A Retrospective on the Innovative Sustainable Valorization of Cereal Bran in the Context of Circular Bioeconomy Innovations
Abstract
:1. Introduction
2. Cereal Processing By-Products
3. Cereal’s Bran
4. Sustainability of Cereal Bran
5. Cereal’s Bran Properties
5.1. Physical Properties
5.2. Chemical Compositions
5.3. Microbiological Properties
6. Functional Characteristics of Cereal Bran
7. Sensory Properties
8. Potential Applications of Cereal Bran
9. Conclusions and Further Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ezejiofor, T.I.N.; Enebaku, U.E.; Ogueke, C. Waste to wealth-value recovery from agro-food processing wastes using biotechnology: A review. Br. Biotechnol. J. 2014, 4, 418–481. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Exploitation of food industry waste for high-value products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Brzeska, J. Sustainable food security and nutrition: Demystifying conventional beliefs. Glob. Food Secur. 2016, 11, 11–16. [Google Scholar] [CrossRef]
- Davidi, L.; Morais, S.; Artzi, L.; Knop, D.; Hadar, Y.; Arfi, Y.; Bayer, E.A. Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome. Proc. Natl. Acad. Sci. USA 2016, 113, 10854–10859. [Google Scholar] [CrossRef] [Green Version]
- Akanbi, T.O.; Dare, K.O.; Aryee, A.N. High-Value Products from Cereal, Nuts, Fruits, and Vegetables Wastes. In Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels; Wiley: Hoboken, NJ, USA, 2019; pp. 347–368. [Google Scholar] [CrossRef]
- Kiran, E.U.; Trzcinski, A.P.; Ng, W.J.; Liu, Y. Bioconversion of food waste to energy: A review. Fuel 2014, 134, 389–399. [Google Scholar] [CrossRef]
- Pasha, I.; Ahmad, F.; Siddique, Z.; Iqbal, F. Probing the effect of physical modifications on cereal bran chemistry and antioxidant potential. J. Food Meas. Charact. 2020, 14, 1909–1918. [Google Scholar] [CrossRef]
- Shabir, I.; Pandey, V.K.; Dar, A.H.; Pandiselvam, R.; Manzoor, S.; Mir, S.A.; Shams, R.; Dash, K.K.; Fayaz, U.; Khan, S.A.; et al. Nutritional Profile, Phytochemical Compounds, Biological Activities, and Utilisation of Onion Peel for Food Applications: A Review. Sustainability 2022, 14, 11958. [Google Scholar] [CrossRef]
- Iriondo-DeHond, M.; Miguel, E.; Del Castillo, M.D. Food byproducts as sustainable ingredients for innovative and healthy dairy foods. Nutrients 2018, 10, 1358. [Google Scholar] [CrossRef] [Green Version]
- Seglah, P.A.; Wang, Y.; Wang, H.; Neglo, K.A.W.; Gao, C.; Bi, Y. Energy Potential and Sustainability of Straw Resources in Three Regions of Ghana. Sustainability 2022, 14, 1434. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bansal, S.; Mangal, M.; Dixit, A.K.; Gupta, R.K.; Mangal, A.K. Utilization of food processing by-products as dietary, functional, and novel fiber: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1647–1661. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; González-Aguilar, G.; Siddiqui, M.W. Plant Food By-products: Industrial Relevance for Food Additives and Nutraceuticals; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Vargas, F.; Gonzalez, Z.; Sanchez, R.; Jimenez, L.; Rodriguez, A. Cellulosic pulps of cereal straws as raw material for the manufacture of ecological packaging. BioResources 2015, 7, 4161–4170. [Google Scholar]
- Kowalska, H.; Czajkowska, K.; Cichowska, J.; Lenart, A. What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends Food Sci. Technol. 2017, 67, 150–159. [Google Scholar] [CrossRef]
