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Abstract: Smart grids (SG) allow users to plan and control device usage patterns optimally, thereby
minimizing power costs, peak-to-average ratios (PAR), and peak load demands. The present study
develops a typical framework of a home energy management system (HEMS) for SG scenarios
using newly limited and multi-limited planning approaches for domestic users. Time-of-use pricing
(TOUP) is used to develop, handle, and manage the optimization problem properly. As a capable
method for optimizing the proposed problem, this paper uses a robust meta-heuristic algorithm
named wind-driven optimization algorithm (WDOA) and compares it to the other optimization
algorithms in order to demonstrate its efficiency. In addition, it integrates a rooftop photovoltaic (PV)
system with the system in order to show that all devices are cost-effective if managed properly. Eight
diverse case studies are analyzed using a variety of time planning algorithms. The simulation results
advocate for the quality and high performance of the proposed model by minimizing the total cost
and managing energy consumption economically.

Keywords: demand side management; peak-to-average ratio; wind-driven optimization algorithm;
energy management system; smart home appliances

1. Introduction

As the population increases, energy consumption increases. At present, power de-
mand cannot be met by traditional power grids. Smart grids (SGs) are developed to meet
these demands [1]. Energy-effective sources, smart controllers, smart meters (SM), renew-
able energy resources (RER), and smart devices are part of SGs [2]. Utilities and users are
exchanging data through SM in SGs. As a result of the data, smart homes can be opti-
mized for energy efficiency. Research has outlined some demand-side management (DSM)
methods [3]. Through such methods, power usage patterns are optimized by shifting loads,
filling valleys, clipping peaks, and so on. By implementing such methods, demand and
supply can be balanced. In this way, such methods encourage the consumer for shifting its
load from on-peak to off-peak periods [4]. DSM has two major tasks: demand response
(DR) and load management (LM) [5].

Load management focuses on managing the user’s load profile efficiently. As a result,
the main grid will be less likely to suffer from problems and power outages will be avoided.
Moreover, it helps reduce peak-to-average ratios (PARs), energy usage, and energy prices.
Users perform DR to respond to dynamic pricing (DP) from utilities [6]. As power usage
increases, grid stability will become increasingly hard to maintain. The supply and demand
of electric power are out of balance as consumers’ load demands increase. This ultimately
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causes load shedding and poses a threat to grid integrity across a wide region almost
instantly. In this way, DR serves as a highly efficient method of educating power users and
obtaining incentives in exchange for tolerating inconvenience.

There are two types of DR programs: incentive-driven DR program and cost-driven
DR program. The demand–supply balance was more precise with such DP models com-
pared to fixed-rate price methods. There are several types of DP tariffs, including time of
use (TOU), real-time pricing (RTP), day-ahead pricing (DAP), critical peak pricing (CPP),
and inclined block rate (IBR). Furthermore, RTP has been proven to be the best costing
method for the electricity market [7]. SG’s energy management targets include minimizing
power costs, reducing PAR, increasing customer satisfaction, minimizing total energy us-
age, and integrating RES. The above targets were achieved using DSM methods recently.
Refs. [8,9] applied non-integer linear programming (NILP), mixed-integer linear program-
ming (MILP), mixed-integer non-linear programming (MINLP), and convex programming
for minimizing the price and power usage. There is, though, a limitation to such methods
in terms of handling many devices. The drawbacks of such techniques lead to the intro-
duction of meta-heuristic optimization methods for SG energy management. Accordingly,
refs. [10,11] applied a genetic algorithm (GA) to minimize energy costs. Refs. [12,13] ap-
plied ant colony optimization (ACO) and differential evolution (DE) for reducing energy
costs and total energy usage.

