Research on the Influence of Different Types of Industrial Agglomeration on Ecological Efficiency in Western China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model
2.2.1. Method for Measuring the Degree of Industrial Agglomeration
2.2.2. Measurement Method of Ecological Efficiency
2.2.3. Panel Tobit Regression Model
2.3. Sources of Data
3. Results
3.1. Industrial Agglomeration Status in Western China from 2006 to 2020
3.2. Ecological Efficiency Level in Western China from 2006 to 2020
3.3. The Impact of Industrial Agglomeration on the Ecological Efficiency of Western China
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, J.; Zou, B. Industrialization from scratch: The “Construction of Third Front” and local economic development in China’s hinterland. J. Dev. Econ. 2021, 152, 102698. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Zhu, H.; Wen, C. Industrial Investment and Local Economic Growth: Evidence from Regression Discontinuity in the “Construction of Third Front. J. World Econ. 2022, 45, 136–158. [Google Scholar]
- Zhang, C.; Zhou, B.; Lv, M.; Liu, X. Has West China Development directly or indirectly brought Pollution Haven? China Popul. Resour. Environ. 2017, 27, 95–101. [Google Scholar]
- Lin, J.; Li, L. The History, Achivement and Future Path of Green Development in the 20 Years of the Development of Western China. Shaanxi Norm. Univ. (Philos. Soc. Sci. Ed.) 2019, 48, 76–88. [Google Scholar]
- Chen, W.; Huang, X.; Liu, Y.; Luan, X.; Song, Y. The Impact of High-Tech Industry Agglomeration on Green Economy Efficiency—Evidence from the Yangtze River Economic Belt. Sustainability 2019, 11, 5189. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Huang, Q.; He, C.; Wang, C.; Wang, Y.; Li, K. Water-energy nexus within urban agglomeration: An assessment framework combining the multiregional input-output model, virtual water and embodied energy. Resour. Conserv. Recycl. 2021, 164, 105113. [Google Scholar] [CrossRef]
- Marshall, A. Principles of Economics; MacMillan: London, UK, 1890; pp. 12–13. [Google Scholar]
- Eva, J.; Pavelkova, B.; Magdalena, L.H. The Age of Clusters and Its Influence on Their Activity Preferences. Technol. Econ. Dev. Econ. 2013, 19, 621–637. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Wang, Y.; Zheng, L.; Li, J.; Xie, S. Can industrial agglomeration promote pollution agglomeration? Evidence from China. Clean. Prod. 2019, 246, 118960. [Google Scholar] [CrossRef]
- Li, X.; Zhu, X.; Li, J.; Gu, C. Influence of Different Industrial Agglomeration Modes on ecological efficiency in China. Int. J. Environ. Res. Public Health 2021, 18, 13139. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Gao, L.; Deng, Z.; Tian, Y. Can the Coal-to-Gas/Electricity Policy Improve Air Quality in the Beijing–Tianjin–Hebei Region?—Empirical Analysis Based on the PSM-DID. Atmosphere 2022, 13, 879. [Google Scholar] [CrossRef]
- Tang, C.; Qiu, J.; Zhang, L.; Li, H. Spatial Econometric Analysis on the Influence of Elements Flow and Industrial Collaborative Agglomeration on Regional Economic Growth: Based on Manufacturing and Producer Services. Econ. Geogr. 2021, 41, 146–154. [Google Scholar]
- Lu, F.; Wang, Q. Positive Correlation or Negative Correlation: A Study of Agglomeration of Producer Services and Pollution Reduction. J. Huazhong Univ. Sci. Technol. (Soc. Sci. Ed.) 2021, 35, 41–53. [Google Scholar]
- Liu, H.; Zhang, J. The Impact of Industrial Cooperative Agglomeration on High-quality Economic Development. Sci. Technol. Prog. Policy 2022, 39, 69–77. [Google Scholar]
