The Environmental Significance of Contaminants of Concern in the Soil–Vegetable Interface: Sources, Accumulation, Health Risks, and Mitigation through Biochar
Abstract
:1. Introduction
2. Contaminants of Soil–Vegetable Interface
2.1. TEs
2.2. PPCPs
3. Sources of TEs and PPCPs in Vegetables
3.1. Industrial Activities
3.2. Agricultural Practices
3.3. Wastewater Irrigation
3.4. Biosolid Amendments
4. Factors Influencing the Uptake of Contaminants
4.1. Soil Factors
4.2. Plant Factors
5. Accumulation Concentration of TEs and PPCPs in Vegetables
5.1. TEs
5.2. PPCPs
6. Effect of TEs and PPCPs on the Growth of Vegetables
6.1. TEs
6.2. PPCPs
7. Health Risk through Consumption of Contaminated Vegetables
7.1. TEs
7.2. PPCPs
8. Mitigation Strategies of TEs and PPCPs through Biochar
8.1. TEs
8.2. PPCPs
8.3. The Impact of Biochar on the Growth of Vegetables in soil Contaminated with TE and PPCP Contaminants
9. Conclusions and Future Outlook
- 1.
- Vegetable crops should be grown in a contaminant-free environment with limited/regulated fertilizers and pesticides;
- 2.
- Better initiatives and awareness programs should be initiated frequently by the local community and government for addressing soil contaminants and their associated health risk among the common man and the farmers;
- 3.
- VTE and PPCP discharges that are released from individual, industrial, and agricultural activities should be regulated and monitored accurately;
- 4.
- More field trials involving the application of biochar for soil remediation should be carried out;
- 5.
- VMonitoring the production of contaminant-free biochar is also necessary before applying biochar for soil remediation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TEs | trace elements |
ECs | emerging contaminants |
PPCPs | pharmaceuticals and personal care products |
Cd | Cadmium |
Cu | Copper |
Pb | Lead |
As | Arsenic |
Si | Silicon |
Hg | Mercury |
Co | Cobalt |
Cr | Chromium |
CEC | cation exchange capacity |
Ca | Calcium |
Mg | Magnesium |
N | Nitrogen |
P | Phosphorous |
Zn | Zinc |
Mo | Molybdenum |
Fe | Iron |
Ni | Nickel |
F | Fluorine |
ROS | reactive oxygen species |
Eh | redox potential |
YS | yellow stripe |
HMAs | heavy metal transporting ATPase |
FPN | Ferroportin |
COPT | copper transporter |
CAX | cation exchanger |
CO2 | carbon di oxide |
BCF | bio concentration factor |
RCF | root concentration factor |
TF | translocation factor |
HQ | hazard quotient |
THQ | target hazard quotient |
HRI | health risk index |
DIM | daily intake of metal |
WBCs | white blood cells |
RQ | risk quotient |
HHI | health hazard index |
EDI | estimated daily intake |
ADI | accepted daily intake |
XRD | X-ray diffraction |
SEM | scanning electron microscopy |
FTIR | Fourier transform infrared |
References
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil Sediment Contam. Int. J. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Hadayat, N.; De Oliveira, L.M.; Da Silva, E.; Han, L.; Hussain, M.; Liu, X.; Ma, L.Q. Assessment of trace metals in five most-consumed vegetables in the US: Conventional vs. organic. Environ. Pollut. 2018, 243, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Margenat, A.; Matamoros, V.; Díez, S.; Cañameras, N.; Comas, J.; Bayona, J.M. Occurrence and human health implications of chemical contaminants in vegetables grown in peri-urban agriculture. Environ. Int. 2019, 124, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Chabukdhara, M.; Munjal, A.; Nema, A.K.; Gupta, S.K.; Kaushal, R.K. Heavy metal contamination in vegetables grown around peri-urban and urban-industrial clusters in Ghaziabad, India. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 736–752. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Hussain, M.I.; Ismail, S.; Khan, Q.M. Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere 2016, 163, 54–61. [Google Scholar] [CrossRef]
- Mehmood, A.; Mirza, M.A.; Choudhary, M.A.; Kim, K.-H.; Raza, W.; Raza, N.; Lee, S.S.; Zhang, M.; Lee, J.-H.; Sarfraz, M. Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environ. Res. 2019, 168, 382–388. [Google Scholar] [CrossRef]
- Carter, L.J.; Harris, E.; Williams, M.; Ryan, J.J.; Kookana, R.S.; Boxall, A.B.A. Fate and Uptake of Pharmaceuticals in Soil—Plant Systems. J. Agric. Food Chem. 2014, 62, 816–825. [Google Scholar] [CrossRef]
- Pullagurala, V.L.R.; Rawat, S.; Adisa, I.O.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Plant uptake and translocation of contaminants of emerging concern in soil. Sci. Total Environ. 2018, 636, 1585–1596. [Google Scholar] [CrossRef]
- de Santiago-Martín, A.; Meffe, R.; Teijón, G.; Hernández, V.M.; Lopez-Heras, I.; Alonso, C.A.; de Bustamante, I. Pharmaceu-ticals and trace metals in the surface water used for crop irrigation: Risk to health or natural attenuation? Sci. Total Environ. 2020, 705, 135825. [Google Scholar] [CrossRef]
- Keerthanan, S.; Jayasinghe, C.; Biswas, J.K.; Vithanage, M. Pharmaceutical and Personal Care Products (PPCPs) in the envi-ronment: Plant uptake, translocation, bioaccumulation, and human health risks. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1221–1258. [Google Scholar] [CrossRef]
- Christou, A.; Karaolia, P.; Hapeshi, E.; Michael, C.; Fatta-Kassinos, D. Long-term wastewater irrigation of vegetables in real agricultural systems: Concentration of pharmaceuticals in soil, uptake and bioaccumulation in tomato fruits and human health risk assessment. Water Res. 2017, 109, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Al-Farsi, R.S.; Ahmed, M.; Al-Busaidi, A.; Choudri, B. Translocation of pharmaceuticals and personal care products (PPCPs) into plant tissues: A review. Emerg. Contam. 2017, 3, 132–137. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Kumar, S.; Chadd, R.P.; Kumar, A. Trace elements in soil-vegetables interface: Transloca-tion, bioaccumulation, toxicity and amelioration—A review. Sci. Total Environ. 2019, 651, 2927–2942. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.; Tirkey, A.; Tiwari, A.; Pandey, S.K.; Khan, M.L. Microbial interaction of biochar and its application in soil, water and air. In Microbes and Microbial Biotechnology for Green Remediation; Malik, J.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 185–203. [Google Scholar]
- Vista, S.P.; Khadka, A. Determining appropriate dose of biochar for vegetables. J. Pharmacogn. Phytochem. 2017, 1, 673–677. [Google Scholar]
- Anae, J.; Ahmad, N.; Kumar, V.; Thakur, V.K.; Gutierrez, T.; Yang, X.J.; Cai, C.; Yang, Z.; Coulon, F. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. Sci. Total Environ. 2021, 767, 144351. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Marcinkowska, K.; Gruszka, D.; Kluczek, K. The Effects of Rabbit-Manure-Derived Biochar Co-Application with Compost on the Availability and Heavy Metal Uptake by Green Leafy Vegetables. Agronomy 2022, 12, 2552. [Google Scholar] [CrossRef]