- Awika, J.M.; Piironen, V.; Bean, S. Advances in Cereal Science: Implications to Food Processing and Health Promotion; American Chemical Society: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Tomás-Pejó, E.; Fermoso, J.; Herrador, E.; Hernando, H.; Jiménez-Sánchez, S.; Ballesteros, M.; Serrano, D.P. Valorization of steam-exploded wheat straw through a biorefinery approach: Bioethanol and bio-oil co-production. Fuel 2017, 199, 403–412. [Google Scholar] [CrossRef]
- Chinma, C.E.; Ramakrishnan, Y.; Ilowefah, M.; Hanis-Syazwani, M.; Muhammad, K. REVIEW: Properties of Cereal Brans: A Review. Cereal Chem. J. 2015, 92, 1–7. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Skendi, A. Introduction to cereal processing and by-products. In Sustainable Recovery and Reutilization of Cereal Processing By-Products; Woodhead Publishing: Cambridge, UK, 2018; pp. 1–25. [Google Scholar] [CrossRef]
- Bastos, R.; Coelho, E.; Coimbra, M.A. Arabinoxylans from cereal by-products: Insights into structural features, recovery, and applications. In Sustainable Recovery and Reutilization of Cereal Processing By-Product; Woodhead Publishing: Cambridge, UK, 2018; pp. 227–251. [Google Scholar] [CrossRef]
- Mendes, C.A.D.C.; Adnet, F.A.D.O.; Leite, M.C.A.M.; Furtado, C.G.; Sousa, A.M.F.D. Chemical, physical, mechanical, thermal and morphological characterization of corn husk residue. Cellul. Chem. Technol. 2015, 49, 727–735. [Google Scholar]
- Pasha, I.; Saeed, F.; Waqas, K.; Anjum, F.M.; Arshad, M.U. Nutraceutical and functional scenario of wheat straw. Crit. Rev. Food Sci. Nutr. 2013, 53, 287–295. [Google Scholar] [CrossRef]
- Lebesi, D.M.; Tzia, C. Use of endoxylanase treated cereal brans for development of dietary fiber enriched cakes. Innov. Food Sci. Emerg. Technol. 2012, 13, 207–214. [Google Scholar] [CrossRef]
- Gani, A.; Wani, S.M.; Masoodi, F.A.; Hameed, G. Whole-grain cereal bioactive compounds and their health benefits: A review. J. Food Process. Technol. 2012, 3, 146–156. [Google Scholar] [CrossRef]
- Fišteš, A.; Došenovic, T.; Rakic, D.; Pajin, B.; Šereš, Z.; Simovic, Š.; Loncarevic, I. Statistical analysis of the basic chemical composition of whole grain flour of different cereal grains. Acta Univ. Sapientiae-Aliment. 2014, 7, 45–53. [Google Scholar]
- Górnaś, P.; Radenkovs, V.; Pugajeva, I.; Soliven, A.; Needs, P.W.; Kroon, P.A. Varied composition of tocochromanols in different types of bran: Rye, wheat, oat, spelt, buckwheat, corn, and rice. Int. J. Food Prop. 2016, 19, 1757–1764. [Google Scholar] [CrossRef] [Green Version]
- Patel, S. Cereal bran: The next super food with significant antioxidant and anticancer potential. Mediterr. J. Nutr. Metab. 2012, 5, 91–104. [Google Scholar] [CrossRef]
- Delcour, J.A.; Rouau, X.; Courtin, C.M.; Poutanen, K.; Ranieri, R. Technologies for enhanced exploitation of the health-promoting potential of cereals. Trends Food Sci. Technol. 2012, 25, 78–86. [Google Scholar] [CrossRef]
- Alan, P.A.; Ofelia, R.S.; Patricia, T.; Rosario Maribel, R.S. Cereal bran and wholegrain as a source of dietary fibre: Technological and health aspects. Int. J. Food Sci. Nutr. 2012, 63, 882–892. [Google Scholar] [CrossRef]
- Hoseney, R.C. Principles of Cereal Science and Technology. American Association of Cereal Chemists; RC Hoseney Inc.: St. Paul, MN, USA, 1994; p. 170. [Google Scholar]