- Gao, L.; Pei, T.; Wang, T.; Hao, Y.; Li, C.; Tian, Y.; Wang, X.; Zhang, J.; Song, W.; Yang, C. What Type of Industrial Agglomeration Is Beneficial to the ecological efficiency of Northwest China? Sustainability 2021, 13, 163. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L. Geographic Concentration in U.S. Manufacturing Industries: A Dartboard Approach. J. Political Econ. 1997, 105, 889–927. [Google Scholar] [CrossRef] [Green Version]
- Yang, C. An Analysis on the Spatio-Temporal Difference and Convergence of China’s Industrial ecological efficiency. Macroeconomics 2020, 106–113. [Google Scholar]
- Lei, Y.; Zheng, M.; Sun, J. The Impact of Industrial Agglomeration on Haze Pollution of Key Urban Agglomerations in China. Soft Sci. 2020, 34, 64–69. [Google Scholar]
- Zhang, G.; Chen, C. Research on Dynamic Relationship between Industrial Agglomeration and Urban ecological efficiency. J. Sci. Technol. Prog. Policy. 2019, 36, 48–57. [Google Scholar]
- Wang, Y.; Miao, C.; Hu, Z.; Zhang, Y. Specialization, diversity and their impacts on China’s provincial industrial pollution emissions. J. Nat. Resour. 2019, 34, 586–599. [Google Scholar] [CrossRef]
- Frenken, K.; Oort, F.V.; Verburg, T.N. Related Variety, Unrelated Variety and Regional Economic Growth. J. Reg. Stud. 2007, 41, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Schaltegger, S.; Sturm, A. Ökologische Rationalität. Die Unternehm. 1990, 4, 73–290. [Google Scholar]
- World Business Council for Sustainable Development. Eco-Efficient Leadership for Improved Economic and Environmental Performance. World Business Council for Sustainable Development. Available online: https://www.eldis.org/document/A262921996 (accessed on 12 August 2022).
- Ichimura, M.; Nam, S.; Bonjour, S. Eco-Efficiency Indicators: Measuring Resource-Use Efficiency and the Impact of Economic Activities on the Environment; ESCAP: Bangkok, Thailand, 2009. [Google Scholar]
- Tian, P.; Wang, H.; Li, J.; Cao, L.; Hu, Q. Eco-efficiency evaluation and influencing factors analysis of county-level cities in the East China Sea coastal zone. Geogr. Res. 2021, 40, 2347–2366. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Yang, J. Review of methodology and application of eco-efficiency. Acta Ecol. Sin. 2006, 26, 3898–3906. [Google Scholar]
- Shi, D.; Wang, J. Measurement and Evaluation of China’s Ecological Pressure and Ecological Efficiency Based on Ecological Footprint. China Ind. Econ. 2016, 5, 5–21. [Google Scholar]
- Wang, X.; Ding, H.; Liu, L. ecological efficiency Measurement of Industrial Sectors in China: A Hybrid Super-efficiency DEA Analysis. J. Clean. Prod. 2019, 229, 53–64. [Google Scholar] [CrossRef]
- Dyckhoff, H.; Allen, K. Measuring ecological efficiency with data envelopment analysis (DEA). Eur. J. Oper. Res. 2001, 132, 312–325. [Google Scholar] [CrossRef]
- Xing, Z.; Wang, J.; Zhang, J. Research on regional totalfactor ecological efficiency of China: Measurement and determinants. China Popul. Resour. Environ. 2018, 28, 119–126. [Google Scholar]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical inefficiency. J. Socio Econ. Plan. Sci. 2010, 43, 274–287. [Google Scholar] [CrossRef]
- Chen, S. Evaluation of low carbon transformation process for Chinese provinces. J. Econ. Res. 2012, 47, 32–44. [Google Scholar]
- Li, Z.; Bai, Y.; Sun, J.; Dong, S.; Li, J. Ecological Civilization Construction in Ecologically Fragile Poverty-stricken Areas in Western China. Strateg. Study CAE 2019, 21, 80–86. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Q.; Zhang, D. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev. 2004, 15, 115–121. [Google Scholar] [CrossRef]