- Shen, Y.; Song, S.; Thian, B.W.Y.; Fong, S.L.; Ee, A.W.L.; Arora, S.; Ghosh, S.; Li, S.F.; Tan, H.T.; Dai, Y.; et al. Impacts of biochar concentration on the growth performance of a leafy vegetable in a tropical city and its global warming potential. J. Clean. Prod. 2020, 264, 121678. [Google Scholar] [CrossRef]
- Sun, J.; Fan, Q.; Ma, J.; Cui, L.; Quan, G.; Yan, J.; Wu, L.; Hina, K.; Abdul, B.; Wang, H. Effects of biochar on cadmium (Cd) uptake in vegetables and its natural downward movement in saline-alkali soil. Environ. Pollut. Bioavailab. 2020, 32, 36–46. [Google Scholar] [CrossRef]
- Li, Y.; He, J.; Qi, H.; Li, H.; Boyd, S.A.; Zhang, W. Impact of biochar amendment on the uptake, fate and bioavailability of pharmaceuticals in soil-radish systems. J. Hazard. Mater. 2020, 398, 122852. [Google Scholar] [CrossRef]
- Jehan, S.; Muhammad, S.; Ali, W.; Hussain, M.L. Potential risks assessment of heavy metal(loid)s contaminated vegetables in Pakistan: A review. Geocarto Int. 2022, 37, 7287–7302. [Google Scholar] [CrossRef]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in hor-ticultural crops. Sci. Hortic. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Oves, M.; Khan, M.S.; Zaidi, A.; Ahmad, E. Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals: An Overview. In Toxicity of Heavy Metals to Legumes and Bioremediation; Zaldi, A., Wanl, P.A., Khan, M.S., Eds.; Springer: New York, NY, USA, 2012; pp. 1–27. [Google Scholar] [CrossRef]
- Pan, X.-D.; Wu, P.-G.; Jiang, X.-G. Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Sci. Rep. 2016, 6, 20317. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer: Basel, Switzerland, 2012; pp. 133–164. [Google Scholar]
- Zhou, J.; Zhang, Z.; Zhang, Y.; Wei, Y.; Jiang, Z. Effects of lead stress on the growth, physiology, and cellular structure of privet seedlings. PLoS ONE 2018, 13, e0191139. [Google Scholar] [CrossRef] [PubMed]
- Loi, N.N.; Sanzharova, N.I.; Shchagina, N.I.; Mironova, M.P. The Effect of Cadmium Toxicity on the Development of Lettuce Plants on Contaminated Sod-Podzolic Soil. Russ. Agric. Sci. 2018, 44, 49–52. [Google Scholar] [CrossRef]
- Roba, C.; Roşu, C.; Piştea, I.; Ozunu, A.; Baciu, C. Heavy metal content in vegetables and fruits cultivated in Baia Mare mining area (Romania) and health risk assessment. Environ. Sci. Pollut. Res. 2016, 23, 6062–6073. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Khan, S.; Khan, M.A.; Aamir, M.; Ullah, H.; Nawab, J.; Rehman, I.U.; Shah, J. Heavy metals effects on plant growth and dietary intake of trace metals in vegetables cultivated in contaminated soil. Int. J. Environ. Sci. Technol. 2019, 16, 2295–2304. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Signes-Pastor, A.J.; Vioque, J.; Navarrete-Muñoz, E.M.; Carey, M.; García-Villarino, M.; Fernández-Somoano, A.; Tardón, A.; Santa-Marina, L.; Irizar, A.; Casas, M.; et al. Inorganic arsenic exposure and neuropsychological development of children of 4–5 years of age living in Spain. Environ. Res. 2019, 174, 135–142. [Google Scholar] [CrossRef]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.-F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef]
- Chiou, W.-Y.; Hsu, F.-C. Copper Toxicity and Prediction Models of Copper Content in Leafy Vegetables. Sustainability 2019, 11, 6215. [Google Scholar] [CrossRef]
- Medda, S.; Mondal, N.K. Chromium toxicity and ultrastructural deformation of Cicer arietinum with special reference of root elongation and coleoptile growth. Ann. Agrar. Sci. 2017, 15, 396–401. [Google Scholar] [CrossRef]
- Wu, X.; Dodgen, L.K.; Conkle, J.L.; Gan, J. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: A review. Sci. Total Environ. 2015, 536, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.L.; Nason, S.L.; Karthikeyan, K.G.; Pedersen, J.A. Root uptake of pharmaceuticals and personal care product ingre-dients. Environ. Sci. Technol. 2016, 50, 525–541. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, Y.; Liu, Y.-W.; Chang, H.-Q.; Li, Z.-J.; Xue, J.-M. Uptake and translocation of organic pollutants in plants: A review. J. Integr. Agric. 2017, 16, 1659–1668. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review. Sci. Total Environ. 2018, 636, 477–486. [Google Scholar] [CrossRef]
- Du, L.; Liu, W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron. Sustain. Dev. 2012, 32, 309–327. [Google Scholar] [CrossRef]
- Li, Y.; Sallac, J.B.; Zhang, W.; Boyd, S.A.; Li, H. Insight into the distribution of pharmaceuticals in soil-water-plant systems. Water Res. 2019, 152, 38–46. [Google Scholar] [CrossRef]
- Klampfl, C.W. Metabolization of pharmaceuticals by plants after uptake from water and soil: A review. TrAC Trends Anal. Chem. 2019, 111, 13–26. [Google Scholar] [CrossRef]
- Stuart, M.; Lapworth, D.; Crane, E.; Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 2012, 416, 1–21. [Google Scholar] [CrossRef]
- Butler, E.; Whelan, M.; Ritz, K.; Sakrabani, R.; van Egmond, R. The effect of triclosan on microbial community structure in three soils. Chemosphere 2012, 89, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gabarrón, M.; Faz, A.; Acosta, J.A. Effect of different industrial activities on heavy metal concentrations and chemical distribution in topsoil and road dust. Environ. Earth Sci. 2017, 76, 129. [Google Scholar] [CrossRef]
- Jiao, X.; Teng, Y.; Zhan, Y.; Wu, J.; Lin, X. Soil Heavy Metal Pollution and Risk Assessment in Shenyang Industrial District, Northeast China. PLoS ONE 2015, 10, e0127736. [Google Scholar] [CrossRef]
- Xiong, T.-T.; Leveque, T.; Austruy, A.; Goix, S.; Schreck, E.; Dappe, V.; Sobanska, S.; Foucault, Y.; Dumat, C. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter. Environ. Geochem. Health 2014, 36, 897–909. [Google Scholar] [CrossRef] [PubMed]
- Naser, H.M.; Shil, N.; Mahmud, N.; Rashid, M.; Hossain, K. Lead, cadmium and nickel contents of vegetables grown in industrially polluted and non-polluted areas of Bangladesh. Bangladesh J. Agric. Res. 2009, 34, 545–554. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, W.-T.; Zhou, X.; Liu, L.; Gu, J.-F.; Wang, W.-L.; Zou, J.-L.; Tian, T.; Peng, P.-Q.; Liao, B.-H. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. Int. J. Environ. Res. Public Health 2016, 13, 289. [Google Scholar] [CrossRef]
- Alghobar, M.A.; Suresha, S. Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India. J. Saudi Soc. Agric. Sci. 2017, 16, 49–59. [Google Scholar] [CrossRef]
- Paltseva, A.; Cheng, Z.; Deeb, M.; Groffman, P.M.; Shaw, R.K.; Maddaloni, M. Accumulation of arsenic and lead in gar-den-grown vegetables: Factors and mitigation strategies. Sci. Total Environ. 2018, 640, 273–283. [Google Scholar] [CrossRef]
- Chen, H.; Yang, X.; Wang, P.; Wang, Z.; Li, M.; Zhao, F.-J. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China. Sci. Total Environ. 2018, 639, 271–277. [Google Scholar] [CrossRef]
- Amin, N.-U.; Hussain, A.; Alamzeb, S.; Begum, S. Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chem. 2013, 136, 1515–1523. [Google Scholar] [CrossRef]