Ref. [14] presented a DSM model that is suitable to be used in domestic areas. The goal
was to minimize energy costs, PAR, and runtime while maximizing consumer satisfaction.
The paper evaluated its goals with three optimization methods: binary particle swarm
optimization (BPSO), ACO, and GA. Energy costs are calculated using combined TOU
and IBR costing methods. The paper used Energy Management Center (EMC) for home
energy management (HEM). The paper demonstrated that its suggested scheme reduces
costs and PAR more effectively with GA than with BPSO and ACO. Ref. [15] applied a
heuristic-driven evolutionary algorithm for solving optimization problems. The paper
aimed to minimize energy costs and PAR. There are three kinds of consumers considered
in this paper: domestic, commercial, and industrial. Using the suggested algorithm, many
controllable appliances of different kinds can be controlled, and PAR and power costs
are significantly reduced. According to ref. [16], GA can be used to minimize costs in SG.
RES and energy storage systems such as batteries are discussed in the study. Batteries get
charged using RES, and energy is used from the batteries in high energy demand or cost.
Ref. [17] examined an advanced energy management system. The paper examined supply
side management. The optimum set point is determined for various types of distributed
power sources in the study. A modified bacterial foraging algorithm (MBFO) was applied to
schedule the procedure. The suggested method reduced operating costs and net emissions,
without taking DSM into account. Ref. [18] examined Hybrid DE using a harmony search
(DE-HS) algorithm. The study examined a production planning approach for microgrids
(MGs), including conventional generators, photovoltaic (PV), wind power, storage systems,
and the electric vehicle (EV). The EVs serve as both the storage unit and the load demand.
The planning problems are solved using the suggested hybrid DE-HS algorithm. The paper
modeled wind and PV systems’ uncertainties in order to ensure that MG was stable.

Almost all of the methods mentioned are unable to solve the HEMS problems ef-
fectively because of the unpredictability of individual behavior and the non-linear and
complicated power usage profiles of many domestic devices. Often, methods for reducing
power costs, PARs, and peak loads are used without considering consumers’ satisfaction.
Moreover, the proposed algorithms converge less quickly with an increase in the number
of devices. Accordingly, the novel contributions of this paper are summarized as follows:

(1) This paper implements a wind-driven optimization algorithm (WDOA) for mini-
mizing the power bills and PAR, with minimal impact on consumer satisfaction.

(2) This paper develops an optimum control scheme for smart home devices for
scheduling the load.
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(3) It is possible to solve several restricted problems at once. Scheduled devices are
scheduled for optimal periods during the day in order to monitor peak demand, PAR, and
energy costs while maintaining user satisfaction.

(4) This paper proposes two new planning methods named ‘restricted’ and ‘multi-
restricted’ to schedule devices efficiently.

Throughout the study, the following sections are described: Section 2 discusses load
classification and energy tariffs. The problem development has been discussed in Section 3.
The new multi-restricted planning method is described in Section 4. Section 5 presents
WDOA. Section 6 presents the outcomes and the discussion. Section 7 concludes the study.

2. Load Classification and Energy Tariffs

It is possible to schedule various loads in the EMS of domestic buildings based on the
load kind and its features. Aspects such as the period of use and the average power usage
of different appliances are included in the features. In general, domestic devices can be
divided into three categories: baseline or non-shiftable (such as emergency loads hospitals
or health clinics), uninterruptable load (lightning, automation, etc.), and interruptible
flexible loads (washing machines, dishwashers, tumble dryers, etc.) [19].

2.1. Domestic Devices Applied

The present study analyzes the suggested problem using a medium-sized house, and
Table 1 presents load profiles for all appliances. The study integrates a 5 kW rooftop
solar PV on-grid system. As a result, Figure 1 shows the case study’s PV production
profile. There is a specific duration for appliances to complete the function, and therefore a
specific energy consumption vector must be determined both based on the characteristics
or through experimentation in equal periods during operation.

Table 1. The applied devices in the paper.

Appliances
Washing
Machine

with Dryer
Refrigerator Electric Iron

Electric Oven
(Morning

Hours)

Electric Oven
(Evening
Hours)

Water
Heater Table Fan Coffee

Grinder

Power rating
(kW) 0.225 1.5 2.15 2.15 1.5 0.025 0.1
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2.2. Energy Tariff Scheme

As a result, feed-in tariffs need to be greater in comparison to grid tariffs in order
to appeal to consumers and generate renewable energy in real situations. The grid tariff
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(TOUP) and feed-in tariff (FIP) are set at equal levels for this paper as a demonstration
of the scheme’s efficiency. A lower energy price during off-peak periods will also allow
consumers to move their power usage from peak to off-peak times.

On average, household users pay 0.00517 USD per kWh for the 1st 50 kWh of energy
they consume. Using the assumption that peak energy costs are 50% greater compared to
off-peak energy costs, Table 2 shows the proposed TOUP scheme [20].

Table 2. The proposed TOUP scheme.

