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Abstract: The low-carbon coupling coordination of the logistics industry and manufacturing in-
dustry is an ecological innovation organization that integrates economic benefits, social benefits,
and ecological benefits under strict carbon emission constraints. In order to control or reduce the
carbon dioxide emission of the two industries, it is very important to understand the driving factors
of emission change and formulate effective carbon policy. The Yangtze River Delta has developed
manufacturing clusters and a perfect logistics system. The Yangtze River Delta region is taken as an
example. Firstly, the coupling coordination model is used to calculate the low-carbon coupling coor-
dination scheduling of the region. Then, the spatiotemporal geographically time-weighted regression
model (GTWR) is used to explore the spatial heterogeneity of driving factors of low-carbon coupling
coordination. The empirical results show the following: the low-carbon coupling coordination in the
Yangtze River Delta is at a good coordination, and each driving factor has a positive effect on the
coupling coordination. From the regional city level and time change level, the regression coefficients
of each driving factors are analyzed, and it is found that the impact of driving factors on low-carbon
coupling is significantly different between large cities and small and medium-sized cities, and the
spatial heterogeneity of driving factors is significant. Specifically, the marginal impact of human
capital, technological progress, and urbanization level on the low-carbon coupling between logistics
and manufacturing in the Yangtze River Delta is increasing year by year; the marginal impact of
international trade, industrial policy, and foreign investment on the Yangtze River Delta is decreasing
year by year; and the marginal impact of capital investment and infrastructure on the Yangtze River
Delta is relatively stable. Finally, according to the heterogeneity of driving factors in cities of different
sizes, the corresponding development suggestions are put forward.

Keywords: logistics and manufacturing; low-carbon coupling coordination; driving factors

1. Introduction

Most developed countries have promised to achieve carbon neutrality by 2050. The
United Kingdom was the first to propose a “low-carbon economy”. From the current
foreign literature and practice, there are numerous policy efforts to achieve low-carbon
development [1]. The European Union and the United Kingdom achieved a carbon peak
in 1990, while the United States achieved a carbon peak around 2005. China has only
committed to achieving carbon neutralization from its carbon peak in about 30 years, which
is far shorter than that of developed countries [2]. Therefore, the development pressure of
China’s low-carbon industry is even greater.

China’s logistics and manufacturing industries emit too much carbon dioxide, which
has brought a heavy burden to the environment and has become the main factor restricting
the sustainable development of the economy [3,4]. In September 2020, China proposed
that carbon dioxide emissions should reach the peak by 2030 and strive to achieve carbon
neutrality by 2060. The vision of “carbon peak” and “carbon neutral” has defined a new
direction for the low-carbon development of China’s logistics and manufacturing industry
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and put forward new requirements for accelerating the carbon emission reduction of
logistics and manufacturing industry.

The coupling coordination of the logistics industry and manufacturing industry be-
longs to the category of industrial linkage, which means linkage and interaction. It empha-
sizes the internal relationship between industries and the initiative of communication and
response among multiple subjects. There are many definitions and literature works about
the linkage between the two industries [5,6], but in the current situation of a low-carbon
economy, it is not enough to only consider the coupling coordination of economic benefits.
If the high-speed development of the two industries brought by the linkage is at the cost of
high input and high consumption of natural resources, it is not advisable, and it is urgent
to solve the problem of low-carbon coupling coordination between the two industries.

As shown in Figure 1, this paper holds that the low-carbon coupling coordination of
the logistics industry and manufacturing industry is an ecological innovation organization,
which integrates economic benefits, social benefits, and ecological benefits under strict
carbon emission constraints. With the support of modern energy and emission reduction
technology and modern information technology, the coordinated low-carbon development
of warehousing, distribution, transportation, manufacturing, and other links can be realized.
Finally, the logistics industry and manufacturing industry can break through the green trade
barriers in the international market. We will jointly build a green core competitiveness
system of the two industries. The purpose of low-carbon coupling coordination is the
continuous improvement of carbon productivity, and the essence of low-carbon coupling
coordination is the low-carbon and efficient coordinated development of the two industries,
so as to realize the carbon peak and carbon neutralization of the logistics industry and
manufacturing industry, and to realize the healthy and sustainable development of the
logistics industry and manufacturing industry.

Low carbon coupling coordination between logistics

industry and manufacturing industry

Economicbenefit |¢—p| Ecological benefit Social benefit

A

™~ i

Coordination benefit

Figure 1. Low-carbon coupling coordination model between logistics industry and manufacturing industry.

As the region with the fastest economic growth and the largest economic aggregate
in China, the Yangtze River Delta region has more emissions than other industrial areas
in China [7]. The Yangtze River Delta is an important gathering area of China’s advanced
manufacturing industry. As the forefront of China’s reform and opening up, the Yangtze
River Delta region pays more and more attention to the interactive development of the
service industry, especially the producer service industry and manufacturing industry,
drives the transformation and upgrading of the manufacturing industry, improves the
comprehensive competitiveness of the regional manufacturing industry, and effectively
promotes the implementation of the national strategy of Yangtze River Delta integration.

The next ten to twenty years will be a period of great strategic opportunities for
the development of China’s logistics industry and an important period for the logistics
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industry to reduce costs and increase efficiency and enhance competitiveness. At the
same time, China will basically realize industrialization, which is also a major opportunity
period for the upgrading of China’s manufacturing industry [8]. The research on the
coupling coordination of the logistics industry and manufacturing industry has important
practical significance for promoting the transformation and upgrading of the manufacturing
industry in Yangtze River Delta, realizing the high-quality development of regional logistics,
promoting the development of the regional economy, and realizing the goal of made in
China 2025 (National Development and Reform Commission of the people’s Republic of
China, 2020).

The development of industry and the protection of the environment are always closely
related to the research focus. In terms of theoretical analysis of industrial development and
environmental policy, financial policy and environmental pollution [9], education and environ-
mental policy [10], environmental policy and growth of market economy [11], and social status
preference and environmental policy [12] all have relatively mature research results.

In terms of empirical research on the driving factors of low-carbon logistics industry,
the following works exist: The impact of low-carbon management on corporate carbon
performance [13]. The impact of logistics parks on the design of low-carbon logistics
networks in urban areas [14]. The location routing problem of low-carbon logistics [15].
The impact of economic development level on low-carbon logistics [16]. Low-carbon
logistics path planning of multiple distribution stations [17]. The selection of the best
low-carbon logistics service providers [18].

In terms of empirical research on driving factors of low-carbon manufacturing industry,
the following works exist: Low-carbon technological innovation is the key to low-carbon
development of manufacturing industry [19]. Low-carbon transformation and upgrading
of existing manufacturing equipment and processes is an important aspect of low-carbon
development of manufacturing industry [20]. The cooperation and competition of manu-
facturers is the way to reduce the total carbon emissions [21]. The impact of different types
of environmental regulations on low-carbon manufacturing practices [22]. Consider the
impact of ordinary manufacturers and low-carbon manufacturers on carbon emissions in
the supply chain [23]. The impact of environmental awareness on green innovation [24].
The impact of supply chain on carbon emissions of manufacturers in the case of asymmet-
ric information [25]. The optimal emission reduction of low-carbon closed-loop supply
chain [26].

Based on the results of the above literature, in terms of theoretical research, although the
theoretical research on the relationship between industrial development and environment
has been relatively mature, the amount of research on the driving factor mechanism of
low-carbon industrial development is still less. In terms of empirical research, it is found
that the driving factors of low-carbon logistics and low-carbon manufacturing are studied by
scholars from different perspectives. However, there is still a lack of research on the impact
of these driving factors on the coupling of low-carbon industries. Although some scholars
have analyzed the influencing factors from the aspects of industrial interaction [27-29],
industrial development stage [6], industrial synergy [30], strategic decision [31], and business
environment [32], there are relatively few literatures on the spatiotemporal heterogeneity of
driving factors.

In the mid-1990s, the geographically weighted regression (GWR) model was proposed
and widely used as a local variable coefficient model to identify spatial non-stationarity [33].
The GWR model can overcome the spatial heterogeneity between geographical units,
break through the limitations of the constant coefficient model, and draw differentiated
research conclusions for different regions. Its theoretical significance and policy value of
heterogeneity are more significant and it has the effect of “adjusting measures to local
conditions”, which is widely used in the research of different industries. However, the
GWR model can only regress the cross-sectional data. Wu [34] added the time effect to
the GWR model to build a geographically and temporally weighted regression (GTWR),
which can capture the parameter variation of different spatial units in time and space, so it
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can make up for the deficiency of the GWR model. As an effective method to identify non
stationarity, spatiotemporal geographically weighted regression has been well developed
in theory and widely used in practice [35-37].

The above-mentioned literature has discussed the driving factors of the coupling
coordination of the logistics and manufacturing industry, but the systematic analysis of
the driving factors of the two industries is insufficient; the discussion of the regional
differences of the driving factors of the two industries is not deep enough. In addition, the
coupling coordination measure of the two industries also fails to consider the ecological
and environmental factors. In order to make up for these defects, this paper constructs a
coupled coordinated measurement system considering the carbon emissions of the two
industries, systematically analyzes the driving factors from the internal and external aspects,
and compares the spatial heterogeneity characteristics of the driving factors of coupling
coordination of the two industries using the spatiotemporal geographically weighted
regression model (GTWR).