- Bhatia, A.; Singh, S.; Kumar, A. Heavy Metal Contamination of Soil, Irrigation Water and Vegetables in Perieriia Agricultural Areas and Markets of Delhi. Water Environ. Res. 2015, 87, 2027–2034. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Shahid, M.; Dumat, C.; Niazi, N.K.; Bibi, I.; Gul, B.H.F.S.; Javeed, H.M.R. Influence of groundwater and wastewater irrigation on lead accumulation in soil and vegetables: Implications for health risk assessment and phytoremediation. Int. J. Phytoremediat. 2017, 19, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Alimohammadi, M.; Younesian, M.; Madihi-Bidgoli, S.; Nabizadeh-Nodehi, R.; Jahed Khaniki, G.R.; Hadi, M.; Ghanbari, F. Heavy metal(oid)s concentration in Tehran supermarket vegetables: Carcinogenic and non-carcinogenic health risk assess-ment. Toxin Rev. 2020, 39, 303–310. [Google Scholar] [CrossRef]
- Taghipour, H.; Mosaferi, M. Heavy Metals in the Vegetables Collected from Production Sites. Health Promot. Perspect. 2013, 3, 185. [Google Scholar] [CrossRef] [PubMed]
- Azanu, D.; Mortey, C.; Darko, G.; Weisser, J.J.; Styrishave, B.; Abaidoo, R.C. Uptake of antibiotics from irrigation water by plants. Chemosphere 2016, 157, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Cortés, J.M.; Larsson, E.; Jönsson, J.Å. Study of the uptake of non-steroid anti-inflammatory drugs in wheat and soybean after application of sewage sludge as a fertilizer. Sci. Total Environ. 2013, 449, 385–389. [Google Scholar] [CrossRef]
- Malchi, T.; Maor, Y.; Tadmor, G.; Shenker, M.; Chefetz, B. Irrigation of Root Vegetables with Treated Wastewater: Evaluating Uptake of Pharmaceuticals and the Associated Human Health Risks. Environ. Sci. Technol. 2014, 48, 9325–9333. [Google Scholar] [CrossRef]
- Holling, C.S.; Bailey, J.L.; Heuvel, B.V.; Kinney, C.A. Uptake of human pharmaceuticals and personal care products by cabbage (Brassica campestris) from fortified and biosolids-amended soils. J. Environ. Monit. 2012, 14, 3029–3036. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.; Xu, S.; Hua, R. Uptake of three sulfonamides from contaminated soil by pakchoi cabbage. Ecotoxicol. Environ. Saf. 2013, 92, 297–302. [Google Scholar] [CrossRef]
- Liu, X.; Liang, C.; Liu, X.; Zhao, F.; Han, C. Occurrence and human health risk assessment of pharmaceuticals and personal care products in real agricultural systems with long-term reclaimed wastewater irrigation in Beijing, China. Ecotoxicol. Environ. Saf. 2020, 190, 110022. [Google Scholar] [CrossRef]
- Pannu, M.W.; Toor, G.S.; O’Connor, G.A.; Wilson, P.C. Toxicity and bioaccumulation of biosolidsioso, triclosan in food crops. Environ. Toxicol. Chem. 2012, 31, 2130–2137. [Google Scholar] [CrossRef] [PubMed]
- Prosser, R.S.; Lissemore, L.; Topp, E.; Sibley, P.K. Bioaccumulation of triclosan and triclocarban in plants grown in soils amended with municipal dewatered biosolids. Environ. Toxicol. Chem. 2014, 33, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Macherius, A.; Eggen, T.; Lorenz, W.G.; Reemtsma, T.; Winkler, U.; Moeder, M. Uptake of galaxolide, tonalide, and triclosan by carrot, barley, and meadow fescue plants. J. Agric. Food Chem. 2020, 60, 7785–7791. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wu, J.; Stoffella, P.J.; Wilson, P.C. Uptake and distribution of bisphenol A and nonylphenol in vegetable crops irrigated with reclaimed water. J. Hazard. Mater. 2015, 283, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Conkle, J.L.; Ernst, F.; Gan, J. Treated Wastewater Irrigation: Uptake of Pharmaceutical and Personal Care Products by Common Vegetables under Field Conditions. Environ. Sci. Technol. 2014, 48, 11286–11293. [Google Scholar] [CrossRef]
- Bahiru, D.B. Accumulation of Toxic and Trace Metals in Agricultural Soil: A Review of Source and Chemistry in Ethiopia. Int. J. Environ. Chem. 2021, 5, 17–22. [Google Scholar] [CrossRef]
- Zhang, M.-K.; Liu, Z.-Y.; Wang, H. Use of Single Extraction Methods to Predict Bioavailability of Heavy Metals in Polluted Soils to Rice. Commun. Soil Sci. Plant Anal. 2010, 41, 820–831. [Google Scholar] [CrossRef]
- Wang, W.; Wan, Q.; Li, Y.; Xu, W.; Yu, X. Uptake, translocation and subcellular distribution of pesticides in Chinese cabbage (Brassica rapa var. chinensis). Ecotoxicol. Environ. Saf. 2019, 183, 109488. [Google Scholar] [CrossRef]
- Chiroma, T.M.; Abdulkarim, B.I.; Kefas, H.M. The impact of pesticide application on heavy metal (Cd, Pb and Cu) levels in spinach. Leonardo Electron. J. Pract. Technol. 2007, 11, 117–122. [Google Scholar]
- Arora, M.; Kiran, B.; Rani, S.; Rani, A.; Kaur, B.; Mittal, N. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 2008, 111, 811–815. [Google Scholar] [CrossRef]
- Ratul, A.K.; Hassan, M.; Uddin, M.K.; Sultana, M.S.; Akbor, M.A.; Ahsan, M.A. Potential health risk of heavy metals accumulation in vegetables irrigated with polluted river water. Int. Food Res. J. 2016, 25, 329–338. [Google Scholar]
- Calderón-Preciado, D.; Jiménez-Cartagena, C.; Matamoros, V.; Bayona, J. Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Res. 2011, 45, 221–231. [Google Scholar] [CrossRef] [PubMed]
- García, M.G.; Fernández-López, C.; Pedrero-Salcedo, F.; Alarcón, J.J. Absorption of carbamazepine and diclofenac in hydro-ponically cultivated lettuces and human health risk assessment. Agric. Water Manag. 2018, 206, 42–47. [Google Scholar] [CrossRef]
- Sabourin, L.; Duenk, P.; Bonte-Gelok, S.; Payne, M.; Lapen, D.R.; Topp, E. Uptake of pharmaceuticals, hormones and parabens into vegetables grown in soil fertilized with municipal biosolids. Sci. Total Environ. 2012, 431, 233–236. [Google Scholar] [CrossRef]
- Wu, C.; Spongberg, A.L.; Witter, J.D.; Sridhar, B.M. Transfer of wastewater associated pharmaceuticals and personal care products to crop plants from biosolids treated soil. Ecotoxicol. Environ. Saf. 2012, 85, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Koupaie, E.H.; Eskicioglu, C. Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic-based analysis. J. Hazard. Mater. 2015, 300, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Hirpassa, W.D.; Codling, E.E. Growth and Metal Uptake of Lettuce [Lactuca sativa L.] on Soil Amended with Biosolids and Gypsum. Commun. Soil Sci. Plant Anal. 2019, 50, 2033–2040. [Google Scholar] [CrossRef]
- Yadav, K.K.; Gupta, N.; Kumar, A.; Reece, L.M.; Singh, N.; Rezania, S.; Khan, S.A. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecol. Eng. 2018, 120, 274–298. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Factors Affecting Phytoextraction: A Review. Pedosphere 2016, 26, 148–166. [Google Scholar] [CrossRef]
- Shen, B.; Wang, X.; Zhang, Y.; Zhang, M.; Wang, K.; Xie, P.; Ji, H. The optimum pH and Eh for simultaneously minimizing bioavailable cadmium and arsenic contents in soils under the organic fertilizer application. Sci. Total Environ. 2020, 711, 135229. [Google Scholar] [CrossRef]