Hours 22:00–7:00 7:12–21:48

Cost (TOUP) in USD/kWh 0.00517 0.00775

3. Problem Development

In the beginning, there are 24 time slots throughout the day. In a day, there are 120 time
slots, every one of which lasts 12 min, and an hour has been divided into five time slots.
s ∈ S , {1, 2, 120} shows the time slots. By making the time slot short, WDOA can
easily solve the problem. The minimum operating time of all appliances will be 12 min. A
schedulable device’s length of operation time interval (LOT) will be determined by integer
multiples of the 12 min periods. Time slots are presumed to be the unit of LOT for the
paper. This indicates minor errors within a short time that are not worth paying attention
to. Pa shows the energy usage planning vector and would be:

Pa ,
[

P1, P2, . . . , P120
]

(1)

According to their characteristics, every appliance has constant energy usage hourly.
The device a has the power usage hourly of:

Ps
a =

Xa

5
(2)

A shiftable appliance’s (SA’s) energy rate is represented by Equation (2). This case
has five slots for each hour. In the case of schedulable devices, the energy usage planning
matrix P would be:

P =

{
P
∣∣∣Ps

a = Xa
5 , ∀a ∈ A s ∈ [ta, ta + la]

Ps
a = 0 ∀a ∈ A s ∈ S\[ta, ta + la]

(3)

The planning vector can be obtained through the addition of the “Power Matrix”
column-wise in the following way:

Psch =
{

Psch
∣∣Ps

sch = ∑ Ps
ak, ∀s ∈ S

}
(4)

3.1. The off and on Decision Variable

The ‘on’ and ‘off’ modes of the schedulable devices are determined by the decision
variable Ys

ak.
A HEMS is designed to minimize the PAR of the load in order to decrease the bill.

During the day, the TOUP determines the lowest energy price. Cs shows the energy cost,
according to the TOUP at the time slot s. The fitness function, fcost, would be:

Fcost,1 = min
n

∑
s=1

Cs

(
m

∑
a=1

u

∑
k=1

Ps
akYs

ak

)
s.t. αa ≤ ta ≤ (βa − la) (5)

In which, Ps
ak shows the load demand in every device a in phase k for time slot s. Ys

ak
shows the ‘on’ and ‘off’ binary decision variable. The binary decision variable Ys

ak ∈ {0, 1}
determined the ‘on’ and ‘off’ modes of all devices. ta represents the optimum time for the
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function of the device a. la represents the LOT meaning the energy usage of all appliances
follows the appropriate schedule, αa and βa are the beginning and ending time slots of the
function of all appliances (βa > αa).

When an independent roof-top solar PV is incorporated, Equation (5) is as follows:

Fcost,2 = min
n

∑
s=1

m

∑
a=1

u

∑
k=1

(CsPs
akYs

ak − gsρs
akYs

ak) (6)

Through the replacement of the variable Ps
akYs

ak with Ps
sch,ak and ρs

akYs
ak with Gs

schm, ak,
the objective function for the decrease in users’ power bills in the absence of the solar PV
system would be:

min
120

∑
s=1

(CsPs
sch) s.t. αa ≤ ta ≤ (βa − la) (7)

Incorporating the solar PV system will update the objective function in the following
way:

min
120

∑
s=1

(CsPs
sch − gsGs

schm) s.t. αa ≤ ta ≤ (βa − la) (8)

The decrease in PAR would be:

minPAR =
Max(Psch)

Avg(Psch)
(9)

Planning helps minimize a user’s discomfort level. Customer discomfort can be
modeled and quantified using a delay time rate function.

min ∑ a ∈ A fsn (10)

In which, fsn shows the dissatisfaction associated with the SA. Equation (11) calculates
it using the delay time rate (DTR) of SAs [20]:

DTR =

(
ta − αa

βa − la − αa

)
∀a ∈ A (11)

In addition, it is possible to insert a delay parameter g > 1 for associating fsn as gDTR.
Therefore, dissatisfaction associated with SA would be:

fsn = ∑
a∈A

gDTR (12)

3.2. Limitations

Solving the formulated objective functions requires the consideration of the below
limitations.