- Sharma, S.; Kaur, S.; Dar, B.N.; Singh, B. Storage stability and quality assessment of processed cereal brans. J. Food Sci. Technol. 2011, 51, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Sharma, S. Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3051–3071. [Google Scholar] [CrossRef]
- Galanakis, C.M. Food Waste Recovery: Processing Technologies and Industrial Techniques; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Abdel-Aal, E.S.M.; Young, J.C.; Rabalski, I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 2006, 54, 4696–4704. [Google Scholar] [CrossRef]
- Min, B.; Anna, M.M.; Ming-Hsuan, C. Phytochemicals and antioxidant capacities in rice brans of different color. J. Food Sci. 2006, 76, 117–125. [Google Scholar] [CrossRef]
- Nelson, A.L. High-Fiber Properties and Analyses. High-Fiber Ingredients; American Association of Cereal Chemists: St. Paul, MN, USA, 2001; pp. 29–44. [Google Scholar]
- Viuda-Martos, M.; López-Marcos, M.C.; Fernández-López, J.; Sendra, E.; López-Vargas, J.H.; Pérez-Álvarez, J.A. Role of fiber in cardiovascular diseases: Review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 240–258. [Google Scholar] [CrossRef]
- Doblado-Maldonado, A.F.; Pike, O.A.; Sweley, J.C.; Rose, D.J. Key issues and challenges in whole wheat flour milling and storage. J. Cereal Sci. 2012, 56, 119–126. [Google Scholar] [CrossRef]
- Wang, N.; Hou, G.G.; Dubat, A. Effects of flour particle size on the quality attributes of reconstituted whole-wheat flour and Chinese southern-type steamed bread. LWT-Food Sci. Technol. 2017, 82, 147–153. [Google Scholar] [CrossRef]
- Ozturk, S.; Ozboy, O.; Cavidoglu, I.; Koksel, H. Effects of brewers’ spent grain on the quality and dietary fibre content of cookies. J. Inst. Brew. 2002, 108, 23–27. [Google Scholar] [CrossRef]
- Gómez, M.; Ruiz-París, E.; Oliete, B. Influence of flour mill streams on cake quality. Int. J. Food Sci.Tech. 2010, 45, 1794–1800. [Google Scholar] [CrossRef]
- Galliard, T.; Gallagher, D.M. The effects of wheat bran particle size and storage period on bran flavor and baking quality of bran flour blends. J. Cereal Sci. 1988, 8, 147–154. [Google Scholar] [CrossRef]
- Di Lena, G.; Vivanti, V.; Quaglia, G.B. Amino acid composition of wheat milling by-products after bioconversion by edible fungi mycelia. Food/Nahr. 1997, 41, 285–288. [Google Scholar] [CrossRef]
- Brockmole, C.L.; Zabik, M.E. Wheat bran and middlings in white layer cakes. J. Food Sci. 1976, 41, 357–360. [Google Scholar] [CrossRef]
- Curti, E.; Carini, E.; Bonacini, G.; Tribuzio, G.; Vittadini, E. Effect of the addition of bran fractions on bread properties. J. Cereal Sci. 2013, 57, 325–332. [Google Scholar] [CrossRef]
- Yan, X.; Ye, R.; Chen, Y. Blasting extrusion processing: The increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran. Food Chem. 2015, 180, 106–115. [Google Scholar] [CrossRef]
- Javed, M.M.; Zahoor, S.; Shafaat, S. Wheat bran as a brown gold: Nutritious value and its biotechnological applications. Afr. J. Microbiol. Res. 2012, 6, 724–733. [Google Scholar]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterization, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Carter, J.F. Potential of flaxseed and flaxseed oil in baked goods and other products in human nutrition. Cereal Foods World 1993, 38, 753–759. [Google Scholar]
- Guleria, P.; Kumari, S.; Dangi, N. β-glucan: Health benefits and role in food industry-A review. J. ERS. TechEng. 2015, 8, 255–263. [Google Scholar]