The main contributions of this study are as follows: the low-carbon coupling coordi-
nation of the logistics industry and manufacturing industry is an ecological innovation
organization, which integrates economic benefits, social benefits, and ecological benefits.
First of all, by improving the selection of indicators for coupling and coordination, this
paper has selected the unexpected output indicators of the logistics industry and manufac-
turing industry, overcoming the problem that the coupling and coordination measurement
is not accurate enough owing to the neglect of carbon emissions in traditional indicators, so
the low-carbon coupling and coordination data obtained may be more objective. Secondly,
this paper uses the GTWR model to study the spatio-temporal evolution pattern and main
driving factors of the low-carbon coupling development of industries in the Yangtze River
Delta from different time scales and spatial scales.

This paper is divided into five parts. The second part presents the research methods.
The third part provides the result analysis. The fourth part presents the discussion. The
fifth part is the conclusion and suggestions.

2. Research Method

2.1. Research Hypothesis

2.1.1. The Mechanisms and Assumptions of Internal Factors
Capital Investment

The increase and agglomeration of physical capital allocation can have a positive
impact on the optimization and upgrading of industrial structure, thus promoting economic
growth. There is a significant substitution relationship between energy factors and capital
factors. Promoting financial development, implementing supply side structural reform,
and reasonably controlling industrial growth and scale expansion are conducive to energy
conservation and emission reduction. The work of [38,39] shows that China’s foreign direct
capital investment in other countries has not led to the deterioration of carbon emissions in
these countries. Therefore, this paper makes the following assumptions:

Hypothesis 1 (H1). The more developed the capital investment, the stronger the promotion effect
on the low-carbon coupling coordination of the two industries.

Human Capital

Human capital is the capital embodied in workers. A human capital structure with
high-quality talents can optimize the allocation of enterprise resources, enhance the ability
of technological innovation and absorption, and is conducive to the improvement in labor
productivity [40]. The improvement in human capital will reduce carbon emissions without
reducing economic growth [41]. The research results of Li, X. [42] show that, in the long run,
the positive changes in human capital brought about by education reduce carbon dioxide
emissions. Therefore, this paper makes the following assumptions:



Sustainability 2022, 14, 14134

50f23

Hypothesis 2 (H2). The more developed the human capital, the stronger the promotion effect on
the low-carbon coupling coordination of the two industries.

Infrastructure

Good infrastructure conditions are conducive to factor concentration and flow, im-
prove factor productivity, promote enterprises to form economies of scale, make it easier
to attract external investment, and reduce the transaction cost of enterprises. The im-
provement in road infrastructure configuration can enable the road network to handle
traffic more effectively and reduce carbon emissions [43]. Therefore, this paper makes the
following assumptions:

Hypothesis 3 (H3). The more developed the infrastructure, the stronger the promotion effect on
the low-carbon coupling coordination of the two industries.

Technology Level

Technological progress can constantly develop new production technology, promote
new equipment and new technology to transform old industries, and promote the transition
from traditional industries to modern industries. In order to promote the joint develop-
ment of the manufacturing industry and logistics industry, it is necessary to innovate
the knowledge and technology contained in the manufacturing industry, as well as the
advanced management concepts, methods, and models in the service industry, so as to
promote the promotion of capital value. Technological progress is the key driving force
of low-carbon development. In the “Made in China (2025)” and “Industrial Green Devel-
opment Plan (2016-2020)”, there are a large number of technical research areas related to
the low-carbon development, and the importance of indigenous innovation has become
increasingly prominent [44]. The research results of Li, R. [45] show that there is a nonlinear
inverted U-shaped relationship between technological progress and CO, emissions. When
economic development exceeds a certain threshold, the impact turns from positive to
negative. Therefore, this paper makes the following assumptions:

Hypothesis 4 (H4). The effect of the level of science and technology on the low-carbon coupling
coordination of the two industries is uncertain.

2.1.2. The Mechanisms and Assumptions of External Factors

The formation and evolution of the linkage of the two industries are carried out
in a certain external social environment. This study initially establishes the evaluation
index system from the external factors of urbanization level, international trade, foreign
investment and industrial policy [46].

Urbanization Level

In the process of urbanization, equality of opportunity and process fairness are more
widely guaranteed, which continues to deepen the development concept of mutual trust
and reciprocity between the manufacturing industry and logistics industry, which can
fully guarantee the sharing of benefits and long-term stable linkage between the two sides.
There is a negative correlation between city size and carbon emission, indicating that urban
agglomeration has a higher emission efficiency [47]. The research of Huang, Q. [48] shows
that urbanization has significantly increased the carbon emissions of provinces. Therefore,
this paper makes the following assumptions:

Hypothesis 5 (H5). The effect of level of urbanization on the low-carbon coupling coordination of
the two industries is uncertain.
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International Trade

International trade can pull the development of animal flow industry from the demand
side, and produce a chain reaction through the “multiplier” effect; And through the import of
foreign advanced equipment, new products or processes, the trade of these goods will transfer
the physical and chemical technical knowledge to domestic enterprises. Through technology
transfer, the scientific and technological level of domestic manufacturing logistics industry is
improved, and the scientific and technological level of logistics enterprises and manufacturing
enterprises is promoted [49]. The emissions contained in a country’s imports and exports
depend on the level and composition of trade, and more trade increases emissions [50]. Wang, L.
and Khan, Y. [51,52] believe that trade openness increases production based on carbon emissions.
Therefore, this paper makes the following assumptions:

Hypothesis 6 (H6). The effect of developed of the international trade on the low carbon coupling
coordination of the two industries is uncertain.

Foreign Investment

Foreign investment affects the coupling coordination of the logistics industry and
manufacturing industry through the technology spillover effect. Multinational companies
have strong advantages in technology, management, and marketing. The host country
enterprises can learn, imitate, and absorb each other’s advanced experience through contin-
uous learning [53]. Foreign direct investment is an important channel to obtain advanced
green technology and achieve economic growth. It is one of the reasons for the increase
in emissions in China at this stage. There is an inverted U-shaped nonlinear relationship
between FDI and emissions [54], revealing the negative impact of FDI on carbon emissions.
Therefore, this paper makes the following assumptions:

Hypothesis 7 (H7). The effect of foreign investment on the low-carbon coupling coordination of
the two industries is uncertain.

Industrial Policy

When the market mechanism fails, the government can adjust the optimal allocation
of resources among different industries through the implementation of targeted industrial
policies, correct and make up for market defects, and support or inhibit the development of
some industries according to social needs. Of course, industrial policy is not omnipotent and
may not play its due role. Sun Fang [55] believe that policy and institutional factors have a
positive impact on the coordinated development of industry. Zhang Youguo [56] analyzed the
negative effects of industrial policies on the upgrading and adjustment of industrial structure.
During the 12th Five-Year Plan and the 13th Five-Year Plan, the Chinese government issued
a series of low-carbon development policies to curb carbon dioxide emissions. In terms of
environmental policies, the Chinese government has implemented stricter environmental
regulations and formed a governance system in which the government, enterprises, and the
public work together [57]. Considering the significant differences in economic and social
development in different regions of China, the effectiveness of policy implementation cannot
be generalized. The research of Khan, Y. [52] shows that economic policy uncertainty is
positively correlated with carbon emissions. The research results of Song, L. [58] show
that industrial policies have a negative impact on carbon emission reduction in China’s
manufacturing industry. Therefore, this paper makes the following assumptions:

Hypothesis 8 (H8). The effect of industrial policy implementation on the low-carbon coupling
coordination of the two industries is uncertain.
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2.2. Method Introduction and Variable Selection
2.2.1. The Coupling Coordination Model of the Logistics Industry and Manufacturing Industry

The coupling coordination model is a relatively mature method to study the coor-
dination relationship between industries. Owing to space constraints, this paper will
not introduce it in detail here. For a detailed introduction to the method, see my other
article [59].

2.2.2. The GTWR Model

Traditional OLS estimation is only an average or global estimation of regression co-
efficients, which cannot reflect the heterogeneity of regression coefficients in different
spaces and cannot effectively explore some important and useful local features of regres-
sion relationship between dependent variables and independent variables. Based on the
geographically weighted regression (GWR) model, the paper proposes a new method of
global regression. The spatial heterogeneity (or spatial non-stationarity) problem is solved
by the GTWR model [60]. The general expression is as follows.

d
Yi = Bo(ui, vipti) + Y Brelwi, vi, t) Xy +&,i =1,2,...,n 1)
=1

In Formula (1), Yj is n x 1-dimensional explanatory variable; B is the coefficient of
the constant term; (uj, vj, t;) represent the latitude and longitude coordinates uj, vj, and
observation time points of the I observation point, respectively; By (u;, vi, t;) is the unknown
parameter of the K factor at (uj, v;, t;); and Xy is n x K-dimensional explanatory variables.
The parameters are estimated by the local weighted least square method, that is, for a
given observation point, the observation value near the point is given a larger weight value
and the observation value far away from the point is given a smaller weight value. By
minimizing the weighted square sum of the difference between the observed value and the
fitting value, the estimated value of the parameter can be obtained.