3.2.1. Power Limitations

Power demands must be met by the load phases of all appliances. The limitation can
be described in the following way:

1
5

m

∑
s=1

Ps
ak = Eak ∀{a, k} (13)

In the case of device a, load phase k, and time slot s, Ps
ak represents the load and Eak

shows the power required. For each appliance, the maximum load restrictions have been
set with the utility to a specified predetermined bound θs.
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m

∑
s=1

Ps
ak ≤ θs (14)

3.2.2. Solar Unit Production Limitation

Daily, the PV system generates between minimal and maximal energy through the PV
panels.

Pg,min ≤ ρ ≤ Pg,max (15)

Whenever the energy generated by PV occurs at the lowest, meaning ρ < Pg,min, the
utility is expected to provide the entire amount of energy needed for devices.

3.2.3. Power Balance Limitation

J + Q = n (16)

In which, the number of controllable devices has been shown by J, the number of
uncontrolled devices has been shown by Q, and n represents the entire number of devices.

3.2.4. Time Limitation

Scheduled load appliances (ScLAs) are not interruptible till all load phases have
been completed. The following load phase cannot begin until the prior load phases have
completed their operations.

Ys
ak + γs

ak = 1 (17)

In the case of a binary decision variable Ys
ak which has a binary 1 value, consequently,

the auxiliary decision variable γs
ak must have a binary 0 value and the opposite is true. The

decision variable γs
ak determines whether or not the prior function was finished. Based on

the assumption that devices operate at their predetermined rate in operational times, it is
necessary to impose various restrictions on demand management in the following manner:

βa − la ≥ la (18)

Typically, the operational starting time occurs between αa and βa − la.

ta ∈ [αa , βa − la] (19)

For the devices’ functions, the cycle count would be:

Θ = St,end − St,st − la + 2 (20)

In which, Θ represents the cycle count of a device in operation, St,st represents the
start time and St,end shows the ending time for the device’s function in the consumer certain
range, and la represents the LOT for a device. The different parameters for ScLAs are
shown in Table 3.
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Table 3. Variables for ScLAs.

Devices Coffee
Grinder Water Heater Washing Machine

with Dryer Electric Iron Table
Fan

Electric Oven-
(Morning Hours)

Electric Oven-2
(Morning Hours) Refrigerator

Number of
slots allocated 1 5 15 2 10 4 4 115

Power usage
per day (kWh) 0.02 1.5 9 0.6 0.05 1.72 1.72 5.172

Real OTD
(min) 12 60 180 24 120 45 45 1380

Power usage per
day slot (kWh) 0.02 0.3 0.6 0.3 0.05 0.43 0.43 0.045

Power rate
(kW) 0.1 1.5 3 1.5 0.025 2.15 2.15 0.225

4. New Multi-Restricted Time Range Planning

For multi-restricted time range planning, operational durations and start times would
be described in the following manner:

la =


la,1 i f ta,1 ∈ [αa,1 , βa,1 − la,1]
la,2 i f ta,2 ∈ [αa,2 , βa,2 − la,2]
0 , else

(21)

αa,1 ≤ la,1 ≤ βa,1 − αa,1 (22)

αa,2 ≤ la,2 ≤ βa,2 − αa,2 (23)

The operational start time would be between ta,1 and ta,2.

ta,1 ∈ [αa,1 , βa,1 − la,1] (24)

ta,2 ∈ [αa,2 , βa,2 − la,2] (25)

In which, la,1, la,2 represent the LOTs and αa,1, αa,2 represent the start time slots. βa,1,
βa,2 represent the ending time slots and ta,1, ta,2 represent the probable start times in the
range of the start and ending times of slot ranges.

5. Wind-Driven Optimization Algorithm

This study makes use of the WDOA as the optimizer due to its special characteristics
including the high convergence rate, and the sub-division ability, which helps to solve
the multi-modal problems, having powerful local operators and highly random searches.
Due to these features, it becomes a very successful and optimal option for the proposed
nonlinear optimization problem. WDO would be a meta-heuristic algorithm based on wind
movement within the atmosphere. For WDO, a search space is filled with incredibly small
air parcels, and four various forces are employed for equalizing pressure on air parcels. The
four forces involve the Coriolis force, the pressure gradient force, the gravitational force,
and the frictional force. The Coriolis force moves winds horizontally, in other words, rotates
winds around the earth, while a pressure gradient force changes the wind’s pressure as it
moves. Wind pressure is balanced horizontally by equalizing Coriolis force and pressure
gradient force. In addition, the gravitational force pushes winds vertically towards their
center, causing the friction to decrease wind speed, slowing down the speed of the Coriolis
force. The mathematical expressions for each force would be [21]:

