Spatial Variation of Phytochemical and Antioxidant Activities of Olive Mill Wastewater: A Chemometric Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Chemicals
2.3. Physico-Chemical Characteristics of OMWs
2.4. Extraction of Bioactive Compounds
2.5. Phytochemical Study
2.5.1. Determination of Total Phenolic Contents (TPC)
2.5.2. Determination of Total Flavonoids Content (TFC)
2.5.3. Determination of Condensed Tannins Content (TTC)
2.6. Antioxydant Activity
2.6.1. DPPH Assay
2.6.2. ABTS Assay
2.7. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA)
2.8. Correlation Matrix
2.9. Data Analysis
3. Results and Discussion
3.1. Physico-Chemical Characteristics of OMWs
3.2. Phytochemical Study
3.3. Free Radical Scavenging Activity DPPH and ABTS
3.4. Correlation Matrix
3.5. Principal Component Analysis (PCA)
3.6. Hierarchical Clustering Analysis (HCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boutaj, H.; Chakhchar, A.; Meddich, A.; Wahbi, S.; El Alaoui-Talibi, Z.; Douira, A.; Filali-Maltouf, A.; El Modafar, C. Bioprotection of Olive Tree from Verticillium Wilt by Autochthonous Endomycorrhizal Fungi. J. Plant Dis. Prot. 2020, 127, 349–357. [Google Scholar] [CrossRef]
- Zaroual, H.; El Hadrami, E.M.; Karoui, R. Preliminary Study on the Potential Application of Fourier-Transform Mid-Infrared for the Evaluation of Overall Quality and Authenticity of Moroccan Virgin Olive Oil. J. Sci. Food Agric. 2020, 101, 2901–2911. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.C. Shelf Life of Extra Virgin Olive Oil and Its Prediction Models. J. Food Qual. 2018, 2018, 1639260. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yu, L.; Zhu, Y.; Zhao, A.; Zhang, F.; Zhang, H.; Jin, Q.; Wu, G.; Wang, X. Chemical Profiles of Twenty-Three Monovarietal Olive Oils Produced in Liangshan Region of China. J. Oleo Sci. 2020, ess19265. [Google Scholar] [CrossRef] [PubMed]
- Ouedrhiri, M.; Benismail, C.; El Mohtadi, F.; Achkari-BEGDOURI, A. Évaluation de La Qualité de l’huile de Pulpe d’olive Vierge de La Variété Picholine Marocaine. Rev. Maroc. Des. Sci. Agron. Vétérinaires 2017, 5, 142–148. [Google Scholar]
- El Moudden, H.; El Yadini, A.; El Idrissi, Y.; Harhar, H.; Tabyaoui, B.; Tabyaoui, M.; Zarrouk, A. TiO 2-photocatalized degradation of vanillic acid in olive mill wastewaters. J. Chem. Technol. Metall. 2020, 55, 1019–1026. [Google Scholar]
- Gharby, S.; Harhar, H.; El Monfalouti, H.; Kartah, B.; Maata, N.; Guillaume, D.; Charrouf, Z. Chemical and Oxidative Properties of Olive and Argan Oils Sold on the Moroccan Market. A Comparative Study. Mediterr. J. Nutr. Metab. 2012, 5, 31–38. [Google Scholar] [CrossRef]
- Posadino, A.M.; Cossu, A.; Giordo, R.; Piscopo, A.; Abdel-Rahman, W.M.; Piga, A.; Pintus, G. Antioxidant Properties of Olive Mill Wastewater Polyphenolic Extracts on Human Endothelial and Vascular Smooth Muscle Cells. Foods 2021, 10, 800. [Google Scholar] [CrossRef]
- Yangui, A.; Abderrabba, M. Towards a High Yield Recovery of Polyphenols from Olive Mill Wastewater on Activated Carbon Coated with Milk Proteins: Experimental Design and Antioxidant Activity. Food Chem. 2018, 262, 102–109. [Google Scholar] [CrossRef]
- Dutournié, P.; Jeguirim, M.; Khiari, B.; Goddard, M.-L.; Jellali, S. Olive Mill Wastewater: From a Pollutant to Green Fuels, Agricultural Water Source, and Bio-Fertilizer. Part 2: Water Recovery. Water 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Yahia, Y.; Benabderrahim, M.A.; Tlili, N.; Hannachi, H.; Ayadi, L.; Elfalleh, W. Comparison of Three Extraction Protocols for the Characterization of Caper (Capparis spinosa L.) Leaf Extracts: Evaluation of Phenolic Acids and Flavonoids by Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry (LC–ESI–MS) and the Antioxidant Activity. Anal. Lett. 2020, 53, 1366–1377. [Google Scholar]
- Federation, W.E. American Public Health Association. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- 2510 Conductivity; Standard Methods for the Examination of Water and Wastewater. American Public Health Association: Washington, DC, USA, 2018.