The core of the GTWR model is the setting of the spatial weight matrix, which is gen-
erally constructed as follows: w (uj, vj, t;) = diag (wi1, Wiz, . .. , Win), in which the diagonal
element Wj; is the attenuation function of the spatial-temporal distance. Commonly used
the weight functions include the distance threshold function, inverse distance function,
Gaussian function, and truncated function. The common feature of these functions is to
reflect the weight by the distance of sample points and the attenuation degree of effect with
distance [33]. In this paper, the Gauss function is used as the weight function.

Wy = exp{ - (dij/h)z} 2

In Equation (2), & is the bandwidth to describe the attenuation degree of the effect with
distance, which is usually calculated using the criterion of minimizing the sum of squares
of errors of CV. If the predicted value Y; of the model is a function (H) of the bandwidth h,
the bandwidth can be expressed by Equation (3).

h = minCV :Z[yi 5 7éi(h)r 3)

In Equation (3), Dy is the space-time distance between I and ]. The measurement
of the space—time distance involves two dimensions of time and space, and the space
scale parameters A and time scale parameters | need to be set. In order to balance the
differences between different dimensions, the given space distance DS and time distance
DT are integrated into space-time distance DT, then the space—time distance function
is constructed:

dj’ = \/A[(ui—uj)er(Vi—Vj)z} + (s —)° @
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In Equation (4), when A = 0, it means that there is no spatial effect and the space-time
distance is a proportional function of the time distance. At this time, the model is set as the
TWR (geographically weighted regression) model. When u = 0, this indicates that there
is no time effect and the model is set as the GWR model. When A # 0 and p # 0, it is the
GTWR model. Thus, the space-time weight matrix can be expressed as follows: (uj, vj, t;) =
diag (wi1, Wiz, - - - , Win), where the specific calculation formula of Wj; is as follows:

Al (w =)+ (vi = v))?] G 5)°

2 2 ©)

Wi = exp{(dgT/hY} =expg —

In Equation (5), Wj; is the spatial weight between samples i and j; dSTij is the space-
time distance between samples i and j; h is the space-time bandwidth; and A and p are scale
factors used to determine the impact of space and time distance on different weights of
the space-time distance. The scale factor is set to A + i = 1. By adjusting the scale factor
A, the relative size of space and time distance weights is determined, so as to improve the
calculation efficiency without losing universality.

Based on model (5), this paper takes the coupling coordination (CCj) of the logistics
industry and manufacturing industry of each city unit from 2006 to 2019 as the dependent
variable, and takes eight driving factors of capital investment, human capital, technolog-
ical progress, infrastructure construction, international trade, industrial policy, foreign
investment, and urbanization level as the independent variables. Taking the longitude and
latitude coordinates of each prefecture level city as the location coordinates, the GTWR
model is constructed as follows in model (6):

CCit = Bo(ui, vi, t;) + B1(uy, vi, t)Capy, + Ba(uy, vi, ) Humyy
+B3(ui, vi, ti) Tecy + Ba(uy, vi, t)Infy + Bs(uy, vi, ti) Trag, (6)
+Be (1, vi, ti ) Polyy + B7(uj, vi, ti ) FDIy + Bg(uy, vi, ti)Urby +¢5,i =1,2,...,n

In Formula (6), CC;; represents the low-carbon coupling coordination value of sample
point i; Capy, Humyy, Tecyy, Infy, Trajy, Polyy, FDIy, and Urbyy are the values of eight factors:
capital investment, human capital, technological progress, infrastructure construction, in-
ternational trade, industrial policy, foreign investment, and urbanization level, respectively;
B1, B2, B3, B4, Bs, Be, B7, and PBg are the regression coefficients of each influencing factor at
sample point i; and By and ¢; refer to the space-time intercept and residual, respectively.

2.2.3. Construction of the Low-Carbon Coupling Coordination System

In order to verify the mechanism of the driving factors of the coupling coordination
of the logistics industry and manufacturing industry, based on the analysis of the above
internal and external driving factors, this paper further selects the index variables that can
measure the driving factors and conducts an empirical analysis using the panel data of
25 cities in Yangtze River Delta from 2006 to 2019. The explained variable is the coupling
coordination of the logistics industry and manufacturing industry (CCy;), which is used to
measure the development level of the coupling coordination of the two industries.

According to the analysis of economic, social, and ecological benefits of the low-carbon
coupling system and referring to the measurement methods of relevant scholars [27,61,62]
on low-carbon efficiency and the measurement indicators of relevant scholars [63-65] on
the coupling and coordination of the logistics industry and manufacturing industry, this
paper constructs the evaluation index system of the coupling coordination between the
logistics industry and manufacturing industry, as shown in Table 1 below. In this paper,
MAXDEA ultra7.0 software is used to calculate the low-carbon efficiency of the logistics
industry and manufacturing industry with the SBM-DEA model (the index system is as
follows), and the low-carbon coupling coordination (CCj;) of the two industries is calculated
with the coupling coordination model.
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Table 1. Indicator system of the order parameter of the coupling coordination evaluation of the
logistics industry and manufacturing industry.

Evaluation System

Pointer Type Name of Index Unit

The number of employees on the

job in the manufacturing industry Ten thousand people
Input indicators ; :
Total assets of industrial s
- . . 100 million
enterprises above designated size
. industrial added value 100 million
Manufacturing system
Output Main business income of
indicators industrial enterprises above 100 million
designated size
Unexpected output Carbon CHSSIONS from Tons
manufacturing
Number 0 f.employees in the Ten thousand people
logistics industry
Input indicators Fixed capital investment 100 million

Logistics system

Ten thousand tons of

energy consumption standard coal

highway freight volume Tons
) Ogtput GDP of logistics industry 100 million
indicators
Cargo turnover Million ton-km
Unexpected output Carbon emissions from Tons

transportation

China’s road transport freight volume accounts for more than 70% of the total industry
volume in the recent ten years [37]. Therefore, this paper uses the road transport freight
volume as the output index of the logistics industry.

This paper takes the CO, emissions of the logistics industry and manufacturing
industry as the unexpected output index. This paper refers to Xu JZ, Zhang Shiqing,
Wen Long Zheng [66-68], and other relevant scholars’ research on carbon emissions from
logistics and manufacturing. Firstly, the primary energy consumption of 21 fuels mainly
consumed by logistics and manufacturing industries, such as raw coal, diesel, kerosene,
gasoline, fuel oil, liquefied petroleum, and natural gas, is selected and converted into
standard coal as the total energy source consumption of the two industries. Then, the above
seven energy consumption are converted according to the carbon emission coefficient in
the guidelines for national greenhouse gas emission inventories of the climate change
commission (IPCC), and the CO; emissions of the logistics industry and manufacturing
industry are obtained. The calculation formula is as follows:

& 44
CO, = ;Ei X CF; x CC; x COF; x ﬁ 7)

where i is the type of fuel, E; is the consumption of i fuels, CF; is the calorific value of i fuels,
CC,; is the carbon content of i fuels, and COF, is the oxidation factor of the fuel.

2.2.4. Variable Selection of Driving Factors

1.  Capital. Referring to Zhang J’s [69] measurement method of physical capital, this
paper obtains the capital stock of each city from 2006 to 2019 and uses the deflator
index to convert it into the constant price capital stock based on 2006.
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2. Human capital (hum;;). Referring to the calculation method of Zhang Hu [70], the
stock of human capital hit = exp (Inhy) * lit, where h is the per capita human capital
of the region and 1is the total employment of the region.

3. Technological progress. To a certain extent, the number of technology patents in a
region can represent the technological innovation ability of the region. Because there
is a time lag between patent acceptance and authorization, and the amount of patent
acceptance can directly reflect the technological innovation ability of enterprises
under external intervention, we choose the amount of patent acceptance to measure
technological progress.

4.  Infrastructure. In order to make the stock of infrastructure construction in different
regions comparable, this paper refers to the common practice of foreign scholars,
where highway density is used to measure the level of infrastructure construction [71].

5. International trade. The international trade of a region reflects its degree of openness
to the outside world. The evaluation of the degree of openness to the outside world
of a region is generally measured by the proportion of the total export trade in the
regional GDP [72]. That is, trade = total import and export/GDP.

6.  Polit. Asa part of the government’s financial expenditure, favorable industrial policies
enable enterprises to obtain government subsidies such as R&D, which reflects the
government’s support for enterprise innovation activities. In view of the availability
of data, this paper measures the proportion of local fiscal expenditure in regional GDP.
That is, Polit = local fiscal expenditure/GDP.

7. Foreign investment in FDI. Foreign investment is the main symbol of a country’s scale
of absorbing foreign direct investment and the potential of utilizing foreign invest-
ment, which reflects the region’s ability to attract foreign investment. Total foreign
direct investment (FDI) per capita represents the level of foreign direct investment [73].
That is, FDI;; = total foreign direct investment/total population.

