Different Interspecies Demographic Histories within the Same Locality: A Case Study of Sea Cucumbers, Cuttlefish and Clams in Greek Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal and Tissue Collection
2.2. Genomic Analysis
2.3. Demographic Analyses
3. Results
3.1. H. tubulosa
3.1.1. SNPs Calling
3.1.2. Genetic Differentiation and Diversity
3.1.3. Genomics and Environmental Association Analysis
3.1.4. Coalescent Demographic Analyses
3.2. S. officinalis
3.2.1. SNPs Calling
3.2.2. Genetic Differentiation and Diversity
3.2.3. Genomics and Environmental Association Analysis
3.2.4. Coalescent Demographic Analyses
3.3. V. verrucosa
3.3.1. SNPs Calling
3.3.2. Genetic Differentiation and Diversity
3.3.3. Genomics and Environmental Association Analysis
3.3.4. Coalescent Demographic Analyses
4. Discussion
4.1. Limitations of the Sampling Scheme
4.2. Population Structure and Genetic Differentiation
4.3. Genetic Diversity and Environment
4.4. Demographic History
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dionne, M.; Miller, K.M.; Dodson, J.J.; Caron, F.; Bernatchez, L. Clinal variation in MHC diversity with temperature: Evidence for the role of host-pathogen interaction on local adaptation in Atlantic salmon. Evolution 2007, 61, 2154–2164. [Google Scholar] [CrossRef]
- Temunović, M.; Franjić, J.; Satovic, Z.; Grgurev, M.; Frascaria-Lacoste, N.; Fernández-Manjarrés, J. Environmental heterogeneity explains the genetic structure of continental and Mediterranean populations of Fraxinus angustifolia Vahl. PLoS ONE 2012, 7, e42764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrigan, L.J.; Lucas, M.C.; Winfield, I.J.; Hoelzel, A.R. Environmental factors associated with genetic and phenotypic divergence among sympatric populations of Arctic charr (Salvelinus alpinus). J. Evol. Biol. 2011, 24, 1906–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gkafas, G.A.; de Jong, M.; Exadactylos, A.; Raga, J.A.; Aznar, F.J.; Hoelzel, A.R. Sex-specific impact of inbreeding on pathogen load in the striped dolphin. Proc. R. Soc. B Biol. Sci. 2020, 287, 20200195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoelzel, A.R.; Hey, J.; Dahlheim, M.E.; Nicholson, C.; Burkanov, V.; Black, N. Evolution of population structure in a highly social top predator, the killer whale. Mol. Biol. Evol. 2007, 24, 1407–1415. [Google Scholar] [CrossRef]
- Segura-García, I.; Rojo-Arreola, L.; Rocha-Olivares, A.; Heckel, G.; Gallo-Reynoso, J.P.; Hoelzel, R. Eco-Evolutionary Processes Generating Diversity Among Bottlenose Dolphin, Tursiops truncatus, Populations off Baja California, Mexico. Evol. Biol. 2018, 45, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Konstantinidis, I.; Gkafas, G.A.; Karamitros, G.; Lolas, A.; Antoniadou, C.; Vafidis, D.; Exadactylos, A. Population structure of two benthic species with different larval stages in the eastern Mediterranean Sea. J. Environ. Prot. Ecol. 2017, 18, 930–939. [Google Scholar]
- Gkafas, G.A.; Exadactylos, A.; Rogan, E.; Raga, J.A.; Reid, R.; Hoelzel, A.R. Biogeography and temporal progression during the evolution of striped dolphin population structure in European waters. J. Biogeogr. 2017, 44, 2681–2691. [Google Scholar] [CrossRef] [Green Version]
- Gaither, M.R.; Gkafas, G.A.; De Jong, M.; Sarigol, F.; Neat, F.; Regnier, T.; Moore, D.; Gröcke, D.R.; Hall, N.; Liu, X.; et al. Genomics of habitat choice and adaptive evolution in a deep-sea fish. Nat. Ecol. Evol. 2018, 2, 680–687. [Google Scholar] [CrossRef] [Green Version]
