Efficient Degradation of 4-Acetamidoantipyrin Using a Thermally Activated Persulfate System
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Experimental Procedures
2.3. Analytical Methods
2.4. Response Surface Methodology Analysis
3. Results and Discussion
3.1. Degradation of 4-AAA Using Thermally Activated PDS with Changes of Single Reaction Conditions
3.2. Optimization of 4-AAA Degradation Conditions in Thermally Activated PDS System
3.2.1. Predicting the Optimal 4-AAA Degradation Conditions with Response Surface Methodology
3.2.2. Analyzing the Interaction of Reaction Conditions for 4-AAA Degradation Using Response Surface Methodology
3.3. Exploration of Reaction Mechanism of 4-AAA in Thermally Activated PDS Systems
3.3.1. Identifying the Major Reactive Species for 4-AAA Degradation
3.3.2. Identifying the Degradation Intermediates of 4-AAA Using Thermally Activated PDS
3.4. Effects of Water Constitutions on Degradation of 4-AAA Using Thermally Activated PDS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Ok, Y.S.; Kim, K.-H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017, 596, 303–320. [Google Scholar] [CrossRef]
- Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G.M. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 2017, 174, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.J.; Sirtori, C.; Mezcua, M.; Fernandez-Alba, A.R.; Aguera, A. Photodegradation study of three dipyrone metabolites in various water systems: Identification and toxicity of their photodegradation products. Water Res. 2008, 42, 2698–2706. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.J.; Gómez-Ramos, M.M.; Malato, O.; Mezcua, M.; Férnandez-Alba, A.R. Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography–quadrupole-time-of-flight mass spectrometry with an accurate-mass database. J. Chromatogr. A 2010, 1217, 7038–7054. [Google Scholar] [CrossRef] [PubMed]
- Heeb, F.; Singer, H.; Pernet-Coudrier, B.; Qi, W.; Liu, H.; Longree, P.; Muller, B.; Berg, M. Organic micropollutants in rivers downstream of the megacity Beijing: Sources and mass fluxes in a large-scale wastewater irrigation system. Environ. Sci. Technol. 2012, 46, 8680–8688. [Google Scholar] [CrossRef] [Green Version]
- Wiegel, S.; Aulinger, A.; Brockmeyer, R.; Harms, H.; Loffler, J.; Reincke, H.; Schmidt, R.; Stachel, B.; von Tumpling, W.; Wanke, A. Pharmaceuticals in the river Elbe and its tributaries. Chemosphere 2004, 57, 107–126. [Google Scholar] [CrossRef]
- Evgenidou, E.N.; Konstantinou, I.K.; Lambropoulou, D.A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review. Sci. Total Environ. 2015, 505, 905–926. [Google Scholar] [CrossRef]
- Wielens Becker, R.; Ibanez, M.; Cuervo Lumbaque, E.; Wilde, M.L.; Flores da Rosa, T.; Hernandez, F.; Sirtori, C. Investigation of pharmaceuticals and their metabolites in Brazilian hospital wastewater by LC-QTOF MS screening combined with a preliminary exposure and in silico risk assessment. Sci. Total Environ. 2020, 699, 134218. [Google Scholar] [CrossRef]
- Bai, X.; Liang, W.; Sun, J.; Zhao, C.; Wang, P.; Zhang, Y. Enhanced production of microalgae-originated photosensitizer by integrating photosynthetic electrons extraction and antibiotic induction towards photocatalytic degradation of antibiotic: A novel complementary treatment process for antibiotic removal from effluent of conventional biological wastewater treatment. J. Environ. Manag. 2022, 308, 114527. [Google Scholar] [CrossRef]
- Kamaruddin, M.A.; Ibrahim, M.H.; Thung, L.M.; Emmanuel, M.I.; Niza, N.M.; Shadi, A.M.H.; Norashiddin, F.A. Sustainable synthesis of pectinolytic enzymes from citrus and Musa acuminata peels for biochemical oxygen demand and grease removal by batch protocol. Appl. Water Sci. 2019, 9, 68. [Google Scholar] [CrossRef]
- Asghar, M.A.; Zhu, Q.; Sun, S.; Peng, Y.; Shuai, Q. Suspect screening and target quantification of human pharmaceutical residues in the surface water of Wuhan, China, using UHPLC-Q-Orbitrap HRMS. Sci. Total Environ. 2018, 635, 828–837. [Google Scholar] [CrossRef]
- Favier, M.; Dewil, R.; Van Eyck, K.; Van Schepdael, A.; Cabooter, D. High-resolution MS and MS(n) investigation of ozone oxidation products from phenazone-type pharmaceuticals and metabolites. Chemosphere 2015, 136, 32–41. [Google Scholar] [CrossRef]
- Sieira, B.J.; Quintana, J.B.; Cela, R.; Rodil, R. Reaction of phenazone-type drugs and metabolites with chlorine and monochloramine. Sci. Total Environ. 2021, 757, 143770. [Google Scholar] [CrossRef]
- Rastogi, A.; Al-Abed, S.R.; Dionysiou, D.D. Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl. Catal. B Environ. 2009, 85, 171–179. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.-Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, K.-M.; Kim, H.-E.; Lee, H.-J.; Lee, C.; Lee, C. Disintegration of Waste Activated Sludge by Thermally-Activated Persulfates for Enhanced Dewaterability. Environ. Sci. Technol. 2016, 50, 7106–7115. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl. Catal. B-Environ. 2004, 54, 155–163. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, J.; Lu, X.; Ma, J.; Liu, Y. Production of Sulfate Radical and Hydroxyl Radical by Reaction of Ozone with Peroxymonosulfate: A Novel Advanced Oxidation Process. Environ. Sci. Technol. 2015, 49, 7330–7339. [Google Scholar] [CrossRef]
- Wei, Z.; Villamena, F.A.; Weavers, L.K. Kinetics and Mechanism of Ultrasonic Activation of Persulfate: An in Situ EPR Spin Trapping Study. Environ. Sci. Technol. 2017, 51, 3410–3417. [Google Scholar] [CrossRef]
- Shakeri, E.; Mousazadeh, M.; Ahmadpari, H.; Kabdasli, I.; Jamali, H.A.; Graça, N.S.; Emamjomeh, M.M. Electrocoagulation-flotation treatment followed by sedimentation of carpet cleaning wastewater: Optimization of key operating parameters via RSM-CCD. Desalination Water Treat. 2021, 227, 163–176. [Google Scholar] [CrossRef]
- Li, J.; Zou, J.; Zhang, S.; Cai, H.; Huang, Y.; Lin, J.; Li, Q.; Yuan, B.; Ma, J. Sodium tetraborate simultaneously enhances the degradation of acetaminophen and reduces the formation potential of chlorinated by-products with heat-activated peroxymonosulfate oxidation. Water Res. 2022, 224, 119095. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Zou, J.; Lin, J.; Li, Q.; Li, J.; Huang, Y.; Yang, H.; Yuan, B.; Ma, J. Elimination of acetaminophen in sodium carbonate-enhanced thermal/peroxymonosulfate process: Performances, influencing factors and mechanism. Chem. Eng. J. 2022, 449, 137765. [Google Scholar] [CrossRef]
- Cai, H.; Zou, J.; Lin, J.; Li, J.; Huang, Y.; Zhang, S.; Yuan, B.; Ma, J. Sodium hydroxide-enhanced acetaminophen elimination in heat/peroxymonosulfate system: Production of singlet oxygen and hydroxyl radical. Chem. Eng. J. 2022, 429, 132438. [Google Scholar] [CrossRef]
- Guo, Y.; Liang, H.; Bai, L.; Huang, K.; Xie, B.; Xu, D.; Wang, J.; Li, G.; Tang, X. Application of heat-activated peroxydisulfate pre-oxidation for degrading contaminants and mitigating ultrafiltration membrane fouling in the natural surface water treatment. Water Res. 2020, 179, 115905. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q.; Ji, Q.Q.; Lai, B. Degradation of p-nitrophenol (PNP) in aqueous solution by Fe-0-PM-PS system through response surface methodology (RSM). Appl. Catal. B-Environ. 2017, 200, 633–646. [Google Scholar] [CrossRef]
- Naghdali, Z.; Sahebi, S.; Mousazadeh, M.; Jamali, H.A. Optimization of the Forward Osmosis Process Using Aquaporin Membranes in Chromium Removal. Chem. Eng. Technol. 2019, 43, 298–306. [Google Scholar] [CrossRef]
- Umamaheswari, J.; Bharathkumar, T.; Shanthakumar, S.; Gothandam, K.M. A feasibility study on optimization of combined advanced oxidation processes for municipal solid waste leachate treatment. Process Saf. Environ. Prot. 2020, 143, 212–221. [Google Scholar] [CrossRef]
- Furman, O.S.; Teel, A.L.; Watts, R.J. Mechanism of Base Activation of Persulfate. Environ. Sci. Technol. 2010, 44, 6423–6428. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef]
- Luo, C.; Gao, J.; Wu, D.; Jiang, J.; Liu, Y.; Zhou, W.; Ma, J. Oxidation of 2,4-bromophenol by UV/PDS and formation of bromate and brominated products: A comparison to UV/H2O2. Chem. Eng. J. 2019, 358, 1342–1350. [Google Scholar] [CrossRef]
- Tsitonaki, A.; Petri, B.; Crimi, M.; Mosbaek, H.; Siegrist, R.L.; Bjerg, P.L. In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 55–91. [Google Scholar] [CrossRef]
- Ghauch, A.; Tuqan, A.M. Oxidation of bisoprolol in heated persulfate/H2O systems: Kinetics and products. Chem. Eng. J. 2012, 183, 162–171. [Google Scholar] [CrossRef]
- Fan, Y.; Ji, Y.; Kong, D.; Lu, J.; Zhou, Q. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process. J. Hazard. Mater. 2015, 300, 39–47. [Google Scholar] [CrossRef]
- Hu, C.-Y.; Hou, Y.-Z.; Lin, Y.-L.; Deng, Y.-G.; Hua, S.-J.; Du, Y.-F.; Chen, C.-W.; Wu, C.-H. Investigation of iohexol degradation kinetics by using heat-activated persulfate. Chem. Eng. J. 2020, 379, 122403. [Google Scholar] [CrossRef]
- Oh, S.-Y.; Kim, H.-W.; Park, J.-M.; Park, H.-S.; Yoon, C. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. J. Hazard. Mater. 2009, 168, 346–351. [Google Scholar] [CrossRef]
- Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater. 2010, 179, 552–558. [Google Scholar] [CrossRef]
- Yazici Guvenc, S. Optimization of COD removal from leachate nanofiltration concentrate using H2O2/Fe+2/heat—Activated persulfate oxidation processes. Process Saf. Environ. Prot. 2019, 126, 7–17. [Google Scholar] [CrossRef]
- Neta, P.; Madhavan, V.; Zemel, H.; Fessenden, R.W. Rate Constants and Mechanism of Reaction of SO4.- with Aromatic Compounds. J. Am. Chem. Soc. 1977, 126, 7–17. [Google Scholar]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (-OH/O- in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate Constants for Reactions of Inorganic Radicals in Aqueous-Solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Liu, C.; Fang, G.; Chu, L.; Gu, C.; Gao, J. Persistent Free Radicals from Low-Molecular-Weight Organic Compounds Enhance Cross-Coupling Reactions and Toxicity of Anthracene on Amorphous Silica Surfaces under Light. Environ. Sci. Technol. 2021, 55, 3716–3726. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, V.; Fessenden, R.W. Flash photolysis of transient radicals. 1. X2- with X = Cl, Br, I, and SCN. J. Phys. Chem. 1985, 89, 2330–2335. [Google Scholar] [CrossRef]
- McElroy, W.J. A laser photolysis study of the reaction of sulfate(1-) with chloride and the subsequent decay of chlorine(1-) in aqueous solution. J. Phys. Chem. 1990, 94, 2435–2441. [Google Scholar] [CrossRef]
- Fang, J.; Fu, Y.; Shang, C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environ. Sci. Technol. 2014, 48, 1859–1868. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, X.; Jiang, J.; Ma, J.; Liu, G.; Cao, Y.; Liu, W.; Li, J.; Pang, S.; Kong, X.; et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate. Water Res. 2017, 118, 196–207. [Google Scholar] [CrossRef]
- Lei, X.; Lei, Y.; Guan, J.; Westerhoff, P.; Yang, X. Kinetics and Transformations of Diverse Dissolved Organic Matter Fractions with Sulfate Radicals. Environ. Sci. Technol. 2022, 56, 4457–4466. [Google Scholar] [CrossRef]
- Vasiliadou, I.A.; Sanchez-Vazquez, R.; Molina, R.; Martinez, F.; Melero, J.A.; Bautista, L.F.; Iglesias, J.; Morales, G. Biological removal of pharmaceutical compounds using white-rot fungi with concomitant FAME production of the residual biomass. J. Environ. Manag. 2016, 180, 228–237. [Google Scholar] [CrossRef]
Variables | Code | Coded Levels | ||||
---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | ||
Temperature (°C) | A | 40 | 50 | 60 | 70 | 80 |
pH | B | 3 | 5 | 7 | 9 | 11 |
[4-AAA]0:[PDS]0 | C | 1:20 | 1:30 | 1:40 | 1:50 | 1:60 |
Number | Temperature (°C) | pH | [4-AAA]0:[PDS]0 | Removal Rate of 4-AAA (%) |
---|---|---|---|---|
1 | 40 | 3 | 1:20 | 9.12 |
2 | 70 | 11 | 1:40 | 66.28 |
3 | 50 | 11 | 1:30 | 13.72 |
4 | 70 | 7 | 1:50 | 71.39 |
5 | 70 | 3 | 1:60 | 68.51 |
6 | 40 | 11 | 1:50 | 15.76 |
7 | 50 | 5 | 1:20 | 3.07 |
8 | 40 | 5 | 1:40 | 11.26 |
9 | 50 | 7 | 1:40 | 15.43 |
10 | 50 | 9 | 1:60 | 21.05 |
11 | 60 | 11 | 1:60 | 37.70 |
12 | 80 | 5 | 1:60 | 98.87 |
13 | 60 | 5 | 1:50 | 28.21 |
14 | 60 | 7 | 1:20 | 12.94 |
15 | 60 | 3 | 1:30 | 12.70 |
16 | 40 | 9 | 1:30 | 10.26 |
17 | 80 | 11 | 1:20 | 78.60 |
18 | 80 | 7 | 1:30 | 97.60 |
19 | 60 | 9 | 1:40 | 24.52 |
20 | 40 | 7 | 1:60 | 15.51 |
21 | 70 | 5 | 1:30 | 49.59 |
22 | 80 | 3 | 1:40 | 98.02 |
23 | 80 | 9 | 1:50 | 98.56 |
24 | 50 | 3 | 1:50 | 16.43 |
25 | 70 | 9 | 1:20 | 40.89 |
Source | Sum of Squares | df | Mean Square | F Value | p Value Prob > F | |
---|---|---|---|---|---|---|
Y—removal of 4-AAA | 26,387.49 | 9 | 2931.94 | 81.61 | <0.0001 | highly significant |
A—temperature | 19,217.62 | 1 | 19,217.62 | 534.92 | <0.0001 | highly significant |
B—initial pH | 35.16 | 1 | 35.16 | 0.98 | 0.3382 | |
C—PDS concentrations | 1035.57 | 1 | 1035.57 | 28.82 | <0.0001 | highly significant |
AB | 1.59 | 1 | 1.59 | 0.044 | 0.8361 | |
AC | 91.55 | 1 | 91.55 | 2.55 | 0.1313 | |
BC | 2.24 | 1 | 2.24 | 0.062 | 0.8062 | |
A2 | 3134.93 | 1 | 3134.93 | 87.26 | <0.0001 | highly significant |
B2 | 3.86 | 1 | 3.86 | 0.11 | 0.7477 | |
C2 | 77.03 | 1 | 77.03 | 2.14 | 0.1638 | |
Residue | 538.89 | 15 | 35.93 | |||
Cor Total | 26,926.38 | 24 |
Temperature (°C) | [4-AAA]0:[PDS]0 | pH | Degradation Efficiency of 4-AAA (%) | |
---|---|---|---|---|
Predicted Value | Experimental Value | |||
79.24 | 1:56 | 3.73 | 100.718 | 98.38 |
79.53 | 1:47 | 7.34 | 100.418 | 98.48 |
79.11 | 1:58 | 11.00 | 106.152 | 94.34 |
No. | Retention Time (min) | Structural Formula | Formula | Exact Mass (M) | [M + 1]+ |
---|---|---|---|---|---|
P-235 | 5.951 | C12H14N2O3 | 234.10044 | 235 | |
P-165 | 4.797 | C9H12N2O | 164.09000 | 165 | |
P-262 | 5.067 | C13H15N3O3 | 261.11134 | 262 |
System | Reaction Conditions | Reaction Rate Constant | References |
---|---|---|---|
4-AAA/solar UV | [4-AAA]0 = 10 mg L−1, freshwater, 250 W m−2 | k = 0.025 h−1 | [3] |
4-AAA/O3 | [4-AAA]0 = 2.4 µM, pH 7 with phosphate buffer (50 mM), [4-AAA]0:[O3]0 = 2:1, 1:1, 1:2, 1:4, 1:8 | kO34-AAA = 7 × 104 M−1 s−1 | [12] |
4-AAA/white-rot fungal biomass | [4-AAA]0 = 50 mg L−1, [fungal sludge]0 = 250 mg L−1, 209 °C | 40% removal in 7 days. | [48] |
4-AAA/Cl2 | [4-AAA]0 = 1 µg mL−1, [Cl2]0 = 10 µg mL−1, pH = 5.7, 7, 8.3 | kCl24-AAA = 195 M−1 s−1 (pH 5.7) | [13] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Li, S.; Wang, X.; Li, Z.; Zhan, Y.; Chen, C. Efficient Degradation of 4-Acetamidoantipyrin Using a Thermally Activated Persulfate System. Sustainability 2022, 14, 14300. https://doi.org/10.3390/su142114300
Wang Q, Li S, Wang X, Li Z, Zhan Y, Chen C. Efficient Degradation of 4-Acetamidoantipyrin Using a Thermally Activated Persulfate System. Sustainability. 2022; 14(21):14300. https://doi.org/10.3390/su142114300
Chicago/Turabian StyleWang, Qinghong, Siyu Li, Xin Wang, Zhuoyu Li, Yali Zhan, and Chunmao Chen. 2022. "Efficient Degradation of 4-Acetamidoantipyrin Using a Thermally Activated Persulfate System" Sustainability 14, no. 21: 14300. https://doi.org/10.3390/su142114300
APA StyleWang, Q., Li, S., Wang, X., Li, Z., Zhan, Y., & Chen, C. (2022). Efficient Degradation of 4-Acetamidoantipyrin Using a Thermally Activated Persulfate System. Sustainability, 14(21), 14300. https://doi.org/10.3390/su142114300