- Wei, H. Modern Regional Economics; Economic & Management Press: Beijing, China, 2011; pp. 163–171. [Google Scholar]
- Pan, W.; Li, Z.; Liu, Q. Inter-industry technology spillover effects in China: Evidence from 35 industry sectors. J. Econ. Res. 2011, 46, 18–29. [Google Scholar] [CrossRef]
- Cheng, G. Data Envelopment Analysis: Methods and Max DEA Software; Intellectual Property Press: Beijing, China, 2014; pp. 200–201. [Google Scholar]
- Pastor, J.T.; Lovell, C.A.K. A global Malmquist productivity index. J. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Bakirtas, I.; Cetin, M.A. Revisiting the environmental Kuznets curve and pollution haven hypotheses: MIKTA sample. Environ. Sci. Pollut. Res. 2017, 24, 18273–18283. [Google Scholar] [CrossRef]
- Kocak, M.; Sarkgunesi, A. The impact of foreign direct investment on CO2 emissions in Turkey: New evidence from coin-tegration and bootstrap causality analysis. Environ. Sci. Pollut. Res. 2018, 25, 790–804. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Sha, J.; Wang, H. The role of industrial structure upgrades in ecological efficiency evolution: Spatial correlation and spillover effects. Sci. Total Environ. 2019, 687, 327–1336. [Google Scholar] [CrossRef]
- Evgenii, M. ecological efficiency outcomes of mergers and acquisitions in the European electricity industry. Energy Policy 2017, 107, 258–277. [Google Scholar]
- Tang, Y.; Meng, F. Dynamic evolution characteristics and influencing factors of ‘urban mining’industrial ecological efficiency. China Popul. Resour. Environ. 2021, 31, 67–77. [Google Scholar]
- Yang, Y.; Yan, J.; Yang, Y.; Yang, Y. The spatio-temporal evolution and spatial spillover effect of tourism eco-efficiency in the Yellow River Basin: Based on data from the 73 cicies. Acta Ecol. Sin. 2022, 20, 1–11. [Google Scholar]
- Zhang, Y.; Wang, T.; Zhang, H. Non-liner impact and spillover effects of industrial agglomeration on haze and ecological efficiency. Acta Ecol. Sin. 2022, 42, 6656–6669. [Google Scholar]
- Pei, T.; Gao, L.; Yang, C.; Xu, C.; Tian, Y.; Song, W. The Impact of FDI on Urban PM2.5 Pollution in China: The Mediating Effect of Industrial Structure Transformation. Int. J. Environ. Res. Public Health 2021, 18, 9107. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Pei, T.; Zhang, J.; Tian, Y. The “Pollution Halo” Effect of FDI: Evidence from the Chinese Sichuan–Chongqing Urban Agglomeration. Int. J. Environ. Res. Public Health 2022, 19, 11903. [Google Scholar] [CrossRef] [PubMed]
- Department of Industry Statistics, National Bureau of Statistics of China. China Industry Statistical Yearbook; Statistics Press: Beijing, China, 2006–2020.
- National Bureau of Statistics; Ministry of Environmental Protection of China. China Statistical Yearbook on Environment; Statistics Press: Beijing, China, 2006–2020.
- Statistics Bureau of Chongqing; NBS Sarvey Office in Chongqing. Chongqing Statistical Yearbook; Statistics Press: Beijing, China, 2006–2020.
- Statistics Bureau of Sichuan; NBS Sarvey Office in Sichuan. Sichuan Statistical Yearbook; Statistics Press: Beijing, China, 2006–2020.
- Statistics Bureau of Yunnan; NBS Sarvey Office in Yunnan. Yunnan Statistical Yearbook; Statistics Press: Beijing, China, 2006–2020.
- Statistics Bureau of Guizhou; NBS Sarvey Office in Guizhou. Guizhou Statistical Yearbook; Statistics Press: Beijing, China, 2006–2020.
- Statistics Bureau of Tibet Autonomous Region; NBS Sarvey Office in Tibet Autonomous Region. Tibet Statistical Yearbook; Statistics Press: Beijing, China, 2006–2020.
- Statistics Bureau of Xinjiang Uygur Autonomous Region; NBS Sarvey Office in Xinjiang. Xinjiang Statistical Yearbook; Statistics Press: Beijing, China, 2006–2020.
- Statistics Bureau of Shaanxi; NBS Sarvey Office in Shaanxi. Shaanxi Statistical Yearbook; Statistics Press: Beijing, China, 2006–2020.
- Statistics Bureau of Gansu; NBS Sarvey Office in Gansu. Gansu Development Yearbook; Statistics Press: Beijing, China, 2006–2020.
- Statistics Bureau of Ningxia Hui Autonomous Region; NBS Sarvey Office in Ningxia; National Bureau of Statistics. Ningxia Statistical Yearbook; Statistics Press: Beijing, China, 2006–2020.
- Statistics Bureau of Qinghai; NBS Sarvey Office in Qinghai. Qinghai Statistical Yearbook; Statistics Press: Beijing, China, 2006–2020.
- Statistics Bureau of Guangxi Zhuang Autonomous Region; NBS Sarvey Office in Guangxi. Guangxi Statistical Yearbook; Statistics Press: Beijing, China, 2006–2020.
- Wursthom, S.; Poganielz, S.L. Economic-environmental monitoring indicators for European countries: A disaggregated sector based approach for monitoring eco-efficiency. Ecol. Econ. 2011, 70, 487–496. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Yang, M. 20 Years of China’s Western Development: A Comparison of the Northwest Regions and Southwest Regions. Reg. Econ. Rev. 2020, 5, 36–51. [Google Scholar]
- Li, T.; Chen, X.; Rui, Y.; Yang, K. Strategy and Path of Cooperative Promotion of Ecological Protection and High-quality Development in Northwest China. Econ. Geogr. 2021, 41, 154–164. [Google Scholar]
- Zhao, Z.; Deng, X.; Zhang, F.; Li, Z.; Shi, W.; Sun, Z.; Zhang, X. Scenario Analysis of Livestock Carrying Capacity Risk in Farmland from the Perspective of Planting and Breeding Balance in Northeast China. Land 2022, 11, 362. [Google Scholar] [CrossRef]
- Shao, S.; Fan, M.; Yang, L. How does resource industry dependence affect economic development efficiency. Manag. World 2013, 2, 32–63. [Google Scholar]
- Feng, J.; Zang, Q. Study on the coordination and influencing factors of ecological efficiency and scientific and technological innovation of industrial enterprises. J. Tech. Econ. 2020, 39, 35–42. [Google Scholar]
Index Type | Index Name | Index Explanation | Author (s) |
---|---|---|---|
Input indicator | Water consumption | Total industrial water | Bakirtas and Cetin (2017) [41] Kocak and Sarkgunesi (2018) [42] Zhou et al. (2019) [43] |
Land consumption | Area of industrial construction land | ||
Energy consumption | Total industrial energy consumption | ||
Labor input | Number of industrial employees | ||
Capital input | Industrial fixed assets | ||
Output indicator | Economic value creation | Industrial value added | Tian et al. (2021) [26] Evgenii (2017) [44] Tang and Meng (2021) [45] Yang et al. (2022) [46] Zhang et al. (2022) [47] |
Wastewater discharge | COD emissions industrial wastewater | ||
Ammonium nitrogen emissions from industrial wastewater | |||
Waste gas discharge | SO2 emissions from industrial emissions | ||
Smoke (dust) emissions from industrial waste gas | |||
Solid waste discharge | Emissions from industrial solid waste |
Type | Region | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Specialization | Chongqing | 0.83 | 0.82 | 0.82 | 0.81 | 0.80 | 0.82 | 0.81 | 0.77 | 0.79 | 0.80 | 0.80 | 0.81 | 0.81 | 0.82 | 0.83 |
Sichuan | 0.82 | 0.83 | 0.83 | 0.85 | 0.86 | 0.82 | 0.80 | 0.79 | 0.78 | 0.78 | 0.79 | 0.79 | 0.78 | 0.78 | 0.80 | |
Shanxi | 0.71 | 0.73 | 0.75 | 0.73 | 0.70 | 0.69 | 0.66 | 0.64 | 0.61 | 0.53 | 0.53 | 0.51 | 0.50 | 0.50 | 0.52 | |
Yunnan | 0.97 | 0.98 | 0.92 | 0.91 | 0.89 | 0.88 | 0.86 | 0.85 | 0.84 | 0.84 | 0.85 | 0.86 | 0.86 | 0.87 | 0.86 | |
Guizhou | 0.89 | 0.89 | 0.86 | 0.87 | 0.88 | 0.90 | 0.89 | 0.86 | 0.83 | 0.72 | 0.75 | 0.77 | 0.80 | 0.82 | 0.82 | |
Guangxi | 0.83 | 0.84 | 0.82 | 0.84 | 0.85 | 0.83 | 0.81 | 0.80 | 0.79 | 0.78 | 0.78 | 0.77 | 0.78 | 0.79 | 0.79 | |
Gansu | 0.88 | 0.89 | 0.86 | 0.87 | 0.88 | 0.90 | 0.89 | 0.86 | 0.83 | 0.72 | 0.72 | 0.71 | 0.71 | 0.72 | 0.71 | |
Qinghai | 1.15 | 1.13 | 1.09 | 1.08 | 1.06 | 1.05 | 1.03 | 1.00 | 1.00 | 0.99 | 0.97 | 0.97 | 0.96 | 0.96 | 0.97 | |
Ningxia | 0.85 | 0.86 | 0.84 | 0.83 | 0.83 | 0.86 | 0.89 | 0.93 | 0.92 | 0.93 | 0.93 | 0.92 | 0.91 | 0.91 | 0.93 | |
Tibet | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | |
Xinjiang | 1.10 | 1.03 | 1.01 | 1.00 | 0.92 | 0.94 | 0.91 | 0.83 | 0.82 | 0.83 | 0.81 | 0.80 | 0.79 | 0.79 | 0.81 | |
Inner Mongolia | 0.82 | 0.82 | 0.82 | 0.81 | 0.80 | 0.82 | 0.81 | 0.77 | 0.79 | 0.80 | 0.80 | 0.79 | 0.80 | 0.80 | 0.82 | |
Mean | 0.82 | 0.82 | 0.80 | 0.80 | 0.79 | 0.80 | 0.78 | 0.76 | 0.75 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.74 | |
Related diversification | Chongqing | 1.58 | 1.58 | 1.60 | 1.61 | 1.61 | 1.58 | 1.58 | 1.57 | 1.59 | 1.61 | 1.63 | 1.63 | 1.64 | 1.65 | 1.66 |
Sichuan | 1.55 | 1.56 | 1.59 | 1.61 | 1.62 | 1.62 | 1.62 | 1.63 | 1.63 | 1.64 | 1.64 | 1.65 | 1.66 | 1.65 | 1.66 | |
Shanxi | 1.77 | 1.78 | 1.79 | 1.79 | 1.81 | 1.73 | 1.74 | 1.83 | 1.83 | 1.83 | 1.82 | 1.82 | 1.81 | 1.81 | 1.83 | |
Yunnan | 1.63 | 1.63 | 1.61 | 1.61 | 1.60 | 1.61 | 1.61 | 1.65 | 1.69 | 1.71 | 1.70 | 1.71 | 1.71 | 1.71 | 1.72 | |
Guizhou | 1.55 | 1.46 | 1.40 | 1.37 | 1.31 | 1.34 | 1.34 | 1.36 | 1.41 | 1.55 | 1.54 | 1.55 | 1.57 | 1.57 | 1.59 | |
Guangxi | 1.53 | 1.54 | 1.57 | 1.60 | 1.61 | 1.61 | 1.62 | 1.64 | 1.64 | 1.63 | 1.64 | 1.64 | 1.65 | 1.65 | 1.68 | |
Gansu | 1.55 | 1.46 | 1.43 | 1.41 | 1.40 | 1.35 | 1.31 | 1.34 | 1.34 | 1.35 | 1.36 | 1.36 | 1.39 | 1.40 | 1.40 | |
Qinghai | 1.51 | 1.47 | 1.39 | 1.45 | 1.43 | 1.3 | 1.30 | 1.3 | 1.31 | 1.31 | 1.30 | 1.29 | 1.29 | 1.29 | 1.31 | |
Ningxia | 1.34 | 1.32 | 1.31 | 1.32 | 1.37 | 1.35 | 1.33 | 1.32 | 1.33 | 1.37 | 1.36 | 1.36 | 1.35 | 1.36 | 1.36 | |
Tibet | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Xinjiang | 1.60 | 1.55 | 1.58 | 1.57 | 1.63 | 1.58 | 1.58 | 1.58 | 1.59 | 1.60 | 1.58 | 1.58 | 1.56 | 1.56 | 1.58 | |
Inner Mongolia | 1.58 | 1.6 | 1.6 | 1.61 | 1.61 | 1.58 | 1.57 | 1.57 | 1.58 | 1.61 | 1.6 | 1.6 | 1.61 | 1.61 | 1.62 | |
Mean | 1.43 | 1.41 | 1.41 | 1.41 | 1.42 | 1.39 | 1.38 | 1.40 | 1.41 | 1.43 | 1.43 | 1.43 | 1.44 | 1.44 | 1.45 | |
Unrelated diversification | Chongqing | 1.25 | 1.26 | 1.25 | 1.25 | 1.25 | 1.24 | 1.24 | 1.25 | 1.26 | 1.26 | 1.26 | 1.24 | 1.21 | 1.21 | 1.20 |
Sichuan | 1.29 | 1.27 | 1.24 | 1.22 | 1.20 | 1.20 | 1.19 | 1.17 | 1.18 | 1.20 | 1.21 | 1.21 | 1.22 | 1.23 | 1.23 | |
Shanxi | 1.24 | 1.25 | 1.24 | 1.23 | 1.23 | 1.22 | 1.22 | 1.24 | 1.24 | 1.24 | 1.23 | 1.22 | 1.21 | 1.21 | 1.22 | |
Yunnan | 1.32 | 1.29 | 1.30 | 1.30 | 1.29 | 1.30 | 1.30 | 1.30 | 1.31 | 1.30 | 1.29 | 1.29 | 1.28 | 1.28 | 1.29 | |
Guizhou | 1.21 | 1.23 | 1.24 | 1.24 | 1.25 | 1.25 | 1.26 | 1.26 | 1.27 | 1.28 | 1.28 | 1.29 | 1.31 | 1.32 | 1.31 | |
Guangxi | 1.27 | 1.25 | 1.22 | 1.21 | 1.21 | 1.2 | 1.19 | 1.18 | 1.18 | 1.19 | 1.20 | 1.21 | 1.21 | 1.23 | 1.23 | |
Gansu | 1.31 | 1.29 | 1.28 | 1.28 | 1.27 | 1.25 | 1.24 | 1.23 | 1.22 | 1.22 | 1.20 | 1.20 | 1.18 | 1.19 | 1.20 | |
Qinghai | 1.24 | 1.25 | 1.25 | 1.26 | 1.26 | 1.31 | 1.32 | 1.32 | 1.33 | 1.34 | 1.32 | 1.32 | 1.30 | 1.31 | 1.32 | |
Ningxia | 1.30 | 1.31 | 1.31 | 1.31 | 1.31 | 1.33 | 1.32 | 1.32 | 1.33 | 1.34 | 1.33 | 1.32 | 1.32 | 1.33 | 1.33 | |
Tibet | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Xinjiang | 1.18 | 1.17 | 1.18 | 1.19 | 1.21 | 1.21 | 1.25 | 1.29 | 1.25 | 1.30 | 1.29 | 1.29 | 1.28 | 1.29 | 1.28 | |
Inner Mongolia | 1.25 | 1.25 | 1.24 | 1.25 | 1.26 | 1.24 | 1.25 | 1.25 | 1.25 | 1.26 | 1.26 | 1.27 | 1.26 | 1.26 | 1.27 | |
Mean | 1.16 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.16 | 1.16 | 1.16 | 1.15 | 1.16 | 1.16 |
Explanatory Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|
spe | −0.444 *** | −1.873 ** | ||||
(−2.75) | (−2.15) | |||||
spe2 | 0.824 | |||||
(1.546) | ||||||
rd | −0.158 | −4.387 *** | ||||
(−1.03) | (−2.86) | |||||
rd2 | 1.462 *** | |||||
(2.55) | ||||||
ud | −0.447 ** | −0.298 | ||||
(−1.985) | (−0.08) | |||||
ud2 | −0.072 | |||||
(−0.07) | ||||||
pgdp | −0.273 *** | −0.261 *** | −0.216 *** | −0.245 *** | −0.187 * | −0.186 ** |
(−3.55) | (−3.29) | (−2.54) | (−3.25) | (−1.78) | (−1.59) | |
pgdp2 | 0.025 *** | 0.023 *** | 0.018 *** | 0.022 *** | 0.013 *** | 0.014 *** |
(5.54) | (5.48) | (4.93) | (5.56) | (4.36) | (4.31) | |
estur | −0.843 *** | −0.898 *** | −0.862 *** | −0.835 *** | −0.833 *** | −0.834 *** |
(−4.49) | (−4.74) | (−4.55) | (−4.87) | (−4.63) | (−4.49) | |
open | −0.171 | −0.205 | 0.056 | 0.035 | 0.288 | 0.288 |
(−0.34) | (−0.37) | (0.18) | (0.16) | (0.49) | (0.49) | |
tech | 5.778 ** | 6.607 ** | 5.973 ** | 4.071 ** | 5.779 * | 5.802 ** |
(2.14) | (2.41) | (2.11) | (1.72) | (2.07) | (2.02) | |
envir | 2.735 | 3.16 | 4.090 | 2.572 | 6.877 ** | 6.864 *** |
(0.98) | (1.16) | (1.36) | (0.91) | (1.99) | (1.88) | |
mark | 0.021* | 0.012 | 0.031 ** | 0.027 ** | 0.023 | 0.023 |
(1.77) | (0.67) | (1.94) | (1.77) | (1.09) | (1.11) | |
Constant | 2.662 *** | 3.313 *** | 2.354 ** | 5.446 *** | 2.676 *** | 2.577 |
(8.38) | (5.49) | (6.37) | (4.11) | (5.78) | (0.43) | |
Observations | 120 | 120 | 120 | 120 | 120 | 120 |
Number of ID | 12 | 12 | 12 | 12 | 12 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Guo, J.; Wang, X.; Tian, Y.; Wang, T.; Zhang, J. Research on the Influence of Different Types of Industrial Agglomeration on Ecological Efficiency in Western China. Sustainability 2022, 14, 14570. https://doi.org/10.3390/su142114570
Gao L, Guo J, Wang X, Tian Y, Wang T, Zhang J. Research on the Influence of Different Types of Industrial Agglomeration on Ecological Efficiency in Western China. Sustainability. 2022; 14(21):14570. https://doi.org/10.3390/su142114570
Chicago/Turabian StyleGao, Lei, Junxuan Guo, Xu Wang, Yu Tian, Tielong Wang, and Jingran Zhang. 2022. "Research on the Influence of Different Types of Industrial Agglomeration on Ecological Efficiency in Western China" Sustainability 14, no. 21: 14570. https://doi.org/10.3390/su142114570
APA StyleGao, L., Guo, J., Wang, X., Tian, Y., Wang, T., & Zhang, J. (2022). Research on the Influence of Different Types of Industrial Agglomeration on Ecological Efficiency in Western China. Sustainability, 14(21), 14570. https://doi.org/10.3390/su142114570