- Crawford, D.L.; Oleksiak, M.F. Ecological population genomics in the marine environment. Brief. Funct. Genom. 2016, 15, 342–351. [Google Scholar] [CrossRef] [Green Version]
- Sarropoulou, X.; Tsaparis, D.; Tsagarakis, K.; Badouvas, N.; Tsigenopoulos, C.S. Different patterns of population structure and genetic diversity of three mesopelagic fishes in the Greek Seas. Mediterr. Mar. Sci. 2022, 23, 536–545. [Google Scholar] [CrossRef]
- Kozak, K.H.; Wiens, J.J. Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 2006, 60, 2604–2621. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, G.M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Bargelloni, L.; Alarcon, J.A.; Alvarez, M.C.; Penzo, E.; Magoulas, A.; Palma, J.; Patarnello, T. The Atlantic-Mediterranean transition: Discordant genetic patterns in two seabream species, Diplodus puntazzo (Cetti) and Diplodus sargus (L.). Mol. Phylogenet. Evol. 2005, 36, 523–535. [Google Scholar] [CrossRef] [PubMed]
- De Bruyn, M.; Hoelzel, A.R.; Carvalho, G.R.; Hofreiter, M. Faunal histories from Holocene ancient DNA. Trends Ecol. Evol. 2011, 26, 405–413. [Google Scholar] [CrossRef]
- Nei, M.; Maruyama, T.; Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 1975, 29, 1–10. [Google Scholar] [CrossRef]
- Hansson, B.; Bensch, S.; Hasselquist, D.; Lillandt, B.G.; Wennerberg, L.; Von Schantz, T. Increase of genetic variation over time in a recently founded population of great reed warblers (Acrocephalus arundinaceus) revealed by mirosatellites and DNA fingerprinting. Mol. Ecol. 2000, 9, 1529–1538. [Google Scholar] [CrossRef]
- Excoffier, L.; Foll, M.; Petit, R.J. Genetic consequences of range expansion. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 481–501. [Google Scholar] [CrossRef]
- Hoban, S.M.; Gaggiotti, O.E.; Bertorelle, G. The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: A simulation-based study. Mol. Ecol. 2013, 22, 3444–3450. [Google Scholar] [CrossRef]
- Schmidt, P.S.; Rand, D.M. Adaptive maintenance of genetic polymorphism in an intertidal barnacle: Habitat- and life-stage-specific survivorship of mpi genotypes. Evolution 2001, 55, 1336–1344. [Google Scholar] [CrossRef]
- Meyer, E.; Aglyamova, G.V.; Matz, M.V. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol. Ecol. 2011, 20, 3599–3616. [Google Scholar] [CrossRef] [PubMed]
- Rivière, G.; He, Y.; Tecchio, S.; Crowell, E.; Gras, M.; Sourdaine, P.; Guo, X.; Favrel, P. Dynamics of DNA methylomes underlie oyster development. PLoS Genet. 2017, 13, e1006807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, M.S.; Thorne, M.A.; King, M.; Hipperson, H.; Hoffman, J.I.; Peck, L.S. Life in the intertidal: Cellular responses, methylation and epigenetics. Funct. Ecol. 2018, 32, 1982–1994. [Google Scholar] [CrossRef] [Green Version]
- Dixon, G.; Liao, Y.; Bay, L.K.; Matz, M.V. Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proc. Natl. Acad. Sci. USA 2018, 115, 13342–13346. [Google Scholar] [CrossRef] [Green Version]
- Strader, M.E.; Wong, J.M.; Kozal, L.C.; Leach, T.S.; Hofmann, G.E. Parental environments alter DNA methylation in offspring of the purple sea urchin, Strongylocentrotus purpuratus. J. Exp. Mar. Biol. Ecol. 2019, 517, 54–64. [Google Scholar] [CrossRef]
- Exadactylos, A.; Vafidis, D.; Tsigenopoulos, C.; Gkafas, G. High Connectivity of the White Seabream (Diplodus sargus, L. 1758) in the Aegean Sea, Eastern Mediterranean Basin. Animals 2019, 9, 979. [Google Scholar] [CrossRef] [Green Version]
- Seyhan-Ozturk, D.; Engin, S. Genetic diversity of marbled goby populations in the Anatolian coasts of the north-eastern Mediterranean. J. Mar. Biol. Assoc. UK 2021, 101, 419–429. [Google Scholar] [CrossRef]
- Sironi, M.; Cagliani, R.; Forni, D.; Clerici, M. Evolutionary insights into host–pathogen interactions from mammalian sequence data. Nat. Rev. Genet. 2015, 16, 224–236. [Google Scholar] [CrossRef]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [Green Version]
- Feidantsis, K.; Michaelidis, B.; Raitsos, D.Ε.; Vafidis, D. Seasonal cellular stress responses of commercially important invertebrates at different habitats of the North Aegean Sea. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 250, 110778. [Google Scholar] [CrossRef]
- Feidantsis, K.; Michaelidis, B.; Raitsos, D.Ε.; Vafidis, D. Seasonal metabolic and oxidative stress responses of commercially important invertebrate species correlation with their habitat. Mar. Ecol. Prog. Ser. 2021, 658, 27–46. [Google Scholar] [CrossRef]
- Lepais, O.; Weir, J.T. SimRAD: An R package for simulation–based prediction of the number of loci expected in RADseq and similar genotyping by sequencing approaches. Mol. Ecol. Resour. 2014, 14, 1314–1321. [Google Scholar] [CrossRef]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Feliciano, J.G.; Pirro, S.; García-Arrarás, J.E.; Mashanov, V.; Ryan, J.F. Draft Genome of the Sea Cucumber Holothuria glaberrima, a Model for the Study of Regeneration. Front. Mar. Sci. 2021, 8, 603410. [Google Scholar] [CrossRef]
- Song, H.; Guo, X.; Sun, L.; Wang, Q.; Han, F.; Wang, H.; Wray, G.A.; Davidson, P.; Wang, Q.; Hu, Z.; et al. The hard clam genome reveals massive expansion and diversification of inhibitors of apoptosis in Bivalvia. BMC Biol. 2021, 19, 15. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Li, R.; Zhao, Y.; Migaud, H.; Wang, C.; Bekaert, M. Pharaoh Cuttlefish, Sepia pharaonis, Genome Reveals Unique Reflectin Camouflage Gene Set. Front. Mar. Sci. 2021, 8, 639670. [Google Scholar] [CrossRef]
- Li, H. Exploring single–sample SNP and INDEL calling with whole–genome de novo assembly. Bioinformatics 2012, 28, 1838–1844. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Durbin, R. Genome Project Data Processing Subgroup Genome Project Data Processing Subgroup. 2009 The sequence alignment/map (SAM) format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Applebaum, S.W.; Heifetz, Y. Density-dependent physiological phase in insects. Annu. Rev. Entomol. 1999, 44, 317–341. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.J.; de Jong, J.F.; Hoelzel, A.R.; Janke, A. SambaR: An R package for fast, easy and reproducible population-genetic analyses of biallelic SNP datasets. Mol. Ecol. Resour. 2021, 21, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 15 November 2020).
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef] [PubMed]
- Frichot, E.; François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 2015, 6, 925–929. [Google Scholar] [CrossRef]
- Frichot, E.; Schoville, S.D.; Bouchard, G.; François, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 2013, 30, 1687–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, A.; Stephens, M.; Pritchard, J.K. fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics 2014, 197, 573–589. [Google Scholar] [CrossRef] [Green Version]
- Turner, S.D. qqman: An R package for visualizing GWAS results using Q-Q and Manhattan plots. Biorxiv 2014, 005165. Available online: https://www.biorxiv.org/content/early/2014/05/14/005165 (accessed on 10 December 2020).
- Simes, R.J. An improved Bonferroni procedure for multiple tests of significance. Biometrika 1986, 73, 751–754. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Cornuet, J.-M.; Pudlo, P.; Veyssier, J.; Dehne-Garcia, A.; Gautier, M.; Leblois, R.; Marin, J.-M.; Estoup, A. DIYABC v2.0: A software to make Approximate Bayesian Computation inferences about population history using Single Nucleotide Polymorphism, DNA sequence and microsatellite data. Bioinformatics 2014, 30, 1187–1189. [Google Scholar] [CrossRef] [Green Version]
- Dereli, H.; Çulha, S.T.; Çulha, M.; Özalp, B.H.; Tekinay, A.A. Reproduction and population structure of the sea cucumber Holothuria tubulosa in the Dardanelles Strait, Turkey. Mediterr. Mar. Sci. 2016, 17, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Berkeley, S.A.; Hixon, M.A.; Larson, R.J.; Love, M.S. Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 2004, 29, 23–32. [Google Scholar] [CrossRef]
- McKeown, N.J.; Shaw, P.W. Microsatellite loci for studies of the common cuttlefish, Sepia officinalis. Conserv. Genet. Resour. 2014, 6, 701–703. [Google Scholar] [CrossRef] [Green Version]
- Ravago-Gotanco, R.; Kim, K.M. Regional genetic structure of sandfish Holothuria (Metriatyla) scabra populations across the Philippine archipelago. Fish. Res. 2019, 209, 143–155. [Google Scholar] [CrossRef]
- Helmuth, B.; Broitman, B.R.; Yamane, L.; Gilman, S.E.; Mach, K.; Mislan, K.A.S.; Denny, M.W. Organismal climatology: Analyzing environmental variability at scales relevant to physiological stress. J. Exp. Biol. 2010, 213, 955–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osovitz, C.J.; Hofmann, G.E. Marine macrophysiology: Studying physiological variation across large spatial scales in marine systems. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 147, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, G.E.; Todgham, A.E. Living in the Now: Physiological Mechanisms to Tolerate a Rapidly Changing Environment. Annu. Rev. Physiol. 2010, 72, 127–145. [Google Scholar] [CrossRef] [Green Version]
- Pardo-Gandarillas, M.C.; Torres, F.I.; Fuchs, D.; Ibáñez, C.M. Updated molecular phylogeny of the squid family Ommastrephidae: Insights into the evolution of spawning strategies. Mol. Phylogenet. Evol. 2018, 120, 212–217. [Google Scholar] [CrossRef]
- Hale, M.L.; Burg, T.M.; Steeves, T.E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 2012, 7, e45170. [Google Scholar] [CrossRef]
- Willing, E.M.; Dreyer, C.; Oosterhout, C.V. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS ONE 2012, 7, e42649. [Google Scholar] [CrossRef] [Green Version]
- Nazareno, A.G.; Bemmels, J.B.; Dick, C.W.; Lohmann, L.G. Minimum sample sizes for population genomics: An empirical study from an Amazonian plant species. Mol. Ecol. Resour. 2017, 17, 1136–1147. [Google Scholar] [CrossRef]
- Qu, W.-M.; Liang, N.; Wu, Z.-K.; Zhao, Y.-G.; Chu, D. Minimum sample sizes for invasion genomics: Empirical investigation in an invasive whitefly. Ecol. Evol. 2020, 10, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Yang, S.; Shang, G.; Wei, W. Effects of predation risk on behavior, hormone levels, and reproductive success of plateau pikas. Ecosphere 2017, 8, e01643. [Google Scholar] [CrossRef]
- Pierce, G.J.; Valavanis, V.; Guerra, A.; Jereb, P.; Orsi-Relini, L.; Bellido-Millán, J.M.; Katara, I.; Piatkowski, U.; Pereira, J.; Balguerias, E.; et al. A review of cephalopod–environment interactions in European Seas. Hydrobiologia 2008, 612, 49–70. [Google Scholar] [CrossRef]
- Keller, S.; Valls, M.; Hidalgo, M.; Quetglas, A. Influence of environmental parameters on the life-history and population dynamics of cuttlefish Sepia officinalis in the western Mediterranean. Estuar. Coast. Shelf Sci. 2014, 145, 31–40. [Google Scholar] [CrossRef]
- Pérez-Losada, M.; Guerra, Á.; Sanjuan, A. Allozyme differentiation in the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) from the NE Atlantic and Mediterranean. Heredity 1999, 83, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Losada, M.; Guerra, A.; Carvalho, G.R.; Sanjuan, A.; Shaw, P.W. Extensive population subdivision of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) around the Iberian Peninsula indicated by microsatellite DNA variation. Heredity 2002, 89, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Losada, M.; Nolte, M.J.; Crandall, K.A.; Shaw, P.W. Testing hypotheses of population structuring in the Northeast Atlantic Ocean and Mediterranean Sea using the common cuttlefish Sepia officinalis. Mol. Ecol. 2007, 16, 2667–2679. [Google Scholar] [CrossRef]
- Drábková, M.; Jachníková, N.; Tyml, T.; Sehadová, H.; Ditrich, O.; Myšková, E.; Hypša, V.; Štefka, J. Population co-divergence in common cuttlefish (Sepia officinalis) and its dicyemid parasite in the Mediterranean Sea. Sci. Rep. 2019, 9, 14300. [Google Scholar] [CrossRef] [Green Version]
- Koehn, R.K.; Milkman, R.; Mitton, J.B. Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue mussel Mytilus edulis. Evolution 1976, 30, 2–32. [Google Scholar] [CrossRef]
- Koehn, R.K. Physiology and biochemistry of enzyme variation: The interface of ecology and population genetics. In Ecological Genetics: The Interface; Springer: New York, NY, USA, 1978; pp. 51–72. [Google Scholar]
- Giantsis, I.A.; Abatzopoulos, T.J.; Angelidis, P.; Apostolidis, A.P. Mitochondrial Control Region Variability in Mytilus galloprovincialis Populations from the Central-Eastern Mediterranean Sea. Int. J. Mol. Sci. 2014, 15, 11614–11625. [Google Scholar] [CrossRef] [Green Version]
- Giantsis, I.A.; Exadactylos, A.; Feidantsis, K.; Michaelidis, B. First insights towards the population genetic structure and the phylogeographic status of the horse mussel (Modiolus barbatus) from the eastern Mediterranean. J. Mar. Biol. Assoc. UK 2019, 99, 1111–1118. [Google Scholar] [CrossRef]
- De La Rosa-Velez, J.; Farfan, C.; Cervantes-Franco, M.A. Geographic pattern of genetic variation in Modiolus capax (Conrad, 1837) from the Gulf of California. Cienc. Mar. 2000, 26, 585–606. [Google Scholar] [CrossRef] [Green Version]
- Halanych, K.M.; Vodoti, E.T.; Sundberg, P.; Dahlgren, T.G. Phylogeography of the horse mussel Modiolus modiolus. J. Mar. Biol. Assoc. UK 2013, 93, 1857–1869. [Google Scholar] [CrossRef]
- Vendrami, D.L.J.; De Noia, M.; Telesca, L.; Handal, W.; Charrier, G.; Boudry, P.; Eberhart-Philips, L.; Hoffman, J.I. RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories. Sci. Rep. 2019, 9, 7455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaumont, A.R.; Barnes, D.A. Aspects of veliger larval growth and byssus drifting of the spat of Pecten maximus and Aequipecten (Chlamys) opercularis. ICES J. Mar. Sci. 1992, 49, 417–423. [Google Scholar] [CrossRef]
- Pancucci-Papadopoulou, M.A.; Zenetos, A.; Corsini-Foka, M.; Politou, C.-Y. Update of marine aliens in Hellenic waters. Mediterr. Mar. Sci. 2006, 6, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Dimiza, M.D.; Koukousioura, O.; Triantaphyllou, M.V.; Dermitzakis, M.D. Live and dead benthic foraminiferal assemblages from coastal environments of the Aegean Sea (Greece): Distribution and diversity. Rev. Micropaléontol. 2016, 59, 19–32. [Google Scholar] [CrossRef]
- Androulidakis, Y.S.; Krestenitis, Y.N.; Psarra, S. Coastal upwelling over the North Aegean Sea: Observations and simulations. Cont. Shelf Res. 2017, 149, 32–51. [Google Scholar] [CrossRef]
- Poulos, S.E.; Drakopoulos, P.G.; Collins, M.B. Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (Eastern Mediterranean): An overview. J. Mar. Syst. 1997, 13, 225–244. [Google Scholar] [CrossRef]
- Zodiatis, G.; Alexandri, S.; Pavlakis, P.; Jonsson, L.; Kallos, G.; Demetropoulos, A.; Georgiou, G.; Theodorou, A.; Balopoulos, E. Tentative study of flow patterns in the North Aegean Sea using NOAA-AVHRR images and 2D model simulation. Ann. Geophys. 1997, 14, 1221–1231. [Google Scholar] [CrossRef]
- Kourafalou, V.H.; Barbopoulos, K. High resolution simulations on the North Aegean Sea seasonal circulation. Ann. Geophys. 2003, 21, 251–265. [Google Scholar] [CrossRef]
- Xue, D.X.; Wang, H.Y.; Zhang, T.; Liu, J.X. Population genetic structure and demographic history of Atrina pectinata based on mitochondrial DNA and microsatellite markers. PLoS ONE 2014, 9, e95436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cammen, K.M.; Schultz, T.F.; Don Bowen, W.; Hammill, M.O.; Puryear, W.B.; Runstadler, J.; Wenzel, F.W.; Wood, S.A.; Kinnison, M. Genomic signatures of population bottleneck and recovery in Northwest Atlantic pinnipeds. Ecol. Evol. 2018, 8, 6599–6614. [Google Scholar] [CrossRef] [PubMed]
- Hoban, S.; Kelley, J.L.; Lotterhos, K.E.; Antolin, M.F.; Bradburd, G.; Lowry, D.B.; Poss, M.L.; Reed, L.K.; Storfer, A.; Whitlock, M.C. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 2016, 188, 379–397. [Google Scholar] [CrossRef] [Green Version]
- Navascués, M.; Leblois, R.; Burgarella, C. Demographic inference through approximate-Bayesian-computation skyline plots. PeerJ 2017, 5, e3530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benton, M.J. The Red Queen and the Court Jester: Species diversity and the role of biotic and abiotic factors through time. Science 2009, 323, 728–732. [Google Scholar] [CrossRef] [Green Version]
- An, H.S.; Kim, E.M.; Park, J.Y. Isolation and characterization of microsatellite markers for the clam Ruditapes philippinarum and cross-species amplification with the clam Ruditapes variegate. Conserv. Genet. 2009, 10, 1821–1823. [Google Scholar] [CrossRef]
- Somero, G.N. The cellular stress response and temperature: Function, regulation, and evolution. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2020, 333, 379–397. [Google Scholar] [CrossRef]
Pagasitikos | Thermaikos | ||
---|---|---|---|
A | Thermaikos | 0.1100 * | 0.0000 |
Vistonikos | 0.0130 * | 0.1230 * | |
Pagasitikos | Thermaikos | ||
B | Thermaikos | 0.0003 | |
Vistonikos | 0.0060 | −0.0070 | |
Pagasitikos | Thermaikos | ||
C | Thermaikos | 0.0470 * | |
Vistonikos | 0.0410 * | 0.0990 * |
Species | Region | Parameter | Prior Range | Mode | Median | 95% CI low | 95% CI High |
---|---|---|---|---|---|---|---|
H. tubulosa | Pagasitikos | Nanc | 10–106 | 8.19 × 104 | 4.14 × 105 | 3.59 × 104 | 9.66 × 105 |
Nb | 10–104 | 2.52 × 103 | 2.40 × 103 | 5.62 × 102 | 6.26 × 103 | ||
Ncur | 10–105 | 2.36 × 104 | 4.15 × 104 | 7.26 × 103 | 9.62 × 104 | ||
tb | 10–104 | 9.84 × 103 | 8.18 × 103 | 3.32 × 103 | 9.92 × 103 | ||
tcur | 10–104 | 6.58 × 103 | 4.98 × 103 | 6.61 × 102 | 9.00 × 103 | ||
Thermaikos | Nanc | 10–106 | 9.67 × 105 | 7.54 × 105 | 2.83 × 105 | 9.89 × 105 | |
Nb | 10–104 | 7.57 × 103 | 5.97 × 103 | 1.31 × 103 | 9.67 × 103 | ||
Ncur | 10–105 | 8.51 × 103 | 3.41 × 104 | 5.17 × 103 | 9.62 × 104 | ||
tb | 10–104 | 8.24 × 103 | 6.82 × 103 | 1.93 × 103 | 9.83 × 103 | ||
tcur | 10–104 | 3.67 × 103 | 4.28 × 103 | 3.94 × 102 | 8.77 × 103 | ||
Vistonikos | Nanc | 10–106 | 2.02 × 105 | 4.67 × 105 | 1.04 × 105 | 9.71 × 105 | |
Nb | 10–104 | 3.12 × 103 | 3.41 × 103 | 6.36 × 102 | 8.73 × 103 | ||
Ncur | 10–105 | 8.55 × 104 | 5.95 × 104 | 8.86 × 103 | 9.84 × 104 | ||
tb | 10–104 | 9.92 × 103 | 7.79 × 103 | 2.98 × 103 | 9.91 × 103 | ||
tcur | 10–104 | 3.77 × 103 | 4.25 × 103 | 6.74 × 102 | 8.61 × 103 | ||
S. officinalis | Pagasitikos | Nanc | 10–106 | 9.24 × 103 | 7.34 × 104 | 3.32 × 103 | 3.55 × 105 |
Nexp | 10–106 | 9.67 × 105 | 7.70 × 105 | 2.76 × 105 | 9.91 × 105 | ||
texp | 10–106 | 4.69 × 105 | 5.35 × 105 | 1.33 × 105 | 9.50 × 105 | ||
Thermaikos | Nanc | 10–106 | 2.90 × 104 | 8.20 × 104 | 4.80 × 103 | 5.11 × 105 | |
Nexp | 10–106 | 9.81 × 105 | 7.67 × 105 | 2.54 × 105 | 9.92 × 105 | ||
texp | 10–106 | 2.15 × 105 | 3.14 × 105 | 3.57 × 104 | 9.13 × 105 | ||
Vistonikos | Nanc | 10–106 | 6.71 × 103 | 3.15 × 104 | 1.36 × 103 | 1.69 × 105 | |
Nexp | 10–106 | 9.94 × 105 | 7.84 × 105 | 2.82 × 105 | 9.92 × 105 | ||
texp | 10–106 | 3.37 × 105 | 3.97 × 105 | 1.04 × 105 | 8.34 × 105 | ||
V. verrucosa | Pagasitikos | Ncur | 10–105 | 1.56 × 104 | 4.02 × 104 | 7.05 × 103 | 9.63 × 104 |
Thermaikos | Ncur | 10–105 | 8.07 × 103 | 3.11 × 104 | 4.74 × 103 | 9.60 × 104 | |
Vistonikos | Ncur | 10–105 | 9.72 × 104 | 5.92 × 104 | 8.59 × 103 | 9.81 × 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feidantsis, K.; Gkafas, G.A.; Exadactylos, A.; Michaelidis, B.; Staikou, A.; Hatziioannou, M.; Apostologamvrou, C.; Sarantopoulou, J.; Vafidis, D. Different Interspecies Demographic Histories within the Same Locality: A Case Study of Sea Cucumbers, Cuttlefish and Clams in Greek Waters. Sustainability 2022, 14, 14380. https://doi.org/10.3390/su142114380
Feidantsis K, Gkafas GA, Exadactylos A, Michaelidis B, Staikou A, Hatziioannou M, Apostologamvrou C, Sarantopoulou J, Vafidis D. Different Interspecies Demographic Histories within the Same Locality: A Case Study of Sea Cucumbers, Cuttlefish and Clams in Greek Waters. Sustainability. 2022; 14(21):14380. https://doi.org/10.3390/su142114380
Chicago/Turabian StyleFeidantsis, Konstantinos, Georgios A. Gkafas, Athanasios Exadactylos, Basile Michaelidis, Alexandra Staikou, Marianthi Hatziioannou, Chrysoula Apostologamvrou, Joanne Sarantopoulou, and Dimitris Vafidis. 2022. "Different Interspecies Demographic Histories within the Same Locality: A Case Study of Sea Cucumbers, Cuttlefish and Clams in Greek Waters" Sustainability 14, no. 21: 14380. https://doi.org/10.3390/su142114380
APA StyleFeidantsis, K., Gkafas, G. A., Exadactylos, A., Michaelidis, B., Staikou, A., Hatziioannou, M., Apostologamvrou, C., Sarantopoulou, J., & Vafidis, D. (2022). Different Interspecies Demographic Histories within the Same Locality: A Case Study of Sea Cucumbers, Cuttlefish and Clams in Greek Waters. Sustainability, 14(21), 14380. https://doi.org/10.3390/su142114380