- 2540 SOLIDS—Standard Methods for the Examination of Water and Wastewater. Available online: https://www.standardmethods.org/doi/abs/10.2105/SMWW.2882.030 (accessed on 4 April 2021).
- 5220 Chemical Oxygen Demand (COD)—Standard Methods for the Examination of Water and Wastewater. Available online: https://www.standardmethods.org/doi/10.2105/SMWW.2882.103 (accessed on 4 April 2021).
- Bharagava, R.N.; Saxena, G.; Mulla, S.I.; Patel, D.K. Characterization and Identification of Recalcitrant Organic Pollutants (ROPs) in Tannery Wastewater and Its Phytotoxicity Evaluation for Environmental Safety. Arch. Environ. Contam. Toxicol. 2018, 75, 259–272. [Google Scholar] [CrossRef]
- El-Guezzane, C.; El-Moudden, H.; Harhar, H.; Chahboun, N.; Tabyaoui, M.; Zarrouk, A. A Comparative Study of the Antioxidant Activity of Two Moroccan Prickly Pear Cultivars Collected in Different Regions. Chem. Data Collect. 2021, 31, 100637. [Google Scholar] [CrossRef]
- El Moudden, H.; El Idrissi, Y.; Belmaghraoui, W.; Belhoussaine, O.; El Guezzane, C.; Bouayoun, T.; Harhar, H.; Tabyaoui, M. Olive Mill Wastewater Polyphenol-Based Extract as a Vegetable Oil Shelf Life Extending Additive. J. Food Processing Preserv. 2020, 44, e14990. [Google Scholar] [CrossRef]
- El Guezzane, C.; El Moudden, H.; Harhar, H.; Warad, I.; Bellaouchou, A.; Guenbour, A.; Zarrouk, A.; Tabyaoui, M. Optimization of Roasting Conditions on the Bioactive Compounds and Their Antioxidant Power from Opuntia Fiscus-Indica Seeds Using Response Surface Methodology (RSM). Biointerface Res. Appl. Chem. 2020, 11, 10510–10532. [Google Scholar]
- Boujemaa, I.; El Bernoussi, S.; Harhar, H.; Tabyaoui, M. The Influence of the Species on the Quality, Chemical Composition and Antioxidant Activity of Pumpkin Seed Oil. OCL 2020, 27, 40. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Zhou, Z. Phenolic and Flavonoid Contents of Mandarin (Citrus Reticulata Blanco) Fruit Tissues and Their Antioxidant Capacity as Evaluated by DPPH and ABTS Methods. J. Integr. Agric. 2018, 17, 256–263. [Google Scholar] [CrossRef]
- Zielinski, A.A.; Haminiuk, C.W.; Nunes, C.A.; Schnitzler, E.; van Ruth, S.M.; Granato, D. Chemical Composition, Sensory Properties, Provenance, and Bioactivity of Fruit Juices as Assessed by Chemometrics: A Critical Review and Guideline. Compr. Rev. Food Sci. Food Saf. 2014, 13, 300–316. [Google Scholar] [CrossRef] [PubMed]
- Mekki, A.; Dhouib, A.; Sayadi, S. Effects of Olive Mill Wastewater Application on Soil Properties and Plants Growth. Int. J. Recycl. Org. Waste Agric. 2013, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Khoufi, S.; Louhichi, A.; Sayadi, S. Optimization of Anaerobic Co-Digestion of Olive Mill Wastewater and Liquid Poultry Manure in Batch Condition and Semi-Continuous Jet-Loop Reactor. Bioresour. Technol. 2015, 182, 67–74. [Google Scholar] [CrossRef]
