd | 6.0 bc | 7.0 h | 18.6 de | ||
Mix | 60.4 a | 3.0 cd | 7.5 ab | 7.9 fg | 20.0 c | ||
OT | OS | Ofanto | 53.4 f | 3.5 c | 7.5 ab | 10.0 b | 16.2 f |
Cappelli | 53.9 ef | 5.5 b | 7.5 ab | 10.1 b | 15.9 f | ||
Mix | 54.0 e | 2.0 ce | 8.5 a | 10.9 a | 15.0 g | ||
DS | Ofanto | 52.8 g | 1.0 e | 8.0 a | 8.0 ef | 18.2 e | |
Cappelli | 56.3 c | 1.0 e | 5.5 c | 7.7 g | 21.3 b | ||
Mix | 53.4 f | 1.5 de | 6.0 bc | 8.2 e | 21.0 b | ||
Significance | |||||||
Environment (E) | ** | ** | NS | ** | ** | ||
Sowing (S) | ** | ** | NS | ** | ** | ||
Variety (V) | ** | NS | NS | NS | ** | ||
E x S | ** | NS | ** | NS | ** | ||
E x V | NS | ** | ** | ** | ** | ||
S x V | * | * | * | * | NS | ||
E x S x V | ** | ** | ** | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ottaiano, L.; Di Mola, I.; Cozzolino, E.; Mori, M. Preliminary Results of the Use of Sowing Time and Variety Choice as Techniques of Adaptability of Durum Wheat (Triticum durum Desf.) to Temperature Increases. Sustainability 2022, 14, 14111. https://doi.org/10.3390/su142114111
Ottaiano L, Di Mola I, Cozzolino E, Mori M. Preliminary Results of the Use of Sowing Time and Variety Choice as Techniques of Adaptability of Durum Wheat (Triticum durum Desf.) to Temperature Increases. Sustainability. 2022; 14(21):14111. https://doi.org/10.3390/su142114111
Chicago/Turabian StyleOttaiano, Lucia, Ida Di Mola, Eugenio Cozzolino, and Mauro Mori. 2022. "Preliminary Results of the Use of Sowing Time and Variety Choice as Techniques of Adaptability of Durum Wheat (Triticum durum Desf.) to Temperature Increases" Sustainability 14, no. 21: 14111. https://doi.org/10.3390/su142114111
APA StyleOttaiano, L., Di Mola, I., Cozzolino, E., & Mori, M. (2022). Preliminary Results of the Use of Sowing Time and Variety Choice as Techniques of Adaptability of Durum Wheat (Triticum durum Desf.) to Temperature Increases. Sustainability, 14(21), 14111. https://doi.org/10.3390/su142114111