- Fulda, B.; Voegelin, A.; Kretzschmar, R. Redox-Controlled Changes in Cadmium Solubility and Solid-Phase Speciation in a Paddy Soil as Affected by Reducible Sulfate and Copper. Environ. Sci. Technol. 2013, 47, 12775–12783. [Google Scholar] [CrossRef] [PubMed]
- Egene, C.; Van Poucke, R.; Ok, Y.; Meers, E.; Tack, F. Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years. Sci. Total Environ. 2018, 626, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Kvesitadze, G.; Khatisashvili, G.; Sadunishvili, T.; Kvesitadze, E. Plants for remediation: Uptake, translocation and transformation of organic pollutants. In Plants, Pollutants and Remediation; Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M.S.A., Hakeem, K.R., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 241–305. [Google Scholar]
- Cornu, J.-Y.; Denaix, L.; Lacoste, J.; Sappin-Didier, V.; Nguyen, C.; Schneider, A. Impact of temperature on the dynamics of organic matter and on the soil-to-plant transfer of Cd, Zn and Pb in a contaminated agricultural soil. Environ. Sci. Pollut. Res. 2016, 23, 2997–3007. [Google Scholar] [CrossRef]
- Stafford, A.; Paramsothy, J.; Michael, H.; Christopher, A. Influence of soil moisture status on soil cadmium phytoavailability and accumulation in plantain (Plantago lanceolata). Soil. Syst. 2018, 2, 9. [Google Scholar] [CrossRef]
- Fantke, P.; Jolliet, O. Life cycle human health impacts of 875 pesticides. Int. J. Life Cycle Assess. 2016, 21, 722–733. [Google Scholar] [CrossRef]
- Barberon, M.; Geldner, N. Radial Transport of Nutrients: The Plant Root as a Polarized Epithelium. Plant Physiol. 2014, 166, 528–537. [Google Scholar] [CrossRef]
- Page, V.; Feller, U. Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level. Agronomy 2015, 5, 447–463. [Google Scholar] [CrossRef]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef]
- Hu, W.; Huang, B.; Tian, K.; Holm, P.E.; Zhang, Y. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk. Chemosphere 2017, 167, 82–90. [Google Scholar] [CrossRef]
- Esposito, M.; De Roma, A.; Cavallo, S.; Miedico, O.; Chiaravalle, E.; Soprano, V.; Baldi, L.; Gallo, P. Trace elements in vegetables and fruits cultivated in Southern Italy. J. Food Compos. Anal. 2019, 84, 103302. [Google Scholar] [CrossRef]
- Mi, B.; Liu, F.; Xie, L.; Zhou, H.; Wu, F.; Dai, X. Evaluation of the uptake capacities of heavy metals in Chinese cabbage. Ecotoxicol. Environ. Saf. 2019, 171, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Ametepey, S.T.; Cobbina, S.J.; Akpabey, F.J.; Duwiejuah, A.B.; Abuntori, Z.N. Health risk assessment and heavy metal con-tamination levels in vegetables from Tamale Metropolis, Ghana. Int. J. Food Contam. 2018, 5, 5. [Google Scholar] [CrossRef]
- Pipoyan, D.; Stepanyan, S.; Stepanyan, S.; Beglaryan, M.; Merendino, N. Health Risk Assessment of Potentially Toxic Trace and Elements in Vegetables Grown under the Impact of Kajaran Mining Complex. Biol. Trace Element Res. 2019, 192, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Feseha, A.; Chaubey, A.K.; Abraha, A. Heavy metal concentration in vegetables and their potential risk for human health. Health Risk Anal. 2021, 1, 68–81. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Masunaga, S. Trace metals in soil and vegetables and associated health risk assessment. Environ. Monit. Assess. 2014, 186, 8727–8739. [Google Scholar] [CrossRef]
- Singhal, P.; Jha, S.K.; Thakur, V.K.; Ravi, P.M.; Patra, A.C.; Dubey, J.S.; Tripathi, R.M. Assessment of trace element intake through some vegetables to the population of Mumbai. Vitam. Miner. 2016, 5, 1000135. [Google Scholar] [CrossRef]
- Laaouidi, Y.; Bahmed, A.; Naylo, A.; El Khalil, H.; Ouvrard, S.; Schwartz, C.; Boularbah, A. Trace Elements in Soils and Vegetables from Market Gardens of Urban Areas in Marrakech City. Biol. Trace Elem. Res. 2020, 195, 301–316. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, M.A. Concentrations and Health Risk Assessment of Trace Elements in Cereals, Fruits, and Vegetables of Bangladesh. Biol. Trace Elem. Res. 2019, 191, 243–253. [Google Scholar] [CrossRef]
- Garg, V.K.; Yadav, P.; Mor, S.; Singh, B.; Pulhani, V. Heavy Metals Bioconcentration from Soil to Vegetables and Assessment of Health Risk Caused by Their Ingestion. Biol. Trace Elem. Res. 2014, 157, 256–265. [Google Scholar] [CrossRef]
- Bati, K.; Mogobe, O.; Masamba, W.R.L. Concentrations of Some Trace Elements in Vegetables Sold at Maun Market, Botswana. J. Food Res. 2016, 6, 69–77. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Ashraf, M.; Shoaib, N.; Parveen, R.; Bibi, Z.; Mustafa, I.; Noorka, I.R.; Tahir, H.M.; Akram, N.A.; et al. Assessment of toxicological health risk of trace metals in vegetables mostly consumed in Punjab, Pakistan. Environ. Earth Sci. 2016, 75, 433. [Google Scholar] [CrossRef]
- Pipoyan, D.; Beglaryan, M.; Costantini, L.; Molinari, R.; Merendino, N. Risk assessment of population exposure to toxic trace elements via consumption of vegetables and fruits grown in some mining areas of Armenia. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 317–330. [Google Scholar] [CrossRef]
- Ramteke, S.; Sahu, B.L.; Dahariya, N.S.; Patel, K.S.; Blazhev, B.; Matini, L. Heavy Metal Contamination of Vegetables. J. Environ. Prot. 2016, 7, 996–1004. [Google Scholar] [CrossRef]
- Ngoc, N.T.M.; Van Chuyen, N.; Thao, N.T.T.; Duc, N.Q.; Trang, N.T.T.; Binh, N.T.T.; Sa, H.C.; Tran, N.B.; Van Ba, N.; Van Khai, N.; et al. Chromium, Cadmium, Lead, and Arsenic Concentrations in Water, Vegetables, and Seafood Consumed in a Coastal Area in Northern Vietnam. Environ. Health Insights 2020, 14, 1178630220921410. [Google Scholar] [CrossRef]
- Shenker, M.; Harush, D.; Ben-Ari, J.; Chefetz, B. Uptake of carbamazepine by cucumber plants—A case study related to irri-gation with reclaimed wastewater. Chemosphere 2011, 82, 905–910. [Google Scholar] [CrossRef]
- Dodgen, L.; Li, J.; Parker, D.; Gan, J. Uptake and accumulation of four PPCP/EDCs in two leafy vegetables. Environ. Pollut. 2013, 182, 150–156. [Google Scholar] [CrossRef]
- Wu, X.; Ernst, F.; Conkle, J.L.; Gan, J. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ. Int. 2013, 60, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, C.; Domínguez, C.; Pérez-Babace, L.; Cañameras, N.; Comas, J.; Bayona, J.M. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions. J. Hazard. Mater. 2016, 305, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y.; Alvarez-Ruiz, R.; Alfarhan, A.H.; El-Sheikh, M.A.; Alobaid, S.M.; Barceló, D. Uptake and accumulation of emerging contaminants in soil and plant treated with wastewater under real-world environmental conditions in the Al Hayer area (Saudi Arabia). Sci. Total Environ. 2019, 652, 562–572. [Google Scholar] [CrossRef]
- Herklotz, P.A.; Gurung, P.; Heuvel, B.V.; Kinney, C.A. Uptake of human pharmaceuticals by plants grown under hydroponic conditions. Chemosphere 2010, 78, 1416–1421. [Google Scholar] [CrossRef]