CF = −2Ω× µ (26)

PGF = −∇PδV (27)

Fg = ρδVg (28)
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Ff = ραµ (29)

Firstly, Equation (30) has been used to generate the random solution (vi):

vi = Vmax × 2× (rand(populationsize, n)− 0.5) (30)

The fitness function evaluates all random solutions and reproduces reasonably accept-
able solutions whilst neglecting undesirable solutions. During every stage, the air parcel’s
velocity and position are assessed, and the air parcel’s velocity has been updated. The new
velocity (Vnew) of air parcels can be expressed by Equation (31):

Vnew = (1− α)Vcur −Vcur × g(R× T
∣∣∣∣1j − 1

∣∣∣∣(xnew − xold)) +
cVcur

Pcur
(31)

Vnew = Vmax i f Vnew > Vmax (32)

Vnew = Vmin i f Vnew < Vmax (33)

xnew = xcur + (Vnew × ∆t) (34)

Equation (34) is used to generate a new generation, and the procedure continues after
an ending criterion has been achieved, meaning optimum planning of power usage and in
of energy prices. Table 4 provides the optimum outcomes when taking into account the
parameters [22].

Table 4. WDO parameters.

Parameters g α RT Population
Sizing DimMax

Amounts 0.2 0.4 3 30 5

Parameters DimMin Vmax Vmin Maximum iteration

Amounts −5 0.1 0.9 200

6. Simulation Results and Discussions

This section assesses the performance of the proposed model on a standard test system.
As the optimizer, WDOA is used to solve the suggested smart home device planning
problem in eight various cases. For the case of efficacy, WDOA has then been compared
with DE [23] method to demonstrate its efficiency. In the following subsections, shiftable
load appliances (SLAs) will be presented and analyzed in various cases. It is worth noting
that peak load demand in the residence is controlled by the maximal load limitation, which
must be lower than or equal to 5.5 kW.

6.1. SAs Scheduled in a Constant Time Range

As part of the planning, the user adjusts the run time range for all appliances according
to the allocated time slots. Daily, all schedulable appliances have at least one operational
cycle. Schedules and adjustments to the appliance parameters must be done manually by
the consumer. Then, the utility electricity pricing (TOUP) signal is sent. Table 5 provides
the parameters of domestic load devices for constant time-range planning.

A typical home daily load demand is shown in Figure 2 for constant-time planning
using TOUP. Moreover, it displays the highest load demand for each 24 h. A constant time
range is shown in Figure 3 with no planning for the household’s daily load. Time slot 38 to
39 has the highest peak load in a day, in other words, 7:24 AM to 7:36 AM, so it is not the
best time to minimize costs. Daily PAR can be determined using the mean of planned load
demand. It is important to distribute the appliances to each time slot throughout the day to
minimize the peak load demands while maintaining user satisfaction [24,25]. Equation (9)
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optimizes the fitness function in 24 h for the purpose of simulating peak load, regardless of
TOUP. On a 24 h time horizon, the PAR equals 4.7.

As a result of the minimization of PAR daily, the fitness value in Equation (7) can
be found. Using a constant time-range planning using a mean value of 4.7, the overall
energy price equals 0.12 USD/day. There is an overall power usage of 19.79 kWh per day.
According to Table 5, the washing machine has been planned to run from 12:00 AM to
2:48 AM. A washing machine operated in the daylight at peak times, such as from 9:00 AM
to 11:48 AM, is likely to increase the energy price to 7.79 and the PAR is likely to be 5.73.
There is a maximal peak load of 4.73 kW for time slots 51 and 55 (that is 10:00 AM to
10:48 AM).

Table 5. Parameters of schedulable of devices for constant-time planning.

