A Sustainable Approach to Cleaning Porous and Permeable Pavements
Abstract
:1. Introduction
1.1. Background
1.2. Study Objectives
2. Materials and Methods
2.1. Experimental Environment
2.2. Concrete Materials
2.3. Infiltration Experiments
2.4. Sediment Properties
2.5. Clogging Experiments
2.6. Cleaning Experiments
- A WS-3 high-pressure water gun with a peak pressure of 3500 kPa and a flowrate of 6 L/min.
- A high-power vacuum device with a motor power of 1200 W and a vacuum pressure of 17 kPa.
- A gear-adjustable vacuum device with two different gear motor powers of 700 W and 400 W, and corresponding vacuum pressures of 15 kPa and 10 kPa, respectively.
2.7. Sustainability Analysis
3. Results and Discussion
3.1. Infiltration Testing
3.2. Clogging Tests
3.3. Cleaning Tests
3.4. Reuse of Collected Sediment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matos, C.; Sá, A.B.; Bentes, I.; Pereira, S.; Bento, R. An approach to the implementation of Low Impact Development measures towards an EcoCampus classification. J. Environ. Manag. 2019, 232, 654–659. [Google Scholar] [CrossRef]
- Gimenez-Maranges, M.; Breuste, J.; Hof, A. Sustainable Drainage Systems for transitioning to sustainable urban flood management in the EuroUnion: A review. J. Clean. Prod. 2020, 255, 120191. [Google Scholar] [CrossRef]
- Qi, Y.; Chan, F.K.S.; Thorne, C.; O’Donnell, E.; Quagliolo, C.; Comino, E.; Pezzoli, A.; Li, L.; Griffiths, J.; Sang, Y.; et al. Addressing challenges of urban water management in Chinese sponge cities via nature-based solutions. Water 2020, 12, 2788. [Google Scholar] [CrossRef]
- Yang, Q.; Beecham, S.; Liu, J.; Pezzaniti, D. The influence of rainfall intensity and duration on sediment pathways and subsequent clogging in permeable pavements. J. Environ. Manag. 2019, 246, 730–736. [Google Scholar] [CrossRef]
- Kuang, X.; Sansalone, J.; Ying, G.; Ranieri, V. Pore-structure models of hydraulic conductivity for permeable pavement. J. Hydrol. 2011, 399, 148–157. [Google Scholar] [CrossRef]
- Lian, C.; Zhuge, Y.; Beecham, S. The relationship between porosity and strength for porous concrete. Constr. Build. Mater. 2011, 25, 4294–4298. [Google Scholar] [CrossRef]
- Sansalone, J.; Kuang, X.; Ranieri, V. Permeable pavement as a hydraulic and filtration interface for urban drainage. J. Irrig. Drain. 2008, 134, 666–674. [Google Scholar] [CrossRef]
- Winston, R.J.; Al-Rubaei, A.M.; Blecken, G.T.; Hunt, W.F. A simple infiltration test for determination of permeable pavement maintenance needs. J. Environ. Eng. 2016, 142, 06016005. [Google Scholar] [CrossRef]
- Razzaghmanesh, M.; Beecham, S. A review of permeable pavement clogging investigations and recommended maintenance regimes. Water 2018, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.P.T.; Sultana, A.; Areerachakul, N.; Kandasamy, J. Evaluating the field performance of permeable concrete pavers. Water 2022, 14, 2143. [Google Scholar] [CrossRef]
- Chopra, M.; Kakuturu, S.; Ballock, C.; Spence, J.; Wanielista, M. Effect of rejuvenation methods on the infiltration rates of pervious concrete pavements. J. Hydrol. Eng. 2010, 15, 426–433. [Google Scholar] [CrossRef]
- Dougherty, M.; Hein, M.; Martina, C.A.; Ferguson, B.K. Quick surface infiltration test to assess maintenance needs on small pervious concrete sites. J. Irrig. Drain. Eng. 2011, 137, 553–563. [Google Scholar] [CrossRef]
- Simpson, I.M.; Winston, R.J.; Tirpak, R.A. Assessing maintenance techniques and in-situ pavement conditions to restore hydraulic function of permeable interlocking concrete pavements. J. Environ. Manag. 2021, 294, 112990. [Google Scholar] [CrossRef]
- Raeesi, R.; Xue, Y.; Disfani, M.M.; Arora, M. Hydrological and water quality performance of waste tire permeable pavements: Field monitoring and numerical analysis. J. Environ. Manag. 2022, 323, 116199. [Google Scholar] [CrossRef]