- Jadia, C.D.; Fulekar, M.H. Phytoremediation of heavy metals: Recent techniques. Afr. J. Biotechnol. 2009, 8, 921–928. [Google Scholar]
- Qinsong, X.; Guoxin, S. The toxic effects of single Cd and interaction of Cd with Zn on some physiological index of [Oenanthe javanica (Blume) DC]. Nanjing Shi Da Xue Bao 2000, 23, 97–100. [Google Scholar]
- Sharma, R.K.; Agrawal, M.; Agrawal, S.B. Physiological, biochemical and growth responses of lady’s finger (Abelmoschus esculentus L.) plants as affected by Cd contaminated soil. Bull. Environ. Contam. Toxicol. 2010, 84, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Agrawal, M.; Agrawal, S.B. Physiological and biochemical responses resulting from cadmium and zinc accu-mulation in carrot plants. J. Plant Nutr. 2010, 33, 1066–1079. [Google Scholar] [CrossRef]
- Hédiji, H.; Djebali, W.; Belkadhi, A.; Cabasson, C.; Moing, A.; Rolin, D.; Brouquisse, R.; Gallusci, P.; Chaïbi, W. Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: Consequences on fruit production. S. Afr. J. Bot. 2015, 97, 176–181. [Google Scholar] [CrossRef]
- Bergqvist, C.; Herbert, R.; Persson, I.; Greger, M. Plants influence on arsenic availability and speciation in the rhizosphere, roots and shoots of three different vegetables. Environ. Pollut. 2014, 184, 540–546. [Google Scholar] [CrossRef]
- Nematshahi, N.; Lahouti, M.; Ganjeali, A. Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Eur. J. Exp. Biol. 2012, 2, 969–974. [Google Scholar]
- Neelofer, H.; Nosheen, B.; Faiza, J. Physiological responses of Phaseolus vulgaris to different lead concentrations. Pak. J. Bot. 2010, 42, 239–246. [Google Scholar]
- Eggen, T.; Lillo, C. Antidiabetic II Drug Metformin in Plants: Uptake and Translocation to Edible Parts of Cereals, Oily Seeds, Beans, Tomato, Squash, Carrots, and Potatoes. J. Agric. Food Chem. 2012, 60, 6929–6935. [Google Scholar] [CrossRef]
- Carter, L.J.; Williams, M.; Böttcher, C.; Kookana, R.S. Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases. Environ. Sci. Technol. 2015, 49, 12509–12518. [Google Scholar] [CrossRef]
- Islam, M.; Hossain, M.M.; Zakaria, M.; Rahman, G.M.; Naznin, A.; Munira, S. Effect of Industrial Effluents on Germination of Summer Leafy vegetables. Int. Res. J. Earth Sci. 2015, 2015. 3, 16–23. [Google Scholar]
- Hillis, D.G.; Fletcher, J.; Solomon, K.R.; Sibley, P.K. Effects of Ten Antibiotics on Seed Germination and Root Elongation in Three Plant Species. Arch. Environ. Contam. Toxicol. 2011, 60, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, M.; Shenker, M.; Chefetz, B. Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables. Environ. Sci. Technol. 2014, 48, 5593–5600. [Google Scholar] [CrossRef] [PubMed]
- Yourtchi, M.S.; Bayat, H.R. Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV.). Int. J. Agric. Crop Sci. 2013, 6, 1099–1103. [Google Scholar]
- Obiora, S.C.; Chukwu, A.; Davies, T.C. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria. J. Afr. Earth Sci. 2016, 116, 182–189. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Fatima, G.; Raza, A.M.; Hadi, N.; Nigam, N.; Mahdi, A.A. Cadmium in Human Diseases: It’s More than Just a Mere Metal. Indian J. Clin. Biochem. 2019, 34, 371–378. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A. Cadmium toxicity: Effects on human reproduction and fertility. Rev. Environ. Health 2019, 34, 327–338. [Google Scholar] [CrossRef]
- Abdul, K.S.M.; Jayasinghe, S.S.; Chandana, E.P.; Jayasumana, C.; De Silva, P.M.C. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 2015, 40, 828–846. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Rahman, M.M.; Mise, N.; Sikder, M.T.; Ichihara, G.; Uddin, M.K.; Ichihara, S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef]
- Gundacker, C.; Hengstschläger, M. The role of the placenta in fetal exposure to heavy metals. Wien. Med. Wochenschr. 2012, 162, 201–206. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.; Qureshi, S.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Mahurpawar, M. Effects of heavy metals on human health. Int. J. Res. Granthaalayah 2015, 530, 2394–3629. [Google Scholar]
- Hordyjewska, A.; Popiołek, Ł.; Kocot, J. The many “faces” of copper in medicine and treatment. Biometals 2014, 27, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Oe, S.; Miyagawa, K.; Honma, Y.; Harada, M. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease. Exp. Cell Res. 2016, 347, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Pavesi, T.; Moreira, J.C. Mechanisms and individuality in chromium toxicity in humans. J. Appl. Toxicol. 2020, 40, 1183–1197. [Google Scholar] [CrossRef]
- Fu, Q.; Malchi, T.; Carter, L.J.; Li, H.; Gan, J.J.; Chefetz, B. Pharmaceutical and Personal Care Products: From Wastewater Treatment into Agro-Food Systems. Environ. Sci. Technol. 2019, 53, 14083–14090. [Google Scholar] [CrossRef]
- Taylor, A.A.; Tsuji, J.S.; Garry, M.R.; McArdle, M.E.; Goodfellow, W.L.; Adams, W.J.; Menzie, C.A. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environ. Manag. 2020, 65, 131–159. [Google Scholar] [CrossRef]
- Mohanty, M.; Kumar, P.H. Effect of ionic and chelate assisted hexavalent chromium on mung bean seedlings (Vigna radiata L. wilczek. var k-851) during seedling growth. J. Stress Physiol. Biochem. 2013, 9, 232–241. [Google Scholar]
- Smith, A.H.; Lingas, E.O.; Rahman, M. Contamination of drinking-water by arsenic in Bangladesh: A public health emergen-cy. Bull. World Health Organ. 2000, 78, 1093–1103. [Google Scholar]
- Verslycke, T.; Mayfield, D.B.; Tabony, J.A.; Capdevielle, M.; Slezak, B. Human health risk assessment of triclosan in land-applied biosolids. Environ. Toxicol. Chem. 2016, 35, 2358–2367. [Google Scholar] [CrossRef] [PubMed]
- Malchi, T.; Maor, Y.; Chefetz, B. Comments on “Human health risk assessment of pharmaceuticals and personal care products in plant tissue due to biosolids and manure amendments, and wastewater irrigation”. Environ. Int. 2015, 82, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Yang, L.; Chen, L.; Li, S.; Sun, L. Bioaccumulation of antibiotics in crops under long-term manure application: Oc-currence, biomass response and human exposure. Chemosphere 2019, 219, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Chen, T.; Xu, W.; Huang, J.; Jiang, S.; Yan, B. Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: A Review. Molecules 2020, 25, 3167. [Google Scholar] [CrossRef]
- Natasha, N.; Shahid, M.; Khalid, S.; Bibi, I.; Naeem, M.A.; Niazi, N.K.; Tack, F.M.G.; Ippolito, J.A.; Rinklebe, J. Influence of biochar on trace element uptake, toxicity and detoxification in plants and associated health risks: A critical review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2803–2843. [Google Scholar] [CrossRef]