Devices Coffee
Grinder

Water
Heater

Washing Machine
with Dryer

Electric
Iron

Table
Fan

Electric Oven-1
(Morning Hours)

Electric Oven-2
(Morning Hours) Refrigerator

Number of
slots allocated 1 5 15 2 10 4 4 115

OTI
(time slot) 62 51–55 1–15 37–38 71–80 36–39 97–100 1–115

Starting
Time (h) 12-15 PM 10-00 AM 12-00 AM 7-15 AM 2-00 PM 7-00 AM 7-15 PM 12-00 AM

Ending
Time (h) 12-20 PM 11-00 AM 2-48AM 7-30AM 3-00 PM 7-45AM 8-00 PM 10-48 PM

Power usage per
day slot (kWh) 1 5 15 2 10 4 4 115

Power
rate (kW) 0.1 1.5 3 1.5 0.025 2.15 2.15 0.225
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6.2. ScLAs (Scheduled Load Appliances) Using Restricted Time Range

The planning specifies the start and end time slots for the devices’ function that
users wish the devices to function during. The load scheduler randomly determines the
appliance’s location to function during the times. As a result, the suggested algorithm
determines the optimal combinations that have the lowest PAR and energy costs. By
planning devices into acceptable operational cycles, undesirable time slots are minimized.
According to Figure 4, the power demand limitation is satisfied by devices requiring less
than 5.5 kW per slot. WDOA forecasts peak load at 3.23 kW during time slots 3 to 15, which
are 12:24 AM to 2:48 AM; and DE forecasts peak load at 3.88 kW during time slots 35 to 36,
which are 6:48 AM to 7:00 AM. The operational starting and ending times for the restricted
time planning are shown in Table 6.
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Table 6. Operational starting and ending times for restricted time planning.

Interruptible Flexible Load Devices

Appliances Electric Iron Coffee Grinder Water Heater Table Fan

Number of slots allocated 2 1 5 10

OTI 33–42 59–68 46–55 65–80

Power rate (kW) 1.5 0.1 1.5 0.025

Feasible operational
starting and ending time (h) 6:24–8:12 11:36–13:24 9:00–10:48 12:48–15:48

Non-interruptible flexible load devices

Appliances Electric oven-1 Electric oven-2 Refrigerator Washing machine
with dryer

Number of slots allocated 4 4 115 15

OTI 33–44 92–106 1–115 1–30

Power rate (kW) 2.15 2.15 0.225 3

Feasible operational
starting and ending time (h) 6:24–8:36 18:12–21:00 12:00–22:48 00:00–5:48

A PAR of 3.91 can be achieved by WDOA and a PAR of 4.71 can be achieved by DE.
WDOA has 0.119 USD/day for energy price, whereas DE has 0.121 USD/day. WDOA’s
scheduler reduces electricity costs and 3.9% and PAR by 16.8% when compared to constant-
time planning. In the time slots 13 to 27, that is 2:24 AM to 5:12 AM, there is the peak power
demand from the grid of 3.23 kW with no PV system. Figure 5 shows that there would be a
PAR with no PV by WDOA of 3.91 and by DE of 6.52. WDOA’s minimal price with no PV
equals 0.119 USD/day, whereas DE’s minimal price equals 0.120 USD/day. The operational
starting and ending times for multi-restricted time planning are shown in Table 7.
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Table 7. Operational starting and ending times for multi-restricted planning.

Schedulable
Devices

Washing Machine
with Dryer

Water
Heater

Table
Fan

Electric
Oven-1

Electric
Oven-2 Refrigerator Electric

Iron

Number of
slots allocated 15 5 10 4 4 115 2

OTI
(time slot)

1–17
or

19–34

41–48
or

50–60

61–70
or

72–81

31–35
or

41–49

86–92
or

97–101
1–115

31–36
or

39–43

Power rate
(kW) 3 1.5 0.025 2.15 2.15 0.225 1.5

Feasible operational
starting and ending

time (h)

00:00–3:12
or

3:36–6:36

8:00–9:24
or

9:48–11:48

12:00–13:48
or

14:12–16:00

6:00–6:48
or

8:00–9:36

17:00–18:12
or

19:12–20:00
12:12–23:48

6:00–7:00
or

7:36–8:24

6.3. ScLAs (Scheduled Load Appliances) Using Variable Time Planning

According to this planning, the probable operational start time slot equals 1, and the
probable operational end time slot equals 120. Nonetheless, the operational period exceeds
or equals the start time slot, but below or equal to the ending time slot minus the start time
slot. A device that requires scheduling has a range of start operational times during its
operating cycle. In Table 8, the parameters applied to simulate ScLAs with variable time
range planning are shown. Figure 6 shows the load pattern per day with a variable time
planning model. Figure 6 shows the load demand pattern daily for the highest iteration of
500. WDOA scheduler’s peak load demand equals 3.23 kW during time slots 35 to 49 (that
is between 6:48 AM and 9:36 AM).

Variable time scheduling using WDOA results in PAR of 3.91and DE results in PAR
of 3.94. DE calculates the energy price at 0.115 USD/day, whereas WDOA calculates it
at 0.11 USD/day. WDOA load scheduler shows a similar peak load in restricted, multi-
restricted, and variable time range planning without PV production, which equals 3.23 kW
daily, however, 16.8% below constant time-range planning.
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Table 8. Parameters of schedulable devices.

Devices Washing Machine
with Dryer

Water
Heater

Coffee
Grinder

Table
Fan

Electric
Oven-1

Electric
Oven-2 Refrigerator Electric

Iron

Number of
slots allocated 15 5 1 10 4 4 115 2

OTI
(time slot) 1–120 1–120 1–120 1–120 1–120 1–120 1–120 1–120

Power usage
per day (kWh) 9 1.5 0.02 0.05 1.72 1.72 5.17 0.6

Number of exiting
operational cycles 106 116 120 111 117 117 6 119

Power usage
per slot (kWh) 0.6 0.3 0.02 0.005 0.43 0.43 0.045 0.3

6.4. Constant Time-Range Planning Combined with PV

PV panels are given priority over electronic devices in every planning scenario. When
PV panels cannot generate enough power for supplying the devices’ load, the power is
supplied from the power grid. PV panels can export excess power to the main grid when
they generate excess power. The process has been employed for optimizing the objective
function similarly to scenario 1, and Table 5 parameters have been applied to integrate the
PV system. Figure 7 shows the simulation outcomes. Figure 8 shows that there is a net peak
load demand daily of 3.23 kW, but the net peak PV production following satisfaction of the
demands equals −4.36 kW per slot. PAR equals 3.91. There is an overall energy demand of
19.79 kWh for devices daily. The TOUP tariff allows the sale of 8.7 kWh of energy to the
power grid. In kWh, there is 0 net energy entering the utility. As a result, the PAR equals
3.75, 34% less compared to the unplanned load with no PV.
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Figure 8 shows the pattern of demand per day for unplanned loads. The power prices,
peak loads, and PARs of domestic devices that are planned with a constant-time planning
approach tend to be below those of unscheduled load appliances (USLAs) without PVs. The
peak load and PAR for a system without PV equal 17.99% below the unplanned loads. The
power price for a system without PV production with constant time range planning equals
15.78% less compared to the power price of the unplanned loads. When utilizing constant
time-range planning, the peak load and PAR of a PV system exceed the unplanned loads.
PV compensates for the majority of load demands in unplanned loads compared to constant
time-range planning. Instead of satisfying the load demand completely, the majority of PV
production for constant-time planning has been sent to the utilities. In a system integrating
PV utilizing constant time-range planning, the utility must pay the consumers 2.35% more
for power compared to unplanned loads. Table 9 presents a comparison.

Table 9. Details of comparing constant a system with time-range planning and a system with no
planning.

Devices Unplanned Fixed Time Planning

Operational
layout

System
using PV

System
sans PV

System
using PV

System
sans PV

PAR 3.75 5.73 3.91 4.70

Peak load 3.09 4.73 3.23 3.88

Power price
(USD/day) consumer paid

for grid
0 0.148 0 0.124

Power price
(USD/day) grid paid

for consumer
0.072 0 0.74 0

6.5. Restricted Time Scheduling Integrated with PV

When integrating 5 kW PV power production into restricted time-range planning,
the identical parameters are applied as in scenario 2 and Table 6. The net load demand
pattern per day is shown in Figure 9. Utility imports are indicated by the upper portion
that exceeds 0. Utility exports are shown in the lower portion that is below 0.
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price with restricted time-range planning; (a) DE algorithm; (b) WDOA.

The WDOA scheduler calculates power price and PAR in a system using PV at 4.86%
and 1% below constant time-range planning, respectively. In the case of PV production
with WDOA, the net peak load demand per day from the utility equals 3.19 kW, and
with the DE scheduler, it equals 3.23 kW. PV utilizing WDOA has a minimal PAR of
3.87, whereas PV utilizing DE has a minimal PAR of 3.91. There is an overall energy
demand daily of 19.79 kWh for the devices. The grid’s net power import equals zero,
and the grid’s net power export equals 8.7 kWh. PV utilizing the WDOA has a minimal
power price of −0.1 USD/day, whereas PV utilizing the DE has a minimal power price of
−0.099 USD/day.
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6.6. Multi-Restricted Time Range Scheduling Integrated with PV

In multi-restricted time-range planning, the parameters in scenario 3 and Table 7 are
utilized for optimizing PAR, power price, and peak load. Figure 10 shows the net load
demand pattern per day for a PV production system. In WDOA, the net peak power
demand per day from the grid using PV equals 2.85 kW; whereas, in DE, the net peak
power demand per day equals 3.23 kW. PV system utilizing WDOA results in the lowest
PAR of 3.46; whereas, the PV system utilizing DE results in the lowest PAR of 3.87. PV
system utilizing WDOA has the lowest price of −0.01 USD/day; whereas, DE has the
lowest price of −0.099 USD/day.
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6.7. Variable Time Scheduling Integrated with PV

Because all appliances’ load profiles are chosen randomly up to the highest iteration
point, the load profile shape can vary slightly with each iteration. ScLAs using PV produc-
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tion with variable time planning are depicted in Figure 11. When PV is integrated into the
grid utilizing WDOA, the net peak power demand per day equals 0.8 kW; whereas, when
utilizing DE, the peak power demand equals 3.88 kW. WDOA has a minimal PAR of 1 with
PV, whereas DE has a minimal PAR of 2.88. The minimal overall energy demand daily for
devices equals 19.79 kWh. Utility grid energy imports are zero. According to TOUP, the
minimal price of PV production with WDOA equals −0.11 USD/day, whereas with DE
equals −0.104 USD/day.
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7. Conclusions

The paper formulates and optimizes a smart house device planning problem with
new restricted and multi-restricted time-range planning methods to satisfy both time and
power requirements. Minimizing energy prices per month is the first goal. The second and
third goals are to minimize peak-to-average ratios and maximize peak load demand. As
the problem is non-convex, two efficient binary meta-heuristic optimization algorithms, a
wind-driven optimization algorithm, and differential evolution have been used for solving
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it. There are eight shiftable appliances using a 5 kW roof-top PV panel. This problem
is addressed by comparing eight scenarios including and excluding PV production. The
outcomes show that the wind-driven optimization algorithm method minimizes energy
costs, peak load demand, and peak-to-average ratios over differential evolution. With PV
production, consumers can send excess power to the utility and take advantage of feed-in
tariffs. It was seen that considering renewable sources of PV would result in a reinforced
grid with a higher power supply in the unscheduled programs. According to the results,
the power price for a system without PV production with constant time-range planning
equals 15.78% less compared to the power price of the unplanned loads. Moreover, from
the consumers’ points of view, the utility must pay the consumers 2.35% more for power
compared to unplanned loads in a system integrating PV utilizing constant time-range
planning. The time-of-use pricing would result in less costs and more flexibility in the
system that can finally add to the social welfare of societies. In the future, authors would
assess the security of data transaction within the system from a cyber point of view.
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Nomenclature

Cs Energy cost.
fcost Fitness function.
J Number of controllable devices.
gs The feed-in tariff.
g A constant value in the optimization algorithm.

la
The LOT meaning the energy usage of all appliances
follows the appropriate schedule.

la,1, la,2 The LOTs.
Ps

a Energy usage of ath device at sth time slot in kWh.
Pg,min The minimal energy generation.
Pg,max The maximal energy generation by applying the PV system daily in the grid.
Psch A vector that represents the overall energy demand of SAs for every time slot s.
Ps

ak Load demand in every device a in phase k for time slot s.
Q and n The number of uncontrolled devices.
ta The optimum time for the function of the device a.
ta,1, ta,2 The probable start times in the range of the start and ending times of slot ranges.
St,st/St,end The start time and end time for the device’s function in the consumer certain range.
Xa Energy usage value hourly, at the time slot.
Ys

ak The ‘on’ and ‘off’ binary decision variable.
Vmax Maximum velocity of the particle in the algorithm.
αa and βa The beginning and ending time slots of the function of all appliances (βa > αa).
ρs

ij The energy generated via the rooftop solar PV system in sth time slot.
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Θ The cycle count of a device in operation.
αa,1, αa,2 The start time slots.
βa,1, βa,2 The ending time slots.
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