- Paulo, F.; Santos, L. Deriving Valorization of Phenolic Compounds from Olive Oil By-Products for Food Applications through Microencapsulation Approaches: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2020, 61, 920–945. [Google Scholar] [CrossRef] [PubMed]
- Nikiema, M.; Somda, M.K.; Sawadogo, J.B.; Dianou, D.; Traoré, A.S.; Ouattara, A.S. Valorization of Agricultural Waste: Theoretical Estimation and Experimental Biomethane Yield from Cashew Nut Hulls. J. Sustain. Bioenergy Syst. 2020, 10, 113. [Google Scholar] [CrossRef]
- Paraskeva, C.A.; Papadakis, V.G.; Tsarouchi, E.; Kanellopoulou, D.G.; Koutsoukos, P.G. Membrane Processing for Olive Mill Wastewater Fractionation. Desalination 2007, 213, 218–229. [Google Scholar] [CrossRef]
- Sassi, A.B.; Boularbah, A.; Jaouad, A.; Walker, G.; Boussaid, A. A Comparison of Olive Oil Mill Wastewaters (OMW) from Three Different Processes in Morocco. Process Biochem. 2006, 41, 74–78. [Google Scholar] [CrossRef]
- Kamal-Eldin, A. Effect of Fatty Acids and Tocopherols on the Oxidative Stability of Vegetable Oils. Eur. J. Lipid Sci. Technol. 2006, 108, 1051–1061. [Google Scholar] [CrossRef]
- De Ursinos, J.F.R.; Padilla, R.B. Use and Treatment of Olive Mill Wastewater: Current Situation and Prospects in Spain. Grasas Y Aceites 1992, 43, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Mouncif, M.; Tamoh, S.; Faid, M.; Achkari-Begdouri, A. A Study of Chemical and Microbiological Characteristics of Olive Mill Waste Water in Morocco. Grasas Y Aceites 1993, 44, 335–338. [Google Scholar] [CrossRef] [Green Version]
- Al-Bsoul, A.; Al-Shannag, M.; Tawalbeh, M.; Al-Taani, A.A.; Lafi, W.K.; Al-Othman, A.; Alsheyab, M. Optimal Conditions for Olive Mill Wastewater Treatment Using Ultrasound and Advanced Oxidation Processes. Sci. Total Environ. 2020, 700, 134576. [Google Scholar] [CrossRef]
- Morillo, J.A.; Antizar-Ladislao, B.; Monteoliva-Sánchez, M.; Ramos-Cormenzana, A.; Russell, N.J. Bioremediation and Biovalorisation of Olive-Mill Wastes. Appl. Microbiol. Biotechnol. 2009, 82, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Kachouri, F.; Hamdi, M. Enhancement of Polyphenols in Olive Oil by Contact with Fermented Olive Mill Wastewater by Lactobacillus Plantarum. Process Biochem. 2004, 39, 841–845. [Google Scholar] [CrossRef]
- Leouifoudi, I.; Harnafi, H.; Zyad, A. Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities. Adv. Pharmacol. Sci. 2015, 2015, 714138. [Google Scholar] [CrossRef] [PubMed]
- Di Mauro, M.D.; Giardina, R.C.; Fava, G.; Mirabella, E.F.; Acquaviva, R.; Renis, M.; D’antona, N. Polyphenolic Profile and Antioxidant Activity of Olive Mill Wastewater from Two Sicilian Olive Cultivars: Cerasuola and Nocellara Etnea. Eur. Food Res. Technol. 2017, 243, 1895–1903. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Kiai, H.; Hafidi, A. Phenolic Profile and Antioxidant Activities of Olive Mill Wastewater. Food Chem. 2012, 132, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Günal, D.; Turan, S. Effects of Olive Wastewater and Pomace Extracts, Lecithin, and Ascorbyl Palmitate on the Oxidative Stability of Refined Sunflower Oil. J. Food Processing Preserv. 2018, 42, e13705. [Google Scholar] [CrossRef]
- Wanasundara, P.; Shahidi, F.; Shahidi, F. Bailey’s Industrial Oil and Fat Products; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Bouaziz, M.; Fki, I.; Jemai, H.; Ayadi, M.; Sayadi, S. Effect of Storage on Refined and Husk Olive Oils Composition: Stabilization by Addition of Natural Antioxidants from Chemlali Olive Leaves. Food Chem. 2008, 108, 253–262. [Google Scholar] [CrossRef]
- Sousa, A.; Ferreira, I.C.; Barros, L.; Bento, A.; Pereira, J.A. Effect of Solvent and Extraction Temperatures on the Antioxidant Potential of Traditional Stoned Table Olives “Alcaparras”. LWT-Food Sci. Technol. 2008, 41, 739–745. [Google Scholar] [CrossRef]
- Fki, I.; Allouche, N.; Sayadi, S. The Use of Polyphenolic Extract, Purified Hydroxytyrosol and 3, 4-Dihydroxyphenyl Acetic Acid from Olive Mill Wastewater for the Stabilization of Refined Oils: A Potential Alternative to Synthetic Antioxidants. Food Chem. 2005, 93, 197–204. [Google Scholar] [CrossRef]
- De Marco, E.; Savarese, M.; Paduano, A.; Sacchi, R. Characterization and Fractionation of Phenolic Compounds Extracted from Olive Oil Mill Wastewaters. Food Chem. 2007, 104, 858–867. [Google Scholar] [CrossRef]
- Mansouri, A.; Embarek, G.; Kokkalou, E.; Kefalas, P. Phenolic Profile and Antioxidant Activity of the Algerian Ripe Date Palm Fruit (Phoenix Dactylifera). Food Chem. 2005, 89, 411–420. [Google Scholar] [CrossRef]
- Conde, E.; Cara, C.; Moure, A.; Ruiz, E.; Castro, E.; Domínguez, H. Antioxidant Activity of the Phenolic Compounds Released by Hydrothermal Treatments of Olive Tree Pruning. Food Chem. 2009, 114, 806–812. [Google Scholar] [CrossRef]
- Cheniany, M.; Ebrahimzadeh, H.; Vahdati, K.; Preece, J.E.; Masoudinejad, A.; Mirmasoumi, M. Content of Different Groups of Phenolic Compounds in Microshoots of Juglans Regia Cultivars and Studies on Antioxidant Activity. Acta Physiol. Plant. 2013, 35, 443–450. [Google Scholar] [CrossRef]
Location | Altitude (m) | Average Temperature (°C) | Rainfall (mm) |
---|---|---|---|
Beni Mellal | 500 | 18.3 | 493 |
Shoul | 211 | 17.9 | 530 |
Meknes | 516 | 17.2 | 576 |
Khenifra | 837 | 16.0 | 633 |
Sidi Allal El Bahraoui | 344 | 18.0 | 534 |
Sidi Slimane | 159 | 18.2 | 326 |
Kelaat Sraghna | 400 | 19.1 | 278 |
Taza | 550 | 17.9 | 563 |
Guelmim | 304 | 18.9 | 119 |
Guercif | 378 | 18.5 | 222 |
W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | |
---|---|---|---|---|---|---|---|---|---|---|
pH | 4.6 ± 0.02 ad | 4.6 ± 0.02 ad | 4.7 ± 0.02 ac | 4.7 ± 0.02 ac | 4.5 ± 0.02 d | 4.6 ± 0.02 ad | 4.6 ± 0.02 ad | 3.8 ± 0.02 b | 4.8 ± 0.02 c | 5.1 ± 0.02 e |
EC (mS/cm) | 11.3 ± 0.05 a | 12.1 ± 0.05 b | 11.9 ± 0.05 b | 16.1 ± 0.05 c | 16.1 ± 0.05 c | 12.9 ± 0.05 d | 14.9 ± 0.05 e | 9.5 ± 0.05 f | 20.7 ± 0.05 g | 19.1 ± 0.05 h |
Humidity (%) | 91.3 ± 1.00 ae | 46.1 ± 0.54 b | 83.1 ± 0.82 c | 86.7 ± 0.60 ac | 86.1 ± 0.90 cd | 93.4 ± 1.02 e | 89.9 ± 1.10 ade | 87.4 ± 0.89 ac | 76.6 ± 0.50 f | 88.9 ± 0.75 ade |
DM (%) | 8.1 ± 1.00 ai | 53.8 ± 0.54 b | 16.8 ± 0.82 c | 13.2 ± 0.60 cd | 13.8 ± 0.90 ce | 6.5 ± 1.02 a | 10.0 ± 1.10 aedf | 12.5 ± 0.89 cfg | 23.3 ± 0.50 h | 11.0 ± 0.75 edgi |
Lipids (%) | 0.10 ± 0.02 a | 0.09 ± 0.01 a | 0.2 ± 0.01 b | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.2 ± 0.02 b | 0.3 ± 0.02 c | 0.07 ± 0.01 a | 0.3 ± 0.02 c | 0.03 ± 0.01 a |
COD (g O2/L) | 159 ± 2.02 a | 126 ± 1.00 b | 275 ± 2.20 c | 212 ± 1.80 d | 200 ± 1.10 e | 93 ± 0.80 f | 187 ± 1.60 g | 117 ± 1.44 b | 300 ± 2.78 h | 172 ± 1.24 i |
Sample | TPC (mg GAE/1 g Extract) | TFC (mg QE/1 g Extract) | TTC (mg CE/1 g Extract) |
---|---|---|---|
W1 | 431.03 ± 1.68 a | 421.47 ± 3.2 a | 106.28 ± 1.9 a |
W2 | 469.59 ± 4.46 b | 355.68 ± 5.21 b | 65.05 ± 2.04 be |
W3 | 287.42 ± 8.18 ch | 194.63 ± 1.07 c | 82.72 ± 0.8 c |
W4 | 534.16 ±3.10 d | 242.52 ± 1.18 d | 54.08 ± 1.96 dh |
W5 | 436.81 ± 1.11 a | 228.84 ± 3.08 d | 71.36 ± 2.08 b |
W6 | 238.26 ± 5.12 e | 179.89 ± 1.10 c | 61.12 ± 1.11 ed |
W7 | 370.31 ± 7.10 f | 289.80 ± 3.10 e | 97.04 ± 2.03 af |
W8 | 275.37 ± 2.22 cg | 275.68 ± 1.30 e | 39.66 ± 2.22 g |
W9 | 307.66 ± 7.07 h | 308.84 ± 2.14 f | 51.40 ± 1.2 h |
W10 | 248.86 ± 4.09 eg | 185.15 ± 3.15 c | 91.98 ± 1.01 cf |
Sample | DPPH IC50 (µg/mL) | ABTS IC50 (µg/mL) |
---|---|---|
W1 | 0.32 ± 0.02 a | 2.04 ± 0.2 a |
W2 | 0.3 ± 0.6 a | 2.28 ± 0.11 a |
W3 | 1.05 ± 0.05 be | 3.65 ± 0.3 ab |
W4 | 0.36 ± 0.3 a | 2.20 ± 0.04 a |
W5 | 0.49 ± 0.07 ac | 2.32 ± 0.22 a |
W6 | 1.25 ± 0.12 be | 6.11 ± 0.11 b |
W7 | 1.35 ± 0.09 b | 2.89 ± 0.10 ab |
W8 | 1.93 ± 0.03 d | 3.73 ± 0.22 ab |
W9 | 0.86 ± 0.8 ce | 3.02 ± 0.12 ab |
W10 | 1.17 ± 0.10 be | 3.25 ± 0.25 ab |
Trolox | 2.96 ± 0.14 f | 30.85 ± 2.1 c |
Variables | pH | EC | Humidity | DM | Lipids | COD | TPC | TFC | TTC | DPPH (1/IC50) | ABTS (1/IC50) |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | 0.692 | −0.044 | 0.044 | 0.126 | 0.415 | 0.014 | −0.196 | 0.485 | 0.130 | 0.117 |
EC | 0.692 | 1 | 0.055 | −0.051 | 0.170 | 0.561 | −0.034 | −0.249 | 0.004 | −0.130 | 0.069 |
Humidity | −0.044 | 0.055 | 1 | −1.000 | 0.045 | 0.007 | −0.350 | −0.377 | 0.237 | −0.492 | −0.310 |
DM | 0.044 | −0.051 | −1.000 | 1 | −0.043 | −0.006 | 0.346 | 0.368 | −0.243 | 0.486 | 0.304 |
Lipids | 0.126 | 0.170 | 0.045 | −0.043 | 1 | 0.391 | −0.345 | 0.065 | 0.078 | −0.433 | −0.388 |
COD | 0.415 | 0.561 | 0.007 | −0.006 | 0.391 | 1 | 0.055 | −0.077 | 0.047 | −0.087 | 0.154 |
TPC | 0.014 | −0.034 | −0.350 | 0.346 | −0.345 | 0.055 | 1 | 0.490 | 0.045 | 0.863 | 0.893 |
TFC | −0.196 | −0.249 | −0.377 | 0.368 | 0.065 | −0.077 | 0.490 | 1 | 0.201 | 0.616 | 0.655 |
TTC | 0.485 | 0.004 | 0.237 | −0.243 | 0.078 | 0.047 | 0.045 | 0.201 | 1 | 0.132 | 0.277 |
DPPH (1/IC50) | 0.130 | −0.130 | −0.492 | 0.486 | −0.433 | −0.087 | 0.863 | 0.616 | 0.132 | 1 | 0.855 |
ABTS (1/IC50) | 0.117 | 0.069 | −0.310 | 0.304 | −0.388 | 0.154 | 0.893 | 0.655 | 0.277 | 0.855 | 1 |
Variables | pH | EC | Humidity | DM | Lipids | COD | TPC | TFC | TTC | DPPH (1/IC50) | ABTS (1/IC50) |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | 0 | 0.027 | 0.904 | 0.904 | 0.728 | 0.232 | 0.970 | 0.587 | 0.155 | 0.721 | 0.747 |
EC | 0.027 | 0 | 0.881 | 0.889 | 0.639 | 0.092 | 0.925 | 0.488 | 0.991 | 0.720 | 0.849 |
Humidity | 0.904 | 0.881 | 0 | <0.0001 | 0.902 | 0.984 | 0.322 | 0.284 | 0.509 | 0.148 | 0.384 |
DM | 0.904 | 0.889 | <0.0001 | 0 | 0.905 | 0.987 | 0.327 | 0.296 | 0.498 | 0.155 | 0.394 |
Lipids | 0.728 | 0.639 | 0.902 | 0.905 | 0 | 0.264 | 0.329 | 0.858 | 0.831 | 0.211 | 0.268 |
COD | 0.232 | 0.092 | 0.984 | 0.987 | 0.264 | 0 | 0.879 | 0.832 | 0.897 | 0.811 | 0.671 |
TPC | 0.970 | 0.925 | 0.322 | 0.327 | 0.329 | 0.879 | 0 | 0.151 | 0.903 | 0.001 | 0.001 |
TFC | 0.587 | 0.488 | 0.284 | 0.296 | 0.858 | 0.832 | 0.151 | 0 | 0.577 | 0.058 | 0.040 |
TTC | 0.155 | 0.991 | 0.509 | 0.498 | 0.831 | 0.897 | 0.903 | 0.577 | 0 | 0.716 | 0.438 |
DPPH (1/IC50) | 0.721 | 0.720 | 0.148 | 0.155 | 0.211 | 0.811 | 0.001 | 0.058 | 0.716 | 0 | 0.002 |
ABTS (1/IC50) | 0.747 | 0.849 | 0.384 | 0.394 | 0.268 | 0.671 | 0.001 | 0.040 | 0.438 | 0.002 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Moudden, H.; El Idrissi, Y.; El Guezzane, C.; El Idrissi, Z.L.; Harhar, H.; Assaggaf, H.; Goh, K.W.; Ming, L.C.; Bouyahya, A.; Tabyaoui, M. Spatial Variation of Phytochemical and Antioxidant Activities of Olive Mill Wastewater: A Chemometric Approach. Sustainability 2022, 14, 14488. https://doi.org/10.3390/su142114488
El Moudden H, El Idrissi Y, El Guezzane C, El Idrissi ZL, Harhar H, Assaggaf H, Goh KW, Ming LC, Bouyahya A, Tabyaoui M. Spatial Variation of Phytochemical and Antioxidant Activities of Olive Mill Wastewater: A Chemometric Approach. Sustainability. 2022; 14(21):14488. https://doi.org/10.3390/su142114488
Chicago/Turabian StyleEl Moudden, Hamza, Yousra El Idrissi, Chakir El Guezzane, Zineb Lakhlifi El Idrissi, Hicham Harhar, Hamza Assaggaf, Khang Wen Goh, Long Chiau Ming, Abdelhakim Bouyahya, and Mohamed Tabyaoui. 2022. "Spatial Variation of Phytochemical and Antioxidant Activities of Olive Mill Wastewater: A Chemometric Approach" Sustainability 14, no. 21: 14488. https://doi.org/10.3390/su142114488
APA StyleEl Moudden, H., El Idrissi, Y., El Guezzane, C., El Idrissi, Z. L., Harhar, H., Assaggaf, H., Goh, K. W., Ming, L. C., Bouyahya, A., & Tabyaoui, M. (2022). Spatial Variation of Phytochemical and Antioxidant Activities of Olive Mill Wastewater: A Chemometric Approach. Sustainability, 14(21), 14488. https://doi.org/10.3390/su142114488