- He, L.; Zhong, H.; Liu, G.; Dai, Z.; Brookes, P.C.; Xu, J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G. Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth 2014, 5, 65–75. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; He, L.; Lu, K.; Sarmah, A.; Li, J.; Bolan, N.S.; Pei, J.; Huang, H. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut. Res. 2013, 20, 8472–8483. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ibrahim, M.; Zia-ur-Rehman, M.; Abbas, T.; Ok, Y.S. Mechanisms of biochar-mediated alle-viation of toxicity of trace elements in plants: A critical review. Environ. Sci. Pollut. Res. 2016, 23, 2230–2248. [Google Scholar] [CrossRef]
- Abbas, Z.; Ali, S.; Rizwan, M.; Zaheer, I.E.; Malik, A.; Riaz, M.A.; Shahid, M.R.; Rehman, M.Z.U.; Al-Wabel, M.I. A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar. Arab. J. Geosci. 2018, 11, 448. [Google Scholar] [CrossRef]
- Hmid, A.; Al Chami, Z.; Sillen, W.; De Vocht, A.; Vangronsveld, J. Olive mill waste biochar: A promising soil amendment for metal immobilization in contaminated soils. Environ. Sci. Pollut. Res. 2015, 22, 1444–1456. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, K.R.; Kim, H.J.; Yoon, J.H.; Yang, J.E.; Ok, Y.S.; Owens, G.; Kim, K.H. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ. Earth Sci. 2015, 74, 1249–1259. [Google Scholar] [CrossRef]
- Waqas, M.; Li, G.; Khan, S.; Shamshad, I.; Reid, B.J.; Qamar, Z.; Chao, C. Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environ. Sci. Pollut. Res. 2015, 22, 12114–12123. [Google Scholar] [CrossRef] [PubMed]
- Medyńska-Juraszek, A.; Bednik, M.; Chohura, P. Assessing the Influence of Compost and Biochar Amendments on the Mobility and Uptake of Heavy Metals by Green Leafy Vegetables. Int. J. Environ. Res. Public Health 2020, 17, 7861. [Google Scholar] [CrossRef]
- Qiu, M.; Liu, L.; Ling, Q.; Cai, Y.; Yu, S.; Wang, S.; Fu, D.; Hu, B.; Wang, X. Biochar for the removal of contaminants from soil and water: A review. Biochar 2022, 4, 19. [Google Scholar] [CrossRef]
- Coumar, M.V.; Parihar, R.S.; Dwivedi, A.K.; Saha, J.K.; Rajendiran, S.; Dotaniya, M.L.; Kundu, S. Impact of pigeon pea biochar on cadmium mobility in soil and transfer rate to leafy vegetable spinach. Environ. Monit. Assess. 2016, 188, 31. [Google Scholar] [CrossRef]
- Khan, A.Z.; Ding, X.; Khan, S.; Ayaz, T.; Fidel, R.; Khan, M.A. Biochar efficacy for reducing heavy metals uptake by Cilantro (Coriandrum sativum) and spinach (Spinaccia oleracea) to minimize human health risk. Chemosphere 2020, 244, 125543. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Lu, H.; Lonappan, L.; Brar, S.K.; He, L.; Chen, J.; Yang, S. Biochar application as a soil amendment for decreasing cadmium availability in soil and accumulation in Brassica chinensis. J. Soils Sediments 2020, 18, 2511–2519. [Google Scholar] [CrossRef]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Zhang, R.-H.; Li, Z.-G.; Liu, X.-D.; Wang, B.-C.; Zhou, G.-L.; Huang, X.-X.; Lin, C.-F.; Wang, A.-H.; Brooks, M. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar. Ecol. Eng. 2017, 98, 183–188. [Google Scholar] [CrossRef]
- Niu, L.-Q.; Jia, P.; Li, S.-P.; Kuang, J.-L.; He, X.-X.; Zhou, W.-H.; Liao, B.; Shu, W.-S.; Li, J.-T. Slash-and-char: An ancient agricultural technique holds new promise for management of soils contaminated by Cd, Pb and Zn. Environ. Pollut. 2015, 205, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Marmiroli, M.; Pagano, L.; Pigoni, V.; Fellet, G.; Fresno, T.; Vamerali, T.; Bandiera, M.; Marmiroli, N. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci. Total Environ. 2013, 454, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Bair, D.A.; Anderson, C.G.; Chung, Y.; Scow, K.M.; Franco, R.B.; Parikh, S.J. Impact of biochar on plant growth and uptake of ciprofloxacin, triclocarban and triclosan from biosolids. J. Environ. Sci. Health Part B 2020, 55, 990–1001. [Google Scholar] [CrossRef] [PubMed]
- Keerthanan, S.; Jayasinghe, C.; Bolan, N.; Rinklebe, J.; Vithanage, M. Retention of sulfamethoxazole by cinnamon wood biochar and its efficacy of reducing bioavailability and plant uptake in soil. Chemosphere 2022, 297, 134073. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Vithanage, M.; Lim, J.E.; Ahmed, M.B.M.; Zhang, M.; Lee, S.S.; Ok, Y.S. Invasive plant-derived biochar inhibits sulfamethazine uptake by lettuce in soil. Chemosphere 2014, 111, 500–504. [Google Scholar] [CrossRef]
- Liang, L.; Xi, F.; Tan, W.; Meng, X.; Hu, B.; Wang, X. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 2021, 3, 255–281. [Google Scholar] [CrossRef]
- Yue, Y.; Shen, C.; Ge, Y. Biochar accelerates the removal of tetracyclines and their intermediates by altering soil properties. J. Hazard. Mater. 2019, 380, 120821. [Google Scholar] [CrossRef]
- Liu, Z.; Han, Y.; Jing, M.; Chen, J. Sorption and transport of sulfonamides in soils amended with wheat straw-derived biochar: Effects of water pH, coexistence copper ion, and dissolved organic matter. J. Soils Sediments 2017, 17, 771–779. [Google Scholar] [CrossRef]
- Williams, M.; Martin, S.; Kookana, R. Sorption and plant uptake of pharmaceuticals from an artificially contaminated soil amended with biochars. Plant Soil 2015, 395, 75–86. [Google Scholar] [CrossRef]
- Qin, J.; Niu, A.; Liu, Y.; Lin, C. Arsenic in leafy vegetable plants grown on mine water-contaminated soils: Uptake, human health risk and remedial effects of biochar. J. Hazard. Mater. 2021, 402, 123488. [Google Scholar] [CrossRef]
- Almaroai, Y.A.; Eissa, M.A. Effect of biochar on yield and quality of tomato grown on a metal-contaminated soil. Sci. Hortic. 2020, 265, 109210. [Google Scholar] [CrossRef]
- Nigussie, A.; Kissi, E.; Misganaw, M.; Ambaw, G. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am. Eurasian J. Agric. Environ. Sci. 2012, 12, 369–376. [Google Scholar]
- Li, S.; Sun, X.; Li, S.; Liu, Y.; Ma, Q.; Zhou, W. Effects of amendments on the bioavailability, transformation and accumulation of heavy metals by pakchoi cabbage in a multi-element contaminated soil. RSC Adv. 2021, 11, 4395–4405. [Google Scholar] [CrossRef] [PubMed]
- Tanveer, K.; Ilyas, N.; Akhtar, N.; Yasmin, H.; Hefft, D.I.; El-Sheikh, M.A.; Ahmad, P. Role of biochar and compost in cadmium immobilization and on the growth of Spinacia oleracea. PLoS ONE 2022, 17, e0263289. [Google Scholar] [CrossRef] [PubMed]
- Turan, V.; Khan, S.A.; Rahman, M.U.; Iqbal, M.; Ramzani, P.M.A.; Fatima, M. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol. Environ. Saf. 2018, 161, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Moradi, N.; Rasouli-Sadaghiani, M.; Sepehr, E. Biochar application improves lettuce (Lactuca sativa L.) growth in a lead-contaminated calcareous soil. Arab. J. Geosci. 2021, 14, 1642. [Google Scholar] [CrossRef]
- Velli, P.; Manolikaki, I.; Diamadopoulos, E. Effect of biochar produced from sewage sludge on tomato (Solanum lycopersicum L.) growth, soil chemical properties and heavy metal concentrations. J. Environ. Manag. 2021, 297, 113325. [Google Scholar] [CrossRef]