8. Urbanization level. Urbanization is an important symbol to measure the level of
national or regional economic and social development. The current measurement
method mainly uses the proportion of urban population in the total population to cal-
culate the urbanization rate [74]. That is, Urb;; = urban population/total population.

The data used in this paper are from the “Energy Statistics Yearbook (2007-2020)”,
“China Urban Statistics Yearbook (2007-2020)", and “Environmental Statistics Yearbook
(2007-2020)" of each province. In order to avoid the influence of the heteroscedasticity of
the residuals, the above data are transformed by natural logarithm (E as the base). The
descriptive statistical results of each variable are shown in Table 2.

Table 2. Descriptive statistical results of variables.

Variable  Number Minimum Value Maximum Value Mean Value Standard Deviation
Capit 350 3.532 8.462 5.354 1.025
Hum;; 350 4.872 7.532 6.354 0.568
Tec; 350 2.025 3.257 2.557 1.002
Inf;; 350 1.335 2.534 2.245 0.576
Traj; 350 2.247 5.357 3.253 1.035
Polj; 350 2.968 5.025 4.354 0.576
FDI;¢ 350 0.357 5.542 2.025 1.324
Urb;; 350 3.358 4.357 3.821 1.013

3. Results” Analysis

This paper uses EVIEWS 10.0 software to carry out a unit root test on each influencing
factor to determine the stationarity of the data and uses Vif to test whether there is multi-
collinearity between their variable data. The results show that both the ADF test and PP
test reject the original hypothesis of unstable data at the level of 1%, so all variables are
stable and suitable for panel data regression. The results showed that the result tolerance
of all variables is greater than 0.1 and the Vif value is less than 10. There is no obvious
collinearity between the explained variable and the explanatory variable.
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3.1. Correlation Test

In order to avoid the occurrence of pseudo regression, this paper uses ADF and PP
unit root test to determine the stationary state of the data and the results are calculated by
R software. In addition, the variance expansion factor (VIF) is used to test whether there is
multicollinearity among the variables [75]. The specific results are shown in Table 3.

Table 3. Unit root test and Vif test results of each variable.

ADF Test PP Test

Variable Dickey Fuller Lag Order p-Value D1;k(«37pl;ual)ler Tnll)r;:;(;rtlel;ag p-Value VIF

CCjt —5.965 6 0.01 —298.04 5 0.01
Capit —5.239 6 0.01 —198.45 5 0.01 5.947
Humy; —6.276 6 0.01 —233.62 5 0.01 6.742
Tecy —6.923 6 0.01 —197.46 5 0.01 5.953
Infj —5.638 6 0.01 —256.14 5 0.01 5.482
Traj —6.053 6 0.01 —284.67 5 0.01 4.864
Poly —5.894 6 0.01 —311.25 5 0.01 3.427
FDI;; —6.053 6 0.01 —221.57 5 0.01 5.932
Urb;; —5.894 6 0.01 —354.26 5 0.01 4.653

It can be seen from Table 3 that both the ADF unit root test and PP unit root test
significantly reject the original hypothesis of unstable data at the 1% level, so all variables
are stable and suitable for panel data regression modeling. At the same time, the variance
expansion factor of each variable is less than the empirical value of 10, so there is no
multicollinearity between variables.

3.2. Empirical Results
3.2.1. Empirical Analysis of Coupling Coordination

The year 2006 is the beginning of the eleventh Five-Year Plan. In order to analyze
the results in stages, the study began in 2006. During the “11th Five-Year Plan”, “12th
Five-Year Plan”, and “13th Five-Year Plan”, China has formulated energy consumption and
environmental supervision objectives, and the energy consumption and carbon emission
plan will be reduced proportionally by phase. It can be seen from Figure 2 that the average
value of industrial low-carbon coupling in the Yangtze River Delta is high, reaching more
than 0.6; especially, since 2011, it has exceeded 0.5. It shows that the Yangtze River Delta
region has better achieved the goals of energy consumption and environmental supervision
formulated by China. This is more consistent with the research results of other scholars [76].

The coupling coordination degree
© ©o o © ©o o o o
N w » v )] ~ o) [(o)

o°
-

0
2004 2006 2008 2010 2012 2014 2016 2018 2020

Year

Figure 2. Calculation results of the low-carbon coupling coordination degree.
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3.2.2. Empirical Analysis of Driving Factors

To some extent, ordinary panel regression reflects the action intensity of each factor,
but it does not consider the factor of spatial distance, so the differences between different
observations are averaged, which can only achieve a whole interdependence and cannot
reflect the instability of parameters in different spaces. Therefore, this paper constructs a
local weighted regression model from the perspective of time and space to estimate the
parameters and uses the Gaussian kernel function method to construct the weight matrix.
At the same time, combined with the cross-validation method CV and AIC to calculate the
optimal bandwidth, it finally obtains the estimation results of the GWR and TWR models
(see Table 4 for details). The regression results of GWR and TWR are presented in Table 4.
According to the comprehensive judgment of CV, AIC, and adjusted R?, the explanatory
power of GWR is stronger than that of global linear regression and the estimated result of
TWR (the smaller the AIC and CV, the stronger the explanatory power of the model). The
time factor is added into the GWR model to construct the GTWR model and the parameter
estimation results are obtained. See Table 5 for details.

Table 4. Estimated results of GWR and TWR of driving factors from 2006 to 2019.

GWR TWR
Variable
Upper Quartile Median Lower Quartile Full Range Upper Quartile Median Lower Quartile Full Range
intercept 0.2101 0.3211 0.3557 0.6243 0.1205 0.2178 0.4611 0.7562
Capijt 0.0963 0.1013 0.2205 0.6471 0.1064 0.2053 0.3023 0.3859
Hum;; 0.1107 0.3211 0.5016 0.5835 0.0468 0.0642 0.0964 0.1763
Tecje 0.2316 0.3695 0.4072 0.6053 0.0542 0.0853 0.0906 0.1672
Inf;; 0.1492 0.2683 0.3375 0.4562 0.0431 0.0633 0.0954 0.1635
Traj 0.0856 0.1283 0.2969 0.3903 0.1989 0.2971 0.3293 0.4335
Polj 0.1903 0.3283 0.4263 0.5739 0.0279 0.0353 0.0861 0.1729
FDI;; 0.0953 0.1054 0.2854 0.6848 0.0637 0.0723 0.0964 0.1256
Urby; 0.0864 0.1854 0.2356 0.5524 0.0763 0. 0913 0.1905 0.2256
Adj-R? 0.977 0.845
Sigma 0.029 0.044
Ccv 0.344 0.612
AIV —1632.75 —1042.35
Bandwidth 0.102 0.273

Table 5. Estimated results of GTWR of each factor from 2006 to 2019.

GTWR
Variable
Upper Quartile Median Lower Quartile Full Range
intercept 0.2101 0.3211 0.3557 0.6243
Capyt 0.0963 0.1013 0.2205 0.6471
Humj, 0.1107 0.3211 0.5016 0.5835
Tecjy 0.2316 0.3695 0.4072 0.6053
Inf;; 0.1492 0.2683 0.3375 0.4562
Traj; 0.0856 0.1283 0.2969 0.3903
Pol 0.1903 0.3283 0.4263 0.5739
FDI;; 0.0953 0.1054 0.2854 0.6848
Urb;; 0.0864 0.1854 0.2356 0.5524
Adj-R? 0.977
Sigma 0.029
Ccv 0.344
ALV —1632.75
Bandwidth 0.102
Spatio-temporal 0.668

distance rate

In order to accurately observe the spatiotemporal heterogeneity of the impact of
various factors on the low-carbon coupling of the logistics industry and manufacturing
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industry, Figure 3 shows the time variation trend of the regression coefficient of various
driving factors in the Yangtze River Delta from 2006 to 2019.

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50

Regression coefficients

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Year

e () e Hum Tec 1.#INF Tra Pol FDI Urb

Figure 3. Time variation trend of the regression coefficients of driving factors in the Yangtze River
Delta from 2006 to 2019.

From the perspective of time change trend, the marginal impact of human capital,
technological progress, and urbanization level on the low-carbon coupling between logistics
and manufacturing in the Yangtze River Delta is increasing year by year; the marginal
impact of international trade, industrial policy, and foreign investment on the Yangtze
River Delta is decreasing year by year; and the marginal impact of capital investment and
infrastructure on the Yangtze River Delta is relatively stable. Therefore, in addition to
one driving factor of international trade, the assumptions put forward by other factors
have been verified. The reason international trade does not have a negative impact on
the low-carbon coupling in the Yangtze River Delta may be that the products imported
and exported locally are mostly light industrial products, which cause less emissions than
heavy manufacturing products, so it has no negative impact on the low-carbon coupling.
This is consistent with the conclusions of other scholars [50].