- Canan, C.; Cruz, F.T.L.; Delaroza, F.; Casagrande, R.; Sarmento, C.P.M.; Shimokomaki, M.; Ida, E.I. Studies on the extraction and purification of phytic acid from rice bran. Food Compos. Anal. 2011, 24, 1057–1063. [Google Scholar] [CrossRef]
- Packer, L. Nutrition and Biochemistry of the Lipophilic Antioxidants, Vitamin E and Carotenoids. In Nutrition, Lipids, Health, and Disease; Ong, A.S.H., Niki, E., Packer, L., Eds.; AOCS Press: Urbana, IL, USA, 1995; pp. 8–35. [Google Scholar]
- Ko, S.N.; Kim, C.J.; Kim, H.; Kim, C.T.; Chung, S.H.; Tae, B.S.; Kim, I.H. Tocol levels in milling fractions of some cereal grains and soybean. J. Am. Oil Chem. Soc. 2003, 80, 585–589. [Google Scholar] [CrossRef]
- Tufail, T.; Saeed, F.; Arshad, M.U.; Afzaal, M.; Rasheed, R.; Bader Ul Ain, H.; Imran, M.; Abrar, M.; Farooq, M.A.; Shahid, M.Z. Exploring the effect of cereal bran cell wall on rheological properties of wheat flour. J. Food Process. Preserv. 2020, 44, e14345. [Google Scholar] [CrossRef]
- Ghosh, M. Review on recent trends in rice bran oil processing. J. Am. Oil Chem. Soc. 2007, 84, 315–324. [Google Scholar] [CrossRef]
- Chakrabarty, M.M. Rice bran: A new source for edible and industrial oil. In Proceedings of World Conference on Edible Fats and Oils Processing; Erickson, D.R., Ed.; AOCS Press: Urbana, IL, USA, 1989; pp. 331–340. [Google Scholar]
- Van Hung, P. Phenolic compounds of cereals and their antioxidant capacity. Crit. Rev. Food Sci. Nutr. 2016, 56, 25–35. [Google Scholar] [CrossRef]
- Zhang, M.W.; Zhang, R.F.; Zhang, F.X.; Liu, R.H. Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. J. Agric. Food Chem. 2010, 58, 7580–7587. [Google Scholar] [CrossRef]
- Luthria, D.L.; Lu, Y.; John, K.M. Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties. J. Funct. Foods 2015, 18, 910–925. [Google Scholar] [CrossRef]
- Fardet, A. New hypotheses for the health protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Brouns, F.; Hemery, Y.; Price, R.; Anson, N.M. Wheat aleurone: Separation, composition, health aspects, and potential food use. Crit. Rev. Food Sci. Nutr. 2012, 52, 553–568. [Google Scholar] [CrossRef] [Green Version]
- Brewer, L.R.; Kubola, J.; Siriamornpun, S.; Herald, T.J.; Shi, Y.C. Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chem. 2014, 152, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, B.; Cao, Y.; Wang, C. Wheat bran feruloyl oligosaccharides enhance the antioxidant activity of rat plasma. Food Chem. 2010, 123, 472–476. [Google Scholar] [CrossRef]
- Martinez-Tome, M.; Murcia, M.A.; Freha, N.; Ruggieri, S.; Jimenez, A.M.; Roses, F.; Parras, P. Evaluation of antioxidant capacity of cereal brans. J. Agric. Food Chem. 2004, 52, 4690–4699. [Google Scholar] [CrossRef] [PubMed]
- Buitimea-Cantúa, N.E.; Torres-Chávez, P.I.; Ramírez-Wong, B.; Serna-Saldívar, S.O.; Rouzaud-Sández, O.; Rosas-Burgos, E.C.; Salazar-García, M.G. Phenolic compounds and antioxidant activity of extruded nixtamalized corn flour and tortillas enriched with sorghum bran. Cereal Chem. 2017, 94, 277–283. [Google Scholar] [CrossRef]
- Katina, K.; Salmenkallio-Marttila, M.; Partanen, R.; Forssell, P.; Autio, K. Effects of sourdough and enzymes on staling of high-fibre wheat bread. LWT-Food Sci. Tech. 2006, 39, 479–491. [Google Scholar] [CrossRef]
- Bento-Silva, A.; Patto, M.C.V.; do Rosário Bronze, M. Relevance, structure and analysis of ferulic acid in maize cell walls. Food Chem. 2018, