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Abstract: The rapid development of wearable electronic devices (such as in applications for health
care monitoring, intelligent sports, and human–computer interaction) has led to a huge demand
for sustainable energy. However, the existing equipment cannot meet the requirements of energy
harvesting, wearable sensing, and environmental protection concurrently. Herein, by an environ-
mentally friendly in situ gap-generation method and doping technology, we have manufactured an
Ecoflex–PVDF composite material as a negative triboelectric layer and used gas as a support layer for
the triboelectric nanogenerator (EPGS-TENG). The device has excellent electrical output performance
and working stability (pressure sensitivity of 7.57 V/N, angle response capacity of 374%, output
power of 121 µW, temperature adaptability from 20 ◦C to 40 ◦C, durability over 3 h, and stability of
10 days). EPGS-TENG can meet the requirements of biomechanical energy collection and wearable
self-powered sensing simultaneously. EPGS-TENG shows great application potential for the new
generation of wearable devices.

Keywords: triboelectric nanogenerator; sustainable energy harvesting; wearable motion sensing

1. Introduction

With the remarkable progress of the Internet of Things and artificial intelligence,
wearable electronic devices have developed rapidly in the past few years. They have
attracted significant research interest in many fields such as medical monitoring [1–3],
intelligent movement [4–6], and human–computer interaction [7–9]. However, rapid
development faces a critical challenge. Most wearable electronic devices are powered
by external batteries, which have a short life span, difficulty in replacement, and energy
pollution [10–12]. A very promising solution is to effectively convert renewable energy in
the environment into electric energy to supply power for these devices. For this reason,
researchers have invested significant effort into solving the energy supply problems of
wearable devices, such as through solar cells [13,14], thermoelectric generators [15,16], and
piezoelectric nanogenerators [17,18]. However, because of the cost, manufacturing process,
material selection, and energy conversion efficiency, its large-scale practical application is
limited. The triboelectric nanogenerator (TENG), invented by Zhonglin Wang, is a new
potential energy conversion technology. TENG can transform neglected and widespread
mechanical energy into electrical energy, which makes it possible to collect biological
mechanical energy [19–30] and self-powered sensing [31–36].

The triboelectric nanogenerator (TENG) is based on coupling, the contact charge effect,
and the electrostatic induction effect [37,38]. It has the advantages of simple manufacture,
a wide selection of materials, diverse working modes, and excellent flexibility [39–43].
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TENG can not only be used as a self-powered sensor to monitor various mechanical stimuli
in the surrounding environment but can also be used as an energy harvester to convert
low-frequency and irregular mechanical energy into electrical energy. However, most
TENGs need an auxiliary gasket as supporting layer [23,34,40,44–47]. On the one hand,
these gaskets easily fall off, which can prevent TENG from working; on the other hand,
the dropped auxiliary gasket will also cause environmental pollution. Danna Zhao et al.
innovatively demonstrated an eco-friendly in situ gap-generation method to fabricate a
no-spacer triboelectric nanogenerator (NSTENG) for monitoring cardiovascular activities.
The TENG made by this method has a good motion perception ability, and the equipment
made by this method has good biocompatibility and environmental safety [48]. However,
the device manufactured by this method has low electrical output capacity, and cannot
be used as an energy harvester. The electrical output performance of TENGs is mainly
determined by the induced surface charge density and charge trapping ability of tribo-
electric materials [49,50]. Although silicone rubber is the first choice for the triboelectric
layer because of its high electronegativity, flexibility, and easy processing [51,52], its per-
formance is still insufficient to meet the actual demand. The TENG performance of silica
gel can be further improved by reasonable preparation, such as doping [53,54] and surface
modification [55,56].