Table 5 reports the estimated results of the GTWR model. Compared with Table 4, it
can be seen that the estimation results of the three local regression models fluctuate in the
corresponding interval, and there are some differences in the fluctuation intensity. This
may be because different models focus on different aspects of non-stationarity. From the
results of fitting, CV, and AIC, the adjusted R? of GTWR model is 0.977 and CV and AIC
are 0.344 and —1632.75, respectively, which indicates that the goodness of fit of the GTWR
model is better than that of the GWR and TWR models, so the GTWR model considering
time and space factors is the best choice. The size of the city is the objective influence
condition of carbon emission efficiency. In order to analyze the heterogeneous impact of
the following driving factors on different city sizes, cities are divided into large cities and
small and medium-sized cities with reference to Chen Jieyi [77]; the results are shown in
Table 6 below.
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Table 6. Division of large cities, medium-sized cities, and small cities.

Large Cities Medium-Sized Cities Small Cities
Shanghai Xuzhou Sugian
Nanjing Changzhou Huaian
Suzhou Nantong Yixing
Wuxi Yancheng Huzhou
Hangzhou Jinhua Jiaxing
Ningbo Taizhou Zhoushan
Wenzhou Shaoxing Jinhua
Lianyungang Quzhou
Zhenjiang Lishui

As can be seen from Figure 4, the capital investment coefficient is positively correlated
with the coupling coordination of Yangtze River Delta. Cities with a high coefficient are
mainly concentrated in Shanghai, Hangzhou, and Nanjing. This is because the logistics
industry and manufacturing industry of these big cities have developed to a higher level;
the marginal impact of capital is less than that of surrounding areas; and these cities are
closer to big cities, so it is easier to obtain the positive promotion of big cities through
industry or technology transfer. From the time change of the regression coefficient, the
capital investment coefficient of Shanghai, Hangzhou, and Nanjing is declining, while the
the capital investment coefficient of surrounding cities is increasing. This may be because
these cities are closer to big cities and it is easier to obtain the positive promotion of big
cities through industrial or technological transfer. This shows that capital investment in
Yangtze River Delta should pay more attention to small and medium-sized cities around big
cities, so as to obtain higher marginal benefits, and then promote the coupling coordination
of the two regional industries.
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Figure 4. Spatial distribution of the regression coefficient of capital investment driving factors.

(1) Analysis of the driving factors of capital investment.

As can be seen from Figure 5, the human capital coefficient is positively correlated
with the correlation efficiency of the two industries in the Yangtze River Delta. The human
capital coefficient of big cities such as Shanghai, Hangzhou, and Nanjing in the Yangtze
River Delta and coastal areas shows an upward trend. Large cities in the Yangtze River
Delta are located in coastal areas, which have undertaken the transfer and investment of
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technology intensive industries from all over the world. The demand for high-tech talents
is increasing and the marginal impact of human capital stock is also increasing. The Yangtze
River Delta should pay more attention to human capital investment in big cities.
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Figure 5. Spatial distribution of the regression coefficient of human capital driving factors.

(2)  Analysis of the driving factors of human capital.

As can be seen from Figure 6, the technological progress coefficient is positively
correlated with the coupling coordination of the two industries in the Yangtze River Delta,
and the technological progress coefficient of Shanghai, Hangzhou, Nanjing, and other big
cities and coastal areas in the Yangtze River Delta shows a relatively stable trend. This is
because high and new technology has always been the need of industrial development in
the region and the marginal impact of technological progress is relatively stable.
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Figure 6. Spatial distribution of the regression coefficient of the driving factors of technological progress.
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®)

Analysis of the driving factors of technological progress.

As can be seen from Figure 7, the infrastructure coefficient of the Yangtze River Delta
is positively correlated with the efficiency of the two industrial linkages. The spatial
distribution of the infrastructure coefficient in the Yangtze River Delta generally presents
the characteristics of “high in the middle, medium in the north and south”. The main reason
is that the economy of the Yangtze River Delta is relatively developed; the infrastructure is
generally relatively perfect; and the marginal impact of infrastructure is relatively small,
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Figure 7. Spatial distribution of the regression coefficient of infrastructure drivers.

@)

Analysis of infrastructure drivers.

As can be seen from Figure 8, the international trade coefficient is basically positively
correlated with the coupling coordination of the two industries in the Yangtze River Delta.
The international trade coefficient of the Yangtze River Delta shows an upward trend from
the eastern coastal region to the western region. This is because the ports in the eastern
coastal area have brought a higher scale of import and export trade, and the marginal
income is declining. Owing to the convenient transportation and developed logistics
network in recent years, there is still a large space for the development of foreign trade in
inland areas.

©)

Analysis of the driving factors of international trade.

As can be seen from Figure 9, the industrial policy coefficient is basically positively
correlated with the coupling coordination of the two industries in the Yangtze River
Delta. The industrial policy coefficient of large cities in the Yangtze River Delta generally
decreases, while the coefficient of surrounding small cities generally increases. This shows
that the industrial policy of Yangtze River Delta should pay more attention to the small
and medium-sized cities around big cities in order to obtain higher marginal benefits.
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Figure 9. Spatial distribution of the regression coefficient of industrial policy driving factors.

(6) Analysis of the driving factors of industrial policy.

As can be seen from Figure 10, the foreign investment coefficient is basically positively
correlated with the coupling coordination of the two industries in the Yangtze River Delta.
As the eastern coastal area and the pilot area of opening to the outside world, the Yangtze
River Delta is the main position to attract international high-tech industry investment
transfer. Compared with big cities, FDI in small and medium-sized cities can better promote
the inflow of labor, capital, and other factors, as well as enhance regional economic vitality
and promote industrial development.

(7)  An analysis of the driving factors of foreign investment.

As can be seen from Figure 11, the urbanization level coefficient of the Yangtze River Delta
is positively correlated with the coupling coordination of the two industries. From the time
change of regression coefficient, the urbanization level coefficient of big cities in the region is
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declining and the coefficient of surrounding cities is increasing. This is because the improvement
in urbanization can accelerate industrial agglomeration, attract high-quality human resources,
and then reduce the transaction costs of logistics and manufacturing. Compared with the
higher urbanization level of large cities, the promotion of urbanization in small and medium-
sized cities can better promote manufacturing enterprises and logistics enterprises to form a
linkage spatial structure around logistics products, which is manifested as a reasonable system
for the integrated development of large and medium-sized cities based on the difference in
urban function positioning and the rational division of labor among cities. Further, it provides
opportunities and a platform for small and medium-sized cities around large cities in the
Yangtze River Delta to participate in the regional economic division of labor.
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Figure 10. Spatial distribution of the regression coefficient of foreign investment driving factors.
(8) Analysis of the driving factors of urbanization level.
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Figure 11. Spatial distribution of the regression coefficient of the driving factors of urbanization level.
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4. Discussion

Under the “double carbon” goal, it is of great significance to study low-carbon coupling
development. China’s logistics and manufacturing industries emit too much carbon dioxide,
which has brought a heavy burden to the environment and has become a major factor
restricting sustainable economic development. The existing research provides a theoretical
basis for identifying the spatial and temporal distribution pattern and driving factors of
carbon emissions, but there are still the following shortcomings: on the spatial and temporal
scale, previous research only focused on the research of a single time period or single city,
lacking research from the long-term scale and the mesoscale. In terms of driving factor
analysis, previous studies only included various driving factors into the model to discuss the
overall impact of driving factors on industrial development, ignoring the temporal and spatial
differences of the impact of driving factors on the development of low-carbon industries.

In view of this, first of all, by improving the selection of indicators for coupling and
coordination, this paper has selected the unexpected output indicators of the logistics
industry and manufacturing industry, overcoming the problem that the coupling and coor-
dination measurement is not accurate enough because of the neglect of carbon emissions in
traditional indicators, so the low-carbon coupling and coordination data obtained may be
more objective. Huang Lei’s research further supports the results of this study [78].

Secondly, this paper uses the GTWR model to study the spatio-temporal evolution
pattern and main driving factors of the low-carbon coupling development of industries
in the Yangtze River Delta from different time scales and spatial scales. It is found that
the marginal impact of human capital, technological progress, and urbanization on the
low-carbon coupling of logistics and manufacturing in the Yangtze River Delta is increasing
year by year; the marginal impact of international trade, industrial policies, and foreign
investment on the Yangtze River Delta has decreased year by year; and the marginal impact
of capital investment and infrastructure on the Yangtze River Delta is relatively stable. The
coefficients of all factors are positively correlated with the low-carbon coupling coordination
of the two industries. This conclusion is the same as that of existing studies [79].

Finally, this paper enriches the research on the low-carbon supply chain. It provides
new ideas and methods for the realization of dual carbon goals and the low-carbon sus-
tainable development of logistics and manufacturing industries. However, this study still
has limitations: owing to the large number of manufacturing market segments, the carbon
emissions of each market segment are also very different, and the manufacturing market
segments in the Yangtze River Delta are very different, with limited data. Therefore, in
future research, we can analyze the coupling coordination and driving factors of different
sub sectors from the perspective of carbon emissions of the manufacturing industry.

5. Conclusions and Suggestions

The low-carbon coupling coordination between the logistics industry and manufactur-
ing industry is an ecological innovation organization integrating economic benefits, social
benefits, and ecological benefits, which belongs to the scope of low-carbon supply chain
research. The Yangtze River Delta region is taken as an example. Firstly, the coupling
coordination model is used to calculate the low-carbon coupling coordination scheduling
of the region. Then, the GTWR model is used to explore the spatial heterogeneity of driving
factors of low-carbon coupling coordination. The main conclusions are as follows:

(1) During the survey, the average value of low-carbon coupling and coordination be-
tween logistics and manufacturing in the Yangtze River Delta is 0.61, which is at a
high development stage.

(2) This paper analyzes the eight driving factors of low-carbon coupling and coordination
between the logistics industry and manufacturing industry from both internal and
external aspects, qualitatively analyzes the action mechanism of the eight driving
factors on coupling and coordination, puts forward the corresponding theoretical
assumptions, and verifies the relevant assumptions.
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(3) In terms of the time dimension, the regression coefficients of each driving factor are
analyzed. Specifically, the marginal impact of human capital, technological progress,
and urbanization on the low-carbon coupling of logistics and manufacturing in the
Yangtze River Delta is increasing year by year; the marginal impact of international
trade, industrial policies, and foreign investment on the Yangtze River Delta region
has decreased year by year; and the marginal impact of capital investment and
infrastructure on the Yangtze River Delta is relatively stable.

(4) Interms of spatial dimension, the regression coefficients of each driving factor have a
positive impact on the coordination of low-carbon coupling. The influence of driving
factors on low-carbon coupling is significantly different between large cities and small
and medium-sized cities, and the spatial heterogeneity of driving factors is significant.

According to the above research conclusions, the following suggestions are put for-
ward: strengthen the government’s control on industrial carbon emissions; increase gov-
ernment support and improve the tax policy for low-carbon investment in enterprises;
strengthen the supervision of the public and issue detailed laws and regulations on citizens’
participation in environmental protection; strengthen technology introduction, introduce
low-carbon technologies and equipment, and establish special R&D centers; enhance the
awareness of low-carbon consumption and change the consumption model of consumers;
ensure that supply chain enterprises choose low-carbon suppliers and share high-quality
information; establish a green trade system and vigorously develop the trade of high-
quality, high value-added green clean products; and explore the low-carbon supply chain
system governance scheme of the whole industrial chain under the background of the
“dual carbon” policy.
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Abbreviations

GTWR  geographically time-weighted regression model
GWR geographically weighted regression model

Cap capital investment
Hum human capital

Tec technology level
Inf infrastructure

Tra international trade
Pol industrial policy
FDI foreign investment
Urb urbanization level

CcC low-carbon coupling coordination of the logistics industry and manufacturing industry



Sustainability 2022, 14, 14134 21 of 23

References

1.  Wang, L.; Zhao, Y.; Wang, L. Research on Carbon Reduction Effect and Mechanism of Low Carbon Pilot Cities. Geogr. Res. 2022,
41,1898-1912. [CrossRef]

2. Zhang, Z. China and the world under the goal of carbon peaking and carbon neutralization-green low-carbon transformation,
green finance, carbon market and carbon border regulation mechanism. People’s Forum-Acad. Front. 2021, 14, 69-79. [CrossRef]

3. Deng, F; Xu, L.; Fang, Y.; Gong, Q.; Li, Z. PCA-DEA-tobit regression assessment with carbon emission constraints of China’s
logistics industry. J. Clean. Prod. 2020, 271, 122548. [CrossRef]

4. Yang, J.; Cheng, J.; Huang, S. CO, emissions performance and reduction potential in China’s manufacturing industry:
A multi-hierarchy meta-frontier approach. J. Clean. Prod. 2020, 255, 120226. [CrossRef]

5. Dong, Q. Linkage layout of two industries and high quality development of logistics industry. China’s Circ. Econ. 2021, 4, 3-12.
[CrossRef]

6. Zheng, W.-L.; Wang, ].-W.; Jiang, A.-D.; Khan, S.A.R.; Yang, X.-Q.; Zhang, X.; Zhang, Z.-Y. Study on environmental performance
evaluation of different linkage development types of logistics industry and manufacturing industry considering unexpected
output. Air Waste J. Air Waste Manag. Assoc. 2021, 71, 1025-1038. [CrossRef]

7. Zhu,X.H.; Zou, ] W,; Feng, C. Analysis of industrial energy-related CO, emissions and the reduction potential of cities in the
Yangtze River Delta region. J. Clean. Prod. 2017, 168, 791-802. [CrossRef]

8. Wei, J. Current situation, problems and trends of China’s logistics industry, China economic report. In Implementation Plan for
Promoting Deep Integration and Innovative Development of Logistics Industry and Manufacturing Industry; National Development and
Reform Commission of the People’s Republic of China: Beijing, China, 2019; Volume 1, pp. 55-61.

9.  Greiner, A. Fiscal policy in an endogenous growth model with public capital and pollution. Jpn. Econ. Rev. 2005, 56, 67-84.
[CrossRef]

10. Grimaud, A.; Tournemaine, F. Why can an environmental policy tax promote growth through the channel of education? Ecol.
Econ. 2007, 62, 27-36. [CrossRef]

11.  Hamaguchi, Y. Environmental policy and social status preference for education in an Uzawa—Lucas model. Bull. Econ. Res. 2021,
73,456-468. [CrossRef]

12.  Pautrel, X. Environmental policy, education and growth: A reappraisal when lifetime is finite. Macroecon. Dyn. 2012, 16, 661-685.
[CrossRef]

13. Lopes de Sousa Jabbour, A.B.; Chiappetta Jabbour, C.J.; Sarkis, J.; Latan, H.; Roubaud, D.; Godinho Filho, M.; Queiroz, M.
Fostering low-carbon production and logistics systems: Framework and empirical evidence. Int. J. Prod. Res. 2021, 59, 7106-7125.
[CrossRef]

14. Jiang, J.; Zhang, D.; Meng, Q. Impact analysis of investment coordination mechanisms in regional low-carbon logistics network
design. Transp. Res. Part D Transp. Environ. 2021, 92, 102735. [CrossRef]

15.  Zhou, R. Research on the Site Selection Path of Low Carbon Logistics in Textile E-Commerce. Shanghai Text. Sci. Technol. 2022, 50,
56-59. [CrossRef]

16. Che, X,; Sui, B.; Liu, X. Empirical analysis on influencing factors of China’s low-carbon logistics development based on Tobit
regression. Bus. Econ. Res. 2021, 5, 101-103. [CrossRef]

17. Liao, L.; Zhang, X. Low carbon logistics path planning of multiple distribution stations considering customer satisfaction. Inf.
Control. 2020, 49, 420-428. [CrossRef]

18.  Zhou, W. B2R low-carbon logistics decision-making method based on FEAHP method and fuzzy ideal point method. Fuzzy Syst.
Math. 2020, 34, 7.

19. Liu,S,; Lu, D,; Hu, H.; Sheng, Y.; Wu, J. Research on the dynamic mechanism of low-carbon technology innovation of manufactur-
ing enterprises under the innovation coupon. Complex Syst. Complex. Sci. 2022, 2, 96-103. [CrossRef]

20. Liu, T; Song, Y.; Li, Y. Research on Carbon Asset Value remodeling and emission reduction benefits of machinery manufacturing
enterprises from the perspective of lean production. Ind. Technol. Econ. 2022, 41, 85-96. [CrossRef]

21. Luo, Z; Chen, X.; Wang, X. The role of co-opetition in low carbon manufacturing. Eur. J. Oper. Res. 2016, 253, 392-403. [CrossRef]

22. Cheng, E; Sun, Y. Empirical Study on the Impact of Environmental Regulation on Low Carbon Manufacturing Practice-Taking
Cement Enterprises as an Example. East China Econ. Manag. 2018, 32, 167-175. [CrossRef]

23. Wang, D,; Li, X.; Zhao, L. Research on supply chain coordination considering manufacturer competition under carbon trading
mechanism. Oper. Res. Manag. 2018, 27, 62-71. [CrossRef]

24. Yang, G.;Ji, G. Impact of carbon emission regulation and customer environmental awareness on green innovation. Syst. Eng.
Theory Pract. 2021, 41, 702-712. [CrossRef]

25. Li, X;; Wang, D. Research on supply chain coordination considering competition and information asymmetry under carbon
trading mechanism. Oper. Res. Manag. 2021, 30, 47-52. [CrossRef]

26. Shi, C.; Guo, E; Yan, X.; Ma, G.; Li, Q. Research on optimal emission reduction of low-carbon closed-loop supply chain based on
loss averse measure. Comput. Eng. Appl. 2018, 54, 256-262. [CrossRef]

27. Gong, Y.; Yang, X.-Q.; Ran, C.-Y; Shi, V,; Zhou, Y.-F. Evaluation of the Sustainable Coupling Coordination of the Logistics Industry

and the Manufacturing Industry in the Yangtze River Economic Belt. Sustainability 2021, 13, 5167. [CrossRef]


http://doi.org/10.11821/dlyj020210773
http://doi.org/10.16619/j.cnki.rmltxsqy.2021.14.008
http://doi.org/10.1016/j.jclepro.2020.122548
http://doi.org/10.1016/j.jclepro.2020.120226
http://doi.org/10.14089/j.cnki.cn11-3664/f.2021.04.001
http://doi.org/10.1080/10962247.2021.1920516
http://doi.org/10.1016/j.jclepro.2017.09.014
http://doi.org/10.1111/j.1468-5876.2005.00299.x
http://doi.org/10.1016/j.ecolecon.2006.11.006
http://doi.org/10.1111/boer.12259
http://doi.org/10.1017/S1365100510000830
http://doi.org/10.1080/00207543.2020.1834639
http://doi.org/10.1016/j.trd.2021.102735
http://doi.org/10.16549/j.cnki.issn.1001-2044.2022.08.072
http://doi.org/10.3969/j.issn.1002-5863.2021.05.027
http://doi.org/10.13976/j.cnki.xk.2020.9418
http://doi.org/10.13306/j.1672-3813.2022.02.012
http://doi.org/10.3969/j.issn.1004-910X.2022.04.010
http://doi.org/10.1016/j.ejor.2016.02.030
http://doi.org/10.19629/j.cnki.34-1014/f.170701010
http://doi.org/10.12005/orms.2018.0086
http://doi.org/10.12011/SETP2019-0867
http://doi.org/10.12005/orms.2021.0348
http://doi.org/10.3778/j.issn.1002-8331.1709-0308
http://doi.org/10.3390/su13095167

Sustainability 2022, 14, 14134 22 of 23

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Zheng, W.L.; Wang, ].-W.; Zhang, 5.Q.; Khan, S.A.R; Jiang, A.-D.; Yang, X.-Q.; Zhang, X. Evaluation of Linkage Efficiency between
Manufacturing Industry and Logistics Industry Considering the Output of Unexpected Pollutants. Air Waste J. Air Waste Manag.
Assoc. 2020, 71, 304-314. [CrossRef]

Wang, Y.; Liao, M.; Wang, Y.; Xu, L.; Malik, A. The impact of foreign direct investment on China’s carbon emissions through
energy intensity and emissions trading system. Energy Econ. 2021, 97, 105212. [CrossRef]

Gao, J. Performance evaluation of manufacturing collaborative logistics based on BP neural network and rough set. Neural
Comput. Appl. 2021, 33, 739-754. [CrossRef]

Hanif, S.; Mu, D.; Baig, S.; Alam, K.M. A Correlative Analysis of Modern Logistics Industry to Developing Economy Using the
VAR Model: A Case of Pakistan. J. Adv. Transp. 2020, 2020, 8861914. [CrossRef]

Zhang, J.; Luo, W,; Liu, Y. A Study on the Impact of the Business Environment on the Linkage Development of the Manufacturing
and Logistic Industries. J. Manag. 2017, 30, 25-33. [CrossRef]

Fotheringham, A.S.; Charlton, M.; Brunsdon, C. The geography of parameter space: An investigation of spatial non-stationarity.
Geogr. Inf. Syst. 1996, 10, 605-627. [CrossRef]

Wu, B.; Li, R;; Huang, B. A geographically and temporally weighted autoregressive model with application to housing prices,
International. J. Geogr. Inf. Sci. 2014, 28, 1186-1204. [CrossRef]

Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and Temporal Weighted Regression (GTWR). Geogr. Anal. 2015, 47, 431-452.
[CrossRef]

Guo, Y,; Tang, Q.; Gong, D.-Y.; Zhang, Z. Estimating ground-level PM 2.5 concentrations in Beijing using a satellite-based
geographically and temporally weighted regression model. Remote Sens. Environ. 2017, 198, 140-149. [CrossRef]

Liu, J.; Zhao, Y.; Yang, Y. A mixed geographically and temporally weighted regression: Exploring spatial-temporal variationsfrom
global and local perspectives. Entropy 2017, 19, 53. [CrossRef]

Ouyang, X.; Gao, B.; Du, K.; Du, G. Industrial sectors’” energy rebound effect: An empirical study of Yangtze River Delta urban
agglomeration. Energy 2018, 145, 408-416. [CrossRef]

Shinwari, R.; Wang, Y.; Maghyereh, A.; Awartani, B. Does Chinese foreign direct investment harm CO, emissions in the Belt and
Road Economies. Environ. Sci. Pollut. Res. 2022, 29, 39528-39544. [CrossRef]

Zhang, N.; Fan, H.; Mu, H. The Analysis of Economic Growth Based on Structural Upgrade of Human Capital. Popul. Econ. 2020,
2, 87-101. [CrossRef]

Bano, S.; Zhao, Y.; Ahmad, A.; Wang, S.; Liu, Y. Identifying the impacts of human capital on carbon emissions in Pakistan. J. Clean.
Prod. 2018, 183, 1082-1092. [CrossRef]

Li, X.; Ullah, S. Caring for the environment: How CO, emissions respond to human capital in BRICS economies? Environ. Sci.
Pollut. Res. 2022, 29, 18036-18046. [CrossRef] [PubMed]

Sharifi, E; Birt, A.G.; Gu, C.; Shelton, ].; Farzaneh, R.; Zietsman, J.; Fraser, A.; Chester, M. Regional CO, impact assessment of
road infrastructure improvements. Transp. Res. Part D Transp. Environ. 2021, 90, 102638. [CrossRef]

Kang, Z.-Y,; Li, K.; Qu, J. The path of technological progress for China’s low-carbon development: Evidence from three urban
agglomerations. J. Clean. Prod. 2018, 178, 644-654. [CrossRef]

Li, R; Lin, L.; Jiang, L.; Liu, Y.; Lee, C.-C. Does technology advancement reduce aggregate carbon dioxide emissions? Evidence
from 66 countries with panel threshold regression model. Environ. Sci. Pollut. Res. 2021, 28, 19710-19725. [CrossRef] [PubMed]
Zhang, B.; Li, H. Promoting the deep integration of Internet and manufacturing industry: Mechanism and path of innovation
based on “Internet plus”. Econ. Manag. Res. 2017, 38, 87-96. [CrossRef]

Yu, X.; Wu, Z.; Zheng, H.; Li, M.; Tan, T. How urban agglomeration improve the emission efficiency: A spatial econometric
analysis of the Yangtze River Delta urban agglomeration in China. J. Environ. Manag. 2020, 260, 110061. [CrossRef]

Huang, Q.; Hu, Y.; Luo, L. Spatial analysis of carbon dioxide emissions from producer services: An empirical analysis based on
panel data from China. Environ. Sci. Pollut. Res. 2022, 29, 53293-53305. [CrossRef]

Zhang, Z.; Wu, D. Regional integration, opening up and industrial agglomeration development: A case study of the Yangtze
River economic belt. Sci. Technol. Prog. Countermeas. 2018, 35, 39—46. [CrossRef]

Andersson, EN. International trade and carbon emissions: The role of Chinese institutional and policy reforms. J. Environ. Manag.
2018, 205, 29-39. [CrossRef]

Wang, L.; Su, C.-W.; Alj, S.; Chang, H.-L. How China is fostering sustainable growth: The interplay of green investment and
production-based emission. Environ. Sci. Pollut. Res. 2020, 27, 39607-39618. [CrossRef]

Khan, Y.; Hassan, T.; Kirikkaleli, D.; Xiuqgin, Z.; Shukai, C. The impact of economic policy uncertainty on carbon emissions:
Evaluating the role of foreign capital investment and renewable energy in East Asian economies. Environ. Sci. Pollut. Res. 2022,
29, 18527-18545. [CrossRef] [PubMed]

Lin, C. Research on the Impact Mechanism of China’s Producer Services FDI on Manufacturing Efficiency. Master’s Thesis,
Guizhou University, Guiyang, China, 2020. [CrossRef]

Wang, Z.; Gao, L.; Wei, Z.; Majeed, A.; Alam, 1. How FDI and technology innovation mitigate CO, emissions in high-tech
industries: Evidence from province-level data of China. Environ. Sci. Pollut. Res. 2022, 29, 4641-4653. [CrossRef] [PubMed]
Sun, F; Han, J.; Wang, X. Analysis on Driving factors of coordinated development of ecology and industry in Beijing Tianjin
Hebei ecological conservation area. Agric. Resour. Reg. China 2018, 39, 68-76. [CrossRef]

Zhang, Y. Transformation and upgrading of China’s carbon reduction policy system. Tianjin Soc. Sci. 2022, 3, 90-99. [CrossRef]


http://doi.org/10.1080/10962247.2020.1811799
http://doi.org/10.1016/j.eneco.2021.105212
http://doi.org/10.1007/s00521-020-05099-9
http://doi.org/10.1155/2020/8861914
http://doi.org/10.3969/j.issn.1674-6511.2017.05.003
http://doi.org/10.1080/026937996137909
http://doi.org/10.1080/13658816.2013.878463
http://doi.org/10.1111/gean.12071
http://doi.org/10.1016/j.rse.2017.06.001
http://doi.org/10.3390/e19020053
http://doi.org/10.1016/j.energy.2018.01.009
http://doi.org/10.1007/s11356-021-18357-7
http://doi.org/10.3969/j.issn.1000-4149.2020.00.017
http://doi.org/10.1016/j.jclepro.2018.02.008
http://doi.org/10.1007/s11356-021-17025-0
http://www.ncbi.nlm.nih.gov/pubmed/34677778
http://doi.org/10.1016/j.trd.2020.102638
http://doi.org/10.1016/j.jclepro.2018.01.027
http://doi.org/10.1007/s11356-020-11955-x
http://www.ncbi.nlm.nih.gov/pubmed/33405133
http://doi.org/10.13502/j.cnki.issn1000-7636.2017.02.010
http://doi.org/10.1016/j.jenvman.2019.110061
http://doi.org/10.1007/s11356-022-19590-4
http://doi.org/10.6049/kjjbydc.2018040697
http://doi.org/10.1016/j.jenvman.2017.09.052
http://doi.org/10.1007/s11356-020-09933-4
http://doi.org/10.1007/s11356-021-17000-9
http://www.ncbi.nlm.nih.gov/pubmed/34689276
http://doi.org/10.27047/d.cnki.ggudu.2020.000239
http://doi.org/10.1007/s11356-021-15946-4
http://www.ncbi.nlm.nih.gov/pubmed/34414540
http://doi.org/10.7621/cjarrp.1005-9121.20180510
http://doi.org/10.16240/j.cnki.1002-3976.2022.03.011

Sustainability 2022, 14, 14134 23 of 23

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

Wu, H.; Xu, L.; Ren, S.; Hao, Y.; Yan, G. How do energy consumption and environmental regulation affect carbon emissions in
China? New evidence from a dynamic threshold panel model. Resour. Policy 2020, 67, 101678. [CrossRef]

Song, L.; Zhou, X. How does industrial policy affect manufacturing carbon emission? Evidence from Chinese provincial
sub-sectoral data. Environ. Sci. Pollut. Res. 2021, 28, 61608-61622. [CrossRef] [PubMed]

Wang, Y. Research on the Influence of the Coupling Coordination of the Logistics Industry and Manufacturing Industry on the
Upgrading of the Manufacturing Industry. IEEE Access 2022, 10, 30189-30201. [CrossRef]

Huang, B.; Wu, B.; Barry, M. Geographically and Temporally Weighted Regression for Spatio—Temperal Modeling of House
Prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383—401. [CrossRef]

Bai, D.; Dong, Q.; Khan, S.A.R.; Chen, Y.; Wang, D.; Yang, L. Spatial analysis of logistics ecological efficiency and its driving
factors in China: Based on super-SBM-undesirable and spatial Dubin models. Environ. Sci. Pollut. Res. 2021, 29, 10138-10156.
[CrossRef]

Long, R.; Ouyang, H.; Guo, H. Super-slack-based measuring data envelopment analysis on the spatial-temporal patterns of
logistics ecological efficiency using global Malmquist Index model. Environ. Technol. Innov. 2020, 18, 100770. [CrossRef]

Gong, X. Coupling Coordination Evaluation and Spatial Differentiation Analysis of Manufacturing Industry and Logistics
Industry in China. Resour. Dev. Mark. 2018, 34, 242-248. [CrossRef]

Su, T.; Zhang, L.; Zhaom, X. The impact of the coupling of manufacturing and logistics on the productivity of manufacturing
enterprises — from the perspective of industrial symbiosis. Ind. Eng. Manag. 2020, 25, 42-49. [CrossRef]

Chen, C.; Chen, J.; Gu, ]. The study on the evolution of interactive development between manufacturing and logistics industry in
china. J. Shandong Univ. (Philos. Soc. Sci.) 2020, 2, 73-81. [CrossRef]

Xu, J.Z.; Wang, M.M.; Guan, J. Study on the mechanism of energy consumption carbon emission and green innovation efficiency
from the perspective of dynamic endogenous—An Empirical Analysis Based on China’s equipment manufacturing industry.
Manag. Rev. 2019, 31, 81-93. [CrossRef]

Zhang, S.; Wang, J.; Zheng, W. Analysis on temporal and spatial differences of carbon emissions and driving factors in transporta-
tion in China. J. Environ. Sci. 2017, 37, 4787-4797. [CrossRef]

Zheng, W.L.; Wang, J.; Zhang, S. Analysis on carbon emission decoupling effect and driving factors of environmental pollution in
China’s transportation industry. Chem. Eng. Trans. 2018, 66, 637-642. [CrossRef]

Zhang, ]. Estimation of China’s provincial capital stock (1952-2004) with applications. J. Chin. Econ. Bus. Stud. 2008, 6, 177-196.
[CrossRef]

Zhang, H.; Zhou, N. Analysis on the coordinated development of manufacturing and service industries and its influencing
factors. Stat. Decis. 2019, 35, 86-90. [CrossRef]

Démurger, S. Infrastructure development and economic growth: An explanation for regional disparities in China? J. Comp. Econ.
2000, 29, 95-117. [CrossRef]

Sang, R.; Han, C.; Li, X. How export market competition affects enterprise productivity: An analysis from the perspective of
product allocation. Ind. Econ. Res. 2018, 96, 45-57. [CrossRef]

Dai, X.; Wang, R. “The Belt and Road” initiative and foreign direct investment: Analysis on the mechanism of “five links”. Financ.
Res. 2022, 48, 79-93. [CrossRef]

Liang, W.; Sun, H.; Liu, H. The Coordinated Development of New Urbanization and Logistics in China—Taking the Yangtze
River Economic Belt as an Example. Modern Finance and Economics. J. Tianjin Univ. Financ. Econ. 2018, 38, 69-80. [CrossRef]
Cong, J. Research on the impact of carbon emission of Chinese urban form under the vision of carbon neutrality-Based on the
data analysis of 289 prefecture level cities. Guizhou Soc. Sci. 2021, 9, 125-134. [CrossRef]

Li, X. Research on Industrial Structure and Productivity Changes of Manufacturing Industry in the Yangtze River Delta under
Energy and Environmental Constraints. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2018.
Chen, J.; Zhang, S.; Pan, L. Research on the Characteristics of City Size Distribution in China — Analysis Based on Census Data
from 2010 to 2019. Ind. Econ. Rev. 2022, 1, 185-200. [CrossRef]

Huang, L. Research on Environmental Regulation, Industrial Agglomeration and Urban Industrial Green Development Efficiency
of the Yangtze River Economic Belt. Ph.D. Thesis, Wuhan University, Wuhan, China, 2019. [CrossRef]

Lv, Q. Evaluation of Industrial Green Growth Efficiency of the Three Urban Agglomerations in the Yangtze River Economic Belt
and Research on Its Influencing Factors. Master’s Thesis, Chonggqing Technology and Business University, Chongging, China, 2021.
[CrossRef]


http://doi.org/10.1016/j.resourpol.2020.101678
http://doi.org/10.1007/s11356-021-15107-7
http://www.ncbi.nlm.nih.gov/pubmed/34184215
http://doi.org/10.1109/ACCESS.2022.3158926
http://doi.org/10.1080/13658810802672469
http://doi.org/10.1007/s11356-021-16323-x
http://doi.org/10.1016/j.eti.2020.100770
http://doi.org/10.3969/j.issn.1005-8141.2018.02.017
http://doi.org/10.19495/j.cnki.1007-5429.2020.03.006
http://doi.org/10.19836/j.cnki.37-1100/c.2020.02.008
http://doi.org/10.14120/j.cnki.cn11-5057/f.2019.09.007
http://doi.org/10.13671/j.hjkxxb.2017.0242
http://doi.org/10.3303/CET1866107
http://doi.org/10.1080/14765280802028302
http://doi.org/10.13546/j.cnki.tjyjc.2019.11.020
http://doi.org/10.1006/jcec.2000.1693
http://doi.org/10.13269/j.cnki.ier.2018.05.004
http://doi.org/10.16538/j.cnki.jfe.20210918.201
http://doi.org/10.19559/j.cnki.12-1387.2018.08.006
http://doi.org/10.13713/j.cnki.cssci.2021.09.017
http://doi.org/10.19313/j.cnki.cn10-1223/f.2022.01.011
http://doi.org/10.27379/d.cnki.gwhdu.2019.001816
http://doi.org/10.27713/d.cnki.gcqgs.2021.000033

	Introduction 
	Research Method 
	Research Hypothesis 
	The Mechanisms and Assumptions of Internal Factors 
	The Mechanisms and Assumptions of External Factors 

	Method Introduction and Variable Selection 
	The Coupling Coordination Model of the Logistics Industry and Manufacturing Industry 
	The GTWR Model 
	Construction of the Low-Carbon Coupling Coordination System 
	Variable Selection of Driving Factors 


	Results’ Analysis 
	Correlation Test 
	Empirical Results 
	Empirical Analysis of Coupling Coordination 
	Empirical Analysis of Driving Factors 


	Discussion 
	Conclusions and Suggestions 
	References