- Winston, R.J.; Al-Rubaei, A.M.; Blecken, G.T.; Viklander, M.; Hunt, W.F. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate—The effects of street sweeping, vacuum cleaning, high pressure washing, and milling. J. Environ. Eng. 2016, 169, 132–144. [Google Scholar] [CrossRef]
- Muthaiyan, U.M.; Thirumalai, S. Studies on the properties of pervious fly ash–cement concrete as a pavement material. Cogent Eng. 2017, 4, 1318802. [Google Scholar] [CrossRef]
- Tang, C.-W.; Cheng, C.-K.; Tsai, C.-Y. Mix design and mechanical properties of high-performance pervious concrete. Materials 2019, 12, 2577. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Qiao, H.; Li, Q.; Hakuzweyezu, T.; Chen, B. Study on the performance of pervious concrete mixed with waste glass powder. Constr. Build. Mater. 2021, 300, 123997. [Google Scholar] [CrossRef]
- Sounthararajah, D.P.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Removing heavy metals using permeable pavement system with a titanate nano-fibrous adsorbent column as a post treatment. Chemosphere 2017, 168, 467–473. [Google Scholar] [CrossRef]
- Knapton, J.; Cook, I.D. Research and development in discrete element paving systems. Proc. Inst. Civ. Eng. Transp. 2002, 153, 13–23. [Google Scholar] [CrossRef]
- Rahman, M.M.; Beecham, S.; Iqbal, A.; Karim, M.R.; Rabbi, A.T.Z. Sustainability assessment of using recycled aggregates in concrete block pavements. Sustainability 2020, 12, 4313. [Google Scholar] [CrossRef]
Constituent Materials | Specification |
---|---|
Cement | P.W42.5 white Portland cement |
Coarse aggregate | 50 mm thick upper layer of crushed stone with a particle size of 2.5~5 mm; 50 mm thick lower layer of crushed stone with a particle size of 5~10 mm |
Sand | 20 mesh~40 mesh |
Water | Ordinary tap water |
Water reducing agent | Commercially available polycarboxylic acid water reducer |
Water-cement ratio | 0.31 |
Porous Concrete Properties | |
Radius (mm) | 150 |
Thickness (mm) | 100 |
Air void content (%) | 19 |
Permeability (cm/s) | 0.26 |
28-day compressive strength (MPa) | 23.8 |
Applied sediment quantity (g) | 0 | 50 | 50 | 100 | 100 | 100 | 100 |
Cumulative sediment quantity (g) | 0 | 50 | 100 | 200 | 300 | 400 | 500 |
Production Rate (Million m2/Year) | Fine to Coarse Aggregate Ratio (%) | Paver Thickness (mm) |
---|---|---|
1.0 | 50 | 60, 80, 100, 150 |
Proportion of clean specimen infiltration rate (%) | 85 | 75 | 65 | 55 |
Sediment load (g) | 70 | 150 | 250 | 400 |
Clogging rate (%) | 15 | 25 | 35 | 45 |
Cleaning Method | Average Increase in Infiltration Rate (%) |
---|---|
High-pressure water injection | 19.7 |
17 kPa vacuum cleaner | 12.1 |
15 kPa vacuum cleaner | 8.7 |
10 kPa vacuum cleaner | 4.2 |
High-pressure water injection +17 kPa vacuum | 20.9 |
High-pressure water injection +15 kPa vacuum | 19.8 |
High-pressure water injection +10 kPa vacuum | 19.1 |
Paver Thickness (mm) | |||||
---|---|---|---|---|---|
60 | 80 | 100 | 150 | ||
Cost of using virgin aggregates in porous concrete of depth 100 mm (×1000 AUD) | 6100 | ||||
Accounted net benefits of using recycled sediments per million m2 of pavers | |||||
Visible costs/use value (×1000 AUD) | 4570 | 4060 | 3550 | 2275 | |
Hidden costs/option value (×1000 AUD) | 6328 | 6977 | 7627 | 9250 | |
Environmental benefits (reduced CO2 emissions) (×1000 kg) | 359 | 323 | 286 | 194 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Gao, Z.; Beecham, S. A Sustainable Approach to Cleaning Porous and Permeable Pavements. Sustainability 2022, 14, 14583. https://doi.org/10.3390/su142114583
Yang Q, Gao Z, Beecham S. A Sustainable Approach to Cleaning Porous and Permeable Pavements. Sustainability. 2022; 14(21):14583. https://doi.org/10.3390/su142114583
Chicago/Turabian StyleYang, Qiuxia, Ziqi Gao, and Simon Beecham. 2022. "A Sustainable Approach to Cleaning Porous and Permeable Pavements" Sustainability 14, no. 21: 14583. https://doi.org/10.3390/su142114583
APA StyleYang, Q., Gao, Z., & Beecham, S. (2022). A Sustainable Approach to Cleaning Porous and Permeable Pavements. Sustainability, 14(21), 14583. https://doi.org/10.3390/su142114583