Herein, we designed an EPGS-TENG. We used an Ecoflex–PVDF composite material as
the EPGS-TENG negative triboelectric layer and gas as a supporting layer. The gas support
layer can be generated in situ by evaporating deionized water soaked on the copper
electrode. The output performance of the TENG can be improved by doping PVDF, so
that the EPGS-TENG can simultaneously serve both biomechanical energy harvesting and
wearable self-powered sensing. The EPGS-TENG has good sensory sensitivity, electrical
output performance, and working stability: with pressure sensitivity of 7.57 V/N, angle
response capability of 374%, output voltage 13 times higher than that of undoped TENG,
an output power of 121 µW, stability from 20 ◦C to 40 ◦C, and durability over 3 h. EPGS-
TENG can be used as an energy harvester to collect biomechanical energy and provide
power for commercial electronic products without an additional power supply. In addition,
EPGS-TENG can be used as a wearable self-powered sensor, which can be attached on
different joints of the human body to monitor movement. By constructing the wireless
transmission system of EPGS-TENG, human motion information can be displayed in real
time with a computer terminal. In the new round of scientific and technological revolution
and industrial transformation, the EPGS-TENG can be seen as a booster to accelerate the
digitalization and intelligence of sports.

2. Materials and Methods
2.1. Materials

Smooth-on Ecoflex 00-30 was purchased from Beijing Lancheng Feifan Technology
Co., Ltd. (Beijing, China). Polyvinylidene fluoride (PVDF) powder with a particle size of
10–20 µm was purchased from Suzhou Qingxu Plasti-cizing Co., Ltd. (Suzhou, China).
Enameled wire was purchased from Wuhu Eriter Electromechanical Equipment Co., Ltd.
(Wuhu, China). The one-sided matte copper foil was purchased from Taizhou Beiling
Strength Store (Taizhou, China).

2.2. Preparation of Ecoflex–PVDF Mixed Glue Solution

The manufacturing process is as follows: (1) Weigh 0.12 g PVDF powder. (2) The PVDF
powder is poured into 4 g of Eco flex A glue solution and stirred for 15 min. (3) A measure
of 4 g of Ecoflex B glue solution is added to the above mixed glue solution and stirred for
30 min. Ensure that PVDF nanoparticles are evenly mixed in Ecoflex glue solution. (4) The
mixed glue is shaken by an ultrasound for 5 min and left standing for 10 min. A mixture
without bubbles is obtained.
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2.3. Fabrication of the EPGS-TENG

(1) Preparation of casting mold: The 5 cm × 3 cm × 0.5 cm acrylic sheet is cut out
into a 3 cm × 2.5 cm × 0.25 mm pit by a laser cutting machine (100 W off-line high
matching). (2) The Ecoflex–PVDF mixed glue solution is poured into the mold, and
then the mold is moved to a 35 ◦C oven. When the glue solution is completely cured, a
3 cm × 2.5 cm Ecoflex–PVDF mixture substrate is formed. (3) The copper foil is cut to a
size of 2.5 cm × 2 cm and placed on the mixture substrate with the matte side facing up.
Then, the surface of the copper foil is soaked with 2 µL of deionized water. Note that,
because the copper foil is coarsened, it has good hydrophilicity. Water droplets on the
copper foil are not only evenly distributed, but they also reduce the overall thickness of
EPGS-TENG. The enameled wire is connected to the back of the copper foil as a connecting
wire. (4) Pour the Ecoflex–PVDF mixed glue solution into the mold again, so that the glue
solution completely seals the deionized water and the copper foil. After standing for 12 h
(at room temperature), take the device out of the mold. (5) Finally, the device is transferred
to an oven and heated at 100 ◦C for 5 h, so that the deionized water in the device completely
changes into water vapor.

2.4. Characterization and Measurements

The fabricated EPGS-TENG is fixed on the acrylic fixing frame opposite the stepper
motor with adhesive tape. The linear motor is set to output motions of different amplitudes
and frequencies, simulating human joint motion through the control system. The EPGS-
TENG generates a triboelectric signal by a linear motor that hits repeatedly and periodically.
An oscilloscope (sto1102c, Shenzhen, China) is used to collect the electrical signals generated
by TENG, which is attached to the body or stepping motor.

3. Results and Discussion

Figure 1a shows a schematic illustration of the application of EPGS-TENG as a new-
generation wearable device. EPGS-TENG can be attached to the joints of the human body
to collect biomechanical energy generated during movement. In addition, EPGS-TENG
can be used as a self-powered sensor to accurately monitor human motion information.
EPGS-TENG adopts a single-electrode structure, which is composed of a copper electrode
and an Ecoflex–PVDF composite triboelectric layer on the outside, in which the inside
is supported by evaporated water vapor. The manufacturing process of EPGS-TENG is
shown in Figure 1b. EPGS-TENG can be manufactured by a simple process. The detailed
manufacturing process can be found in the Materials and Methods section. Firstly, the
PVDF powder is poured into the Ecoflex-A glue solution, and then it is stirred to obtain
the Ecoflex-A-PVDF mixed glue solution. Secondly, the Ecoflex-B glue is poured into the
mixed glue, and the homogenized Ecoflex–PVDF glue is obtained after being stirred fully.
Thirdly, the copper electrode with deionized water on the surface is sealed in the acrylic
mold with the Ecoflex–PVDF mixed glue solution. Finally, after the Ecoflex–PVDF mixed
glue solution is cured, the device is transferred to 100 ◦C for heating, so that the deionized
water on the copper surface evaporates, and a gas support layer forms in situ. Figure 1c,d
show the optical photos of EPGS-TENG in the original state and the bent state, respectively,
which shows that it has excellent flexibility, and can fit well with human joints. The gas
layer supporting the EPGS-TENG can be clearly observed in Movie S1. The cross-sectional
view of EPGS-TENG is shown in Figure S1. The proposed highly negative Ecoflex–PVDF
can be combined with positive copper electrodes to form high-performance TENGs, as
shown in the energy band diagram in Figure 1e. The triboelectric charge density of the
Ecoflex–PVDF layer is affected by PVDF. The addition of PVDF nanoparticles can improve
the ability of the negative triboelectric layer to capture, charge, and increase the surface
potential difference between the triboelectric layer and the copper electrode.
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Figure 1. (a) The application schematic illustration of EPGS-TENG for biomechanical energy har-
vesting and wearable motion monitoring. (b) Schematic illustration of the fabrication of the EPGS-
TENG. (c,d) Optical photograph of the EPGS-TENG (c) in the original and (d) bending states. (Scale
bars, 1.0 cm.) (e) Schematic of the band diagrams to illustrate the operation mechanism of the
proposed EPGS-TENG.

The working principle of the EPGS-TENG is based on the coupling of contact tribo-
electrification and electrostatic induction [37,38]. In the triboelectric series, silicone rubber
and PVDF are triboelectric materials with high electronegativity, while Cu is a triboelec-
tric material with low electronegativity [57]. Specifically, when the distance between the
Ecoflex–PVDF composite triboelectric layer and the working electrode is the farthest, the
potential difference between the working electrode and the reference electrode (ground)
is the largest, as shown in Figure 2a(I). Because silicone rubber has a stronger ability to
attract electrons than copper, the surface of the composite triboelectric layer is negatively
charged, while the surface of the copper electrode is positively charged. As shown in
Figure 2a(II), when the negatively charged silicone rubber layer approaches the copper
layer, the potential of the copper electrode decreases, and electrons are driven from the
copper layer to the ground. After the upper composite triboelectric layer and the lower
copper layer are completely in contact, an equal amount of charges with opposite polarity
are generated on the surface, as shown in Figure 2a(III). Contrary to Figure 2a(II), when the
composite triboelectric layer leaves the copper layer, the potential of the copper electrode
rises, and the electrons will be driven to flow back to the copper electrode from the ground,
as shown in Figure 2a(IV). When the contact separation motion is repeated between the
composite triboelectric layer and the working electrode, alternating current can be gener-
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ated. In order to better understand the working principle of EPGS-TENG quantitatively,
COMSOL software was used to simulate the numerical calculation of the space electric
field when the composite triboelectric layer and the working electrode are periodically in
contact (Figure 2b).
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Figure 2. (a) Schematic diagram of the working principle of the EPGS-TENG. (b) FEA simulation of
the EPGS-TENG electric potential distribution.

Firstly, we evaluated the influence of different fillers on the voltage output of the
device (as shown in Figure 3a). PVDF gives the device the highest voltage output compared
to other fillers. Then, we tested the influence of different concentrations (from 0 to 2 wt%)
of PVDF in EPGS-PVDF composite on the output voltage of the device under the same
equipment and input conditions. As shown in Figure 3b, the output voltage of EPGS-
TENG increases with the increase in PVDF filler concentration in the range of 0–1.5 wt%.
When the concentration of PVDF is at 1.5 wt%, the maximum peak voltage of EPGS-
TENG is 37 V, which is 13 times that of pure Ecoflex. Then, further adding PVDF filler
will lead to the voltage of EPGS-TENG dropping. In order to detect the voltage output
of the manufactured EPGS-TENG in various states, we systematically tested the EPGS-
TENG by using a customized test platform. The test platform is shown in Figure S1. The
voltage output of the EPGS-TENG at different pressures and fixed frequencies (1 Hz) is
shown in Figure 3c. The results show that the voltage output of EPGS-TENG initially
rapidly increases with the increase in pressure, and then has a tendency to flatten. The
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relationship between peak voltage and pressure is shown in Figure 3d. Due to the difference
in sensitivities, the data in Figure 3d are divided into two linear regions. In region 1
(1 N–10 N), the sensitivity of the EPGS-TENG can reach 7.57 V/N (Slope = ∆V/∆N), and
the linear fitting data are good (R2 = 0.98). In region 2, the sensitivity of EPGS-TENG
is 0.512 V/N, and the variance is 0.69. The results show that EPGS-TENG can monitor
external tiny movements. The relationship between output voltage and frequency is shown
in Figure 3e. When the input frequency is 0.5 Hz, 1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz, and 3 Hz, the
voltage output is 21.8 V, 21.7 V, 21.8 V, 21.8 V, and 21.7 V, respectively. Figure S2 shows the
response at different frequencies. The response of the EPGS-TENG can be calculated by the
following equation:

R% =

∣∣∣∣V0 − Vi
Vi

∣∣∣∣× 100%, (1)

where V0 and Vi are the output voltage at 0.5 Hz and the output voltage at other frequencies,
respectively. When the frequency is 0.5 Hz, 1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz, and 3 Hz under
a pressure of 5 N, the response of the EPGS-TENG is 0%, 0.4%, 0%, 0%, 0.2%, and 0.3%,
respectively. The results show that the EPGS-TENG has excellent stability under low-
frequency motion. Figure 3f shows the voltage output of the EPGS-TENG at different
bending angles. When Angle θ is 176◦, 170◦, 164◦, 158◦, and 152◦, the voltage output is
2.7 V, 4.6 V, 7.2 V, 10.4 V, and 12.8 V, respectively. The response at different bending angles
is shown in Figure S3. At different bending angles, the output voltage responses are 0%,
68.9%, 166.7%, 285.2%, and 374.1%. The results show that EPGS-TENG has sensitive angle
response ability. Because EPGS-TENG is attached to the human body, we consider the
complexity of environmental temperature, and explore the influence of temperature on
the output of the device. As shown in Figure 3g and Figure S3, the output voltage of the
EPGS-TENG hardly changes when the ambient temperature changes between 20 ◦C and
40 ◦C. In practical application, EPGS-TENG must work for a long time, which requires
the durability and mechanical stability of the device. In order to solve this problem, we
conducted a durability test for 3 h and measured the voltage output of EPGS-TENG. The
operating forces and frequencies used in the durability tests were 3 N and 2 Hz, respectively.
As shown in Figure 3h, the output voltage of the EPGS-TENG is stable, and there is no
significant drop in the whole test period. Detail of the durability test is shown in Figure S6.
On the other hand, we collected the output voltage of the EPGS-TENG in its initial state
and at room temperature for 10 days. After 10 days of storage, the output voltage of the
EPGS-TENG had no obvious change. The above results show that the NSTENG has good
reliability and stability while in operation.

Figure 4a shows the changes in output voltage and the calculated current signal of
the EPGS-TENG at different load resistors. The results can be obtained by measuring the
voltages across different load resistors from 1 to 18 MΩ (the motion conditions applied
to EPGS-TENG are 10 N and 2 Hz). It can be observed that the voltage increases and the
current decreases with the increase in the load resistance. The output power of EPGS-TENG
at different load resistors is shown in Figure 4b. The EPGS-TENG provides a maximum
power output of 121 µW at a resistance of 5 MΩ. Figure 4c and the Movie S2 show the
real-time application ability of EPGS-TENG. The 120 series-connected green LEDs can be
lit up by tapping the EPGS-TENG by hand. Inspired by the high output performance of
the EPGS-TENG, it can be used as a biomechanical energy harvester to power electronic
products. The equivalent circuit of the automatic charging system is shown in Figure 4d,
whose working circuit consists of EPGS-TENG, a rectifier bridge, a capacitor, a switch,
and a load. The alternating current generated by the EPGS-TENG can be converted to
direct current through the rectifier bridge. Meanwhile, the electricity generated by the
EPGS-TENG can be stored in a capacitor. The switch is used to control the charging and
discharging process. Figure 4e shows the charging curves of the 2.2 µF capacitor by the
EPGS-TENG with different motion frequencies. At the frequencies of 1 Hz, 1.5 Hz, 2 Hz,
2.5 Hz, and 3 Hz (room temperature and 15 N pressure), the capacitor of 2.2 µF can be
charged to 1.4 V, 2.2 V, 2.5 V, 3 V, 3.4 V, and 3.4 V, respectively. The results show that the
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charging voltage increases with the increase in mobile frequency. Figure 4f shows the
voltage–time curves of the EPGS-TENG charging different capacitors. The capacitors of
1 µF, 2.2 µF, 3.3 µF, 4.7 µF, and 10 µF can be charged to 3.8 V, 3.1 V, 2.5 V, 2.1 V, and 1.3 V,
respectively, after being charged at room temperature, 15 N pressure, and 3 Hz working
frequency for 60 s. The EPGS-TENG can be used as a power source to provide stable
and sustainable energy for wearable or portable electronic devices without an external
energy supply. As shown in Figure 4g and Movie S3, tapping EPGS-TENG charges 4.7 µF
and powers the electronic watch. The tapping frequency is about 2–3 Hz. At about 50 s,
the voltage of the capacitor reaches 1.55 V, which can power the watch for about 5 s.
Subsequently, the capacitor can be charged back to 1.55 V in about 56–79 s to repeatedly
power the watch. Detailed charging and discharging curves are shown in Figure 4h. In
addition, Figure 4i and Movie S4 show that the EPGS-TENG can power an electronic
calculator. These experimental results confirm that the EPGS-TENG has great potential in a
completely self-powered and sustainable electronic system.
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Figure 3. Electrical output characteristics and stability of EPGS-TENG. (a) The influence of different
fillers on the electrical output of the device. (b) The output voltage of the EPGS-TENG for various
concentrations of PVDF in Ecoflex–PVDF composite under a force of 7 N. (c) The output voltage
of the EPGS-TENG under different pressures. (d) The linear fitting analysis of the EPGS-TENG
output voltage and pressure. (e–g) The output voltage of the EPGS-Teng at different frequencies,
degrees, and temperatures. (h) Durability test of the EPGS-TENG for 3 h. (i) The voltage change of
EPGS-TENG within 10 days.
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Figure 4. Biomechanical energy harvesting by the EPGS-TENG. (a) Dependence of the output voltage
and current at various load resistance. (b) Dependence of the power at various load resistance.
(c) Photographs of 120 serially connected LEDs driven by hand tapping. The inset shows the LEDs
array with lights on. (d) The equivalent circuit of a self-charging system that uses the energy harvested
from the EPGS-TENG to power electronics. (e) Charging voltage of capacitor which is charged by
EPGS-TENG on different motion frequencies. (f) Charging voltage of different capacitor which is
charged by EPGS-TENG. (g) Powering for an electronic watch. (h) Charging and discharging curve
of a capacitor (4.7 µF) connected to an electronic watch. (i) Powering for an electronic calculator.

EPGS-TENG can not only be used as a biomechanical energy harvester but can also
generate electric signals that directly respond to external mechanical actions. Therefore,
the EPGS-TENG can be used as a self-powered sensor to monitor human motion. As
shown in Figure 5a, the EPGS-TENG can monitor information such as runners’ running,
posture, and breathing rhythm, and digitize this information to provide a database for
sports-related big data. Running for a long time can effectively improve the functions of the
digestive system, respiratory system, and other systems, but the wrong running posture
will do harm to the body [58–61]. As shown in Figure 5b, the EPGS-TENG can accurately
monitor the bending angle of a runner’s knee, and the output voltage of EPGS-TENG
increases with the increase in the bending angle. These digital data will facilitate runners
to understand and control their running posture. The rhythm of the arm swing is very
important when running. Runners can control their running speed by controlling their
swing arm. As shown in Figure 5c, an EPGS-TENG attached to the inside of the arm can
monitor the runner’s swing arm rhythm. The output voltage of the slow swing arm will be
smaller than that of the fast swing arm, and the time interval between two adjacent peak
voltages in the slow swing arm is longer than that of the fast swing arm. Breathing is very
important in running because the rhythm of breathing reflects the intensity of running.
As shown in Figure 5d, an EPGS-TENG can be attached to the abdomen of runners to
monitor their breathing rhythm. During long-distance running, runners should control
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their breathing rhythm and actively take deep breaths to meet the oxygen demand of the
body. When shortness of breath occurs during running, runners should slow down their
running speed to avoid the rapid generation of fatigue. The EPGS-TENG can be placed on
the heel to monitor the human movement state, as shown in Figure 5e. In addition, in order
to apply EPGS-TENG to practice more conveniently, we have made a wireless transmission
system with an EPGS-TENG as a self-powered sensor (Figure 5f). The Bluetooth module
of the wireless transmission system is shown in Figure S7. The application of the wireless
monitoring system is shown in detail in Figure 5g,h, and in Movies S5 and S6. The above
demonstrations show that the EPGS-TENG has a broad application prospects in wearable
electronic devices.
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human motions. The signals output of self-powered sensor attached (b) on a knee joint for monitor
leg bending angle, (c) on the inside of an arm to collect swing arm information, (d) on the abdomen
to monitor the rate of breathing, and (e) attached at the heel to obtain the walking and running
information. (f) Wireless transmission system based on triboelectric nanogenerator. (g) Swing arm
information collected by wireless transmission system. (h) Walk and run information collected by
wireless transmission system.
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4. Conclusions

In summary, we fabricated a gas-supported triboelectric nanogenerator by evaporating
soaked deionized water to generate an air gap in situ. Additionally, we added PVDF
nanofillers to silicone rubber to improve the performance of the triboelectric nanogenerator.
When PVDF is added to the optimal ratio (1.5 wt%), the voltage output of the EPGS-TENG
is 13 times that of pure Ecoflex. Then, the output performance and stability of the EPGS-
TENG were measured systematically (pressure sensitivity of 7.57 V/N, angle response of
374%, output power of 121 µW, temperature adaptability from 20 ◦C to 40 ◦C, durability
over 3 h, and stability of 10 days). The EPGS-TENG exhibits excellent biomechanical
energy harvesting capability, and it can continuously drive small electronic devices such as
electronic watches and electronic calculators. In addition, the wireless sensor system based
on EPGS-TENG can accurately monitor the movement information of the runner. In the
future, as a new-generation wearable device, EPGS-TENG will show great potential in the
fields of intelligent sports, soft robots, and self-powered biomedical monitoring.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su142114422/s1, Figure S1: The cross-sectional view of EPGS-
TENG, Figure S2: The test platform, Figure S3: The response of output voltage of EPGS-TENG at
different frequencies, Figure S4: The response of output voltage of EPGS-TENG at different angles,
Figure S5: The response of output voltage of EPGS-TENG at different temperatures, Figure S6:
The detail of durability test, Figure S7: The Bluetooth module for wireless transmission system,
Movie S1. Demonstration of the gas support structure of the EPGS-TENG, Movie S2: EPGS-TENG
lights 120 LEDs, Movie S3: Powering for an electronic watch, Movie S4: Powering for an electronic
calculator, Movie S5: Swing arm motion monitoring based on wireless transmission system, Movie S6:
Information monitoring of walking and running based on wireless transmission system.
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