- Hagab, R.H.; Eissa, D.; Abou-Shady, A.; Abdelmottaleb, O. Effect of biochar addition on soil properties and carrot productivity grown in polluted soils. Egypt. J. Desert Res. 2016, 66, 327–350. [Google Scholar] [CrossRef]
S. No. | Class | Type | Sources | Vegetable Species | Area | References |
---|---|---|---|---|---|---|
A. | TEs | |||||
1 | Cu, Cr | Wastewater irrigation | Lettuce, radish, carrot | Dubai | [5] | |
2 | Cd, Cu, Cr, Pb | Sewage water irrigation | Tomato | India | [50] | |
3 | As, Pb | Contaminated soil | Lettuce, carrot, tomato, radish | USA | [51] | |
4 | Cd | Contaminated soil | Spinach, lettuce, celery, carrot | China | [52] | |
5 | Cd, Pb, As, Cu | Mining activity | Spinach, cabbage, amaranth, lettuce | China | [49] | |
6 | Cu, Cr, Pb | Wastewater irrigation | Onion, tomatoes, garlic, eggplant | Pakistan | [53] | |
7 | Cd, Pb | Industrial activity | Spinach, tomato | Bangladesh | [48] | |
8 | Cu, Pb, Cd | Agriculture activity | Spinach | India | [54] | |
9 | Pb, Cd | Industrial activity | Cabbage, spinach | France | [47] | |
10 | Pb | Wastewater irrigation | Cauliflower, radish, spinach | Pakistan | [55] | |
11 | Cr, Cd, Cu, As, Pb | Agriculture activities | Cabbage, lettuce, carrot, tomato, potato | Iran | [56] | |
12 | Cd, Pb, Cr, Cu | Wastewater irrigation | Onion, tomato | Iran | [57] | |
B. | PPCPs | |||||
1 | Tetracycline | Wastewater irrigation | Carrot, lettuce | Ghana | [58] | |
2 | Ibuprofen, diclofenac | Biosolid amendment | Soybean | Sweden | [59] | |
3 | Carbamazepine, lamotrigine, caffeine | Wastewater irrigation | Carrot | Israel | [60] | |
4 | Carbamazepine | Biosolid amendment | Cabbage | USA | [61] | |
5 | Sulfamethazine | Contaminated soil | Cabbage | China | [62] | |
6 | Chloramphenicol | Contaminated soil | Eggplant | China | [63] | |
7 | Triclosan | Biosolid amendment | Lettuce | USA | [64] | |
8 | Triclocarban | Biosolid amendment | Carrot | USA | [65] | |
9 | Triclosan, galaxolide | Biosolid amendment | Carrots | Germany | [66] | |
10 | Bisphenol-A | Wastewater irrigation | Lettuce | USA | [67] | |
11 | Triclosan, triclocarban | Wastewater irrigation | Carrot, celery, lettuce, spinach, tomato | USA | [68] |
S. No. | Vegetables | Botanical Name | Cd | Pb | As | Cu | Cr | Range | References |
---|---|---|---|---|---|---|---|---|---|
1 | Bottle gourd | Lagenaria siceraria | 0.022 | 0.34 | 0.036 | 7.48 | 0.47 | 0.022–7.48 | [99] |
2 | Potato | Solanum tuberosum | - | 0.54 | 0.03 | 12.01 | - | 0.54–12.01 | [97] |
3 | Carrot | Daucus carota | - | 0.69 | - | 5.78 | - | 0.69–5.78 | [97] |
4 | Cabbage | Brassica oleracea | <0.50 | - | - | 0.16 | <0.50 | 0.16–<0.50 | [100] |
5 | Lettuce | Lactuca sativa | - | - | - | 0.898 | 0.085 | 0.085–0.898 | [94] |
6 | Coriander | Coriandrum sativum | <0.07 | 1 | <0.19 | 16.5 | 20.1 | <0.07–20.1 | [101] |
7 | Eggplant | Solanum melongena | 0.07 | 1.2 | 0.33 | - | 1.8 | 0.07–1.8 | [102] |
8 | Radish | Raphanus sativus | 0.1 | 0.63 | - | 0.66 | <0.05 | <0.05–0.66 | [103] |
9 | Onion | Allium cepa | 0.36 | 1.39 | 2.95 | - | 1.01 | 0.36–2.95 | [104] |
10 | Spinach | Spinacia oleracea | 2.67 | 2.01 | - | 1.79 | 0.82 | 0.82–2.67 | [105] |
11 | Cabbage | Brassica oleracea | - | 0.07 | 0.003 | 0.99 | 0.16 | 0.003–0.99 | [106] |
12 | Eggplant | Solanum melongena | 0.25 | 0.7 | 0.78 | 29 | 1 | 0.25–29 | [107] |
13 | Onion | Allium cepa | 0.05 | - | - | 0.06 | 0.32 | 0.05–0.32 | [96] |
14 | Lettuce | Lactuca sativa | 0.98 | 1.1 | 1.16 | - | 0.6 | 0.6–1.16 | [108] |
15 | Chinese Cabbage | Brassica rapa pekinensis | 0.67 | 1.62 | 1.36 | - | 0.73 | 0.67–1.62 | [95] |
16 | Spinach | Spinacia oleracea | 0.022 | 0.016 | 0.004 | 0.861 | - | 0.004–0.861 | [93] |
17 | Tomato | Solanum lycopersicum | 0.013 | 0.084 | 0.009 | - | - | 0.009–0.084 | [93] |
18 | Coriander | Coriandrum sativum | - | 0.114 | 0.037 | - | 0.142 | 0.114–0.142 | [25] |
19 | Cabbage | Brassica oleracea | 0.017 | 0.030 | 0.012 | - | 0.080 | 0.012–0.080 | [25] |
20 | Radish | Raphanus sativus | 0.087 | 0.980 | 0.150 | - | 0.130 | 0.130–0.980 | [25] |
S. No. | TEs | WHO | EU | Indian Standard |
---|---|---|---|---|
1 | As | 0.2 | 0.2 | 1.1 |
2 | Pb | 0.3 | 0.43 | 2.5 |
3 | Cd | 0.2 | 0.2 | 1.5 |
4 | Cu | 40 | 20 | 30 |
5 | Cr | 20 | 1 | 20 |
S. No. | Vegetable | Botanical Name | PPCPs | References |
---|---|---|---|---|
1 | Lettuce | Lactuca sativa | Carbamazepine-233 ng g−1 Ibuprofen-0.93 ng g−1 Triclosan-13 ng g−1 Bisphenol-A-33 ng g−1 Caffeine-32 ng g−1 | [112] |
2 | Tomato | Solanum lycopersicum | Diclofenac-3.863 µg kg−1 Trimethoprim-0.572 µg kg−1 Sulfamethoxazole-0.406 µg kg−1 | [11] |
3 | Cabbage | Brassica oleracea | Naproxen-38 ng g−1 Gemfibrozil-75 ng g−1 Atenolol-55 ng g−1 Caffeine-125 ng g−1 | [113] |
4 | Eggplant | Solanum melongena | Gemfibrozil-34 ng g−1 | [113] |
5 | Tomato | Solanum lycopersicum | Atenolol-3.95 ng g−1 Meprobamate-0.20 ng g−1 Minocycline-13.83 ng g−1 | [77] |
6 | Celery | Apium graveolens | Carbamazepine-0.50 ng g−1 Caffeine-0.17 ng g−1 Primidone-0.45 ng g−1 | [68] |
7 | Lettuce | Lactuca sativa | Diclofenac-9.05 ng g−1 Bisphenol-A-0.36 ng g−1 Naproxen-2.81 ng g−1 | [110] |
8 | Cabbage | Brassica oleracea | Carbamazepine-19.34 ng g−1 Salbutamol-11.34 ng g−1 Trimethoprim-11.42 ng g−1 Sulfamethoxazole-20.10 ng g−1 | [114] |
9 | Tomato | Solanum lycopersicum | Bisphenol-F-50.5 µg kg−1 Carbamazepine-0.12 µg kg−1 | [3] |
S. No. | Contaminants | Health Risk Effect | References |
---|---|---|---|
A | TEs | ||
1 | Cd | Causes various types of cancer, prostate and breast cancer common, liver and kidneys most sensitive to Cd exposure, damage to hemopoietic system, rheumatoid arthritis, osteoarthritis, osteoporosis, renal and hepatic dysfunction, and pulmonary edema. Excess Cd can cause damage to lungs. It can induce neurodegenerative disease, affect male reproductive system, female menstrual cycle, impair reproductive hormones, fertility, pose a threat to the life of pregnant women and the newborn baby, and cause death. | [130,131,132] |
2 | As | Causes a variety of complications in the body’s organ system, such as the nervous, respiratory, cardiovascular, and integumentary systems, skin lesions, bone marrow depression, and encephalopathy. As is highly carcinogenic in nature causing various types of cancer including skin, bladder, lung, kidney, and liver cancer. Neurological disorders include intellectual function and memory loss, arsenicosis, diabetes, hypertension, hyperkeratosis, and melanosis. | [133,134] |
3 | Pb | Pb affects the central nervous system, cardiovascular system, and kidneys; pregnancy complications can occur, stopping fetal growth in the early stages of pregnancy, miscarriage in females, and male infertility; children have a high absorption capacity for Pb, it can pass through placenta causing birth defects, and can reduce maternal thyroid hormones. Pb can induce anemia, hypertension, renal dysfunction, neurotoxicity, heme synthesis, nephrotoxicity, and encephalopathy and can induce oxidative stress in the liver; excess Pb causes chronic respiratory and dermatogenic problems. It can act as substitute for Zn required in heme synthesis. It can cause various types of cancer due to its carcinogenic nature, leading to death | [129,135,136] |
4 | Cu | Affects liver and kidney failure through chronic or long-term exposure, diarrhea, headache, and mucosal irritation. High Cu concentrations can cause gastrointestinal disorders like jaundice, stomach pain, hematemesis, and vomiting. Other symptoms include hepatic necrosis, rhabdomyolysis, intravascular hemolysis, encephalopathy, depression, irritation, and mortality. Cu can also induce DNA damage due to oxidative stress | [137,138,139] |
5 | Cr | Chromosomal abnormalities, DNA strand breakage, risk of abortion or miscarriage, respiratory tract irritants can cause pulmonary sensitization, and the chronic inhalation of Cr (VI) causes risk of ulcers, lung or nasal cancer. Cr toxicity can induce stomach, kidney, bones, lungs, and other gastrointestinal disorders. It can impair broad spectrum alteration in DNA causing neoplasia | [13,140] |
B | PPCPs | PPCPs have been detected in environmental entities due to their application as prophylactics, and growth promoters in food. Antibiotics distribution in vegetables have been found in the order of leaf > stem> root. Daily exposure to PPCPs can cause antibiotic resistance in humans which can increase the risk of death. Parabens suppress estrogen activity and induce an immediate hypersensitivity reaction. Many laboratory experiments have suggested a low risk of PPCPs exposure on human health. There still needs to be more field scale data under the current system of agricultural production for the analysis of PPCP toxicity on humans through the ingestion of contaminated vegetables. | [10,141] |
S.No. | Parameters | Formula |
---|---|---|
A | TEs | |
1 | Daily intake of metal (DIM) | DIM = A ∗ C ∗ D/BW A = TEs concentration in plants (mg kg−1) C = conversion factor D = daily intake of vegetable (kg day−1) BW = average human body weight (kg) |
2 | Hazard quotient (HQ) | HQ = (daily vegetable intake) ∗ (metal concentration in vegetable)/RFD (oral reference dose in mg kg) ∗ body mass |
3 | Health risk index (HRI) | HRI = DIM/RFD |
4 | Target hazard quotient (THQ) | THQ = 10−3 (EF ∗ ED ∗ FIR ∗ C/RFD ∗ WAB ∗ TA) EF = exposure frequency (365 days year−1) ED = exposure duration (70 years) FIR = food ingestion rate (g person−1 day−1) C = metal concentration in food (µg g−1) RFD = oral reference dose (mg kg−1 day−1) WAB = average body weight (Kg) TA = average exposure time for non-carcinogens |
B | PPCPs | |
1 | Estimated daily intake (EDI) | EDI = Daily intake rate (g person−1 day−1) ∗ PPCPs in vegetables (ng g−1)/person average weight (kg person−1) |
2 | Risk quotient (RQ) | RQ = EDI (ng Kg−1 day−1)/ADI (ng Kg−1 day−1) |
3 | Health hazard index (HHI) | |
4 | Human exposure (HE) | HE = C ∗ D ∗ W ∗ T C-concentration of PPCPs in vegetables (ng/kg) D-average daily consumption of vegetables (Kg/day) W-human body weight (Kg) T-exposure time (day) |
S.No. | Contaminants | Raw Material | Vegetables | Average Reduction (%) | Conclusion of the Study | References |
---|---|---|---|---|---|---|
A | TEs | |||||
1 | Cd | Pigeon pea | Spinach | 25.50–35.06% | Biochar application increased the dry matter yield of spinach leaves and roots. It also decreased Cd mobility in both the spinach and soil. | [160] |
2 | Cu, Pb, Cd, Cr | Wheat straw | Lettuce, spinach, radish, parsley | 51–57% | Biochar addition at a higher dose confirmed a noticeable reduction in TEs availability. However, the response of biochar varied with different TEs and vegetable species. | [158] |
3 | Cd | Wheat straw | Pepper, cabbage and Eggplant | 11.5–15.4% | Biomass of vegetables increased and the Cd concentration decreased. | [19] |
4 | Cr, Cu, Pb | Hardwood | Spinach | 50–75% | Hardwood biochar decreased the concentration and bioaccumulation of TEs compared to controls. | [161] |
5 | Cd | Bamboo and Rice straw | Chinese cabbage | Rice straw:17–35.4% Bamboo: 12–48.3% | Cd accumulation was reduced. High concentrations of applied biochar increased nutrient uptake in vegetables. | [162] |
6 | Pb, Cd | Chicken manure and green waste derived | Indian mustard | Chicken manure: 74.7–96.3% Green waste: 67.2–81.6% | Biochar reduced TEs uptake and improved yield of vegetable plants. | [163] |
7 | Cd | Rice straw | Lettuce | - | Addition of biochar reduced the Cd uptake in shoots in slightly contaminated soil, however in heavily contaminated soil no effect on plants was found. | [164] |
8 | Cd Cu Pb | Rice straw | Cabbage | - | The uptake concentration of TE decreased significantly and yield increased by 34–76%. | [165] |
9 | As | Orchard Prune residues | Tomato | 68% | A significant reduction of As in tomatoes. | [166] |
B | PPCPs | |||||
1 | 15 PPCPs | Forest pine wood | Radish | 33.3–83.0% | The uptake of 11 PPCPs out of 15 was reduced in radishes after biochar addition. | [20] |
2 | Triclosan | Walnut shell | Carrot | 67% | Biochar addition decreased the uptake rate in vegetables, however no significant increase in biomass was reported. | [167] |
3 | Sulfamethoxazole | Cinnamon wood | Water spinach | 30–60% in root and 61–95% in shoot | A reduced uptake was reported in plants with a biochar addition. | [168] |
4 | Sulphamethazine | Invasive Burcucumber plant | Lettuce | 86% | Biochar application enhanced adsorption of sulphamethazine and reduced uptake in lettuces. | [169] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, M.; Tirkey, A.; Tiwari, A.; Lee, S.S.; Dubey, R.; Kim, K.H.; Pandey, S.K. The Environmental Significance of Contaminants of Concern in the Soil–Vegetable Interface: Sources, Accumulation, Health Risks, and Mitigation through Biochar. Sustainability 2022, 14, 14539. https://doi.org/10.3390/su142114539
Pandey M, Tirkey A, Tiwari A, Lee SS, Dubey R, Kim KH, Pandey SK. The Environmental Significance of Contaminants of Concern in the Soil–Vegetable Interface: Sources, Accumulation, Health Risks, and Mitigation through Biochar. Sustainability. 2022; 14(21):14539. https://doi.org/10.3390/su142114539
Chicago/Turabian StylePandey, Mohineeta, Astha Tirkey, Ankesh Tiwari, Sang Soo Lee, Rashmi Dubey, Ki Hyun Kim, and Sudhir Kumar Pandey. 2022. "The Environmental Significance of Contaminants of Concern in the Soil–Vegetable Interface: Sources, Accumulation, Health Risks, and Mitigation through Biochar" Sustainability 14, no. 21: 14539. https://doi.org/10.3390/su142114539
APA StylePandey, M., Tirkey, A., Tiwari, A., Lee, S. S., Dubey, R., Kim, K. H., & Pandey, S. K. (2022). The Environmental Significance of Contaminants of Concern in the Soil–Vegetable Interface: Sources, Accumulation, Health Risks, and Mitigation through Biochar. Sustainability, 14(21), 14539. https://doi.org/10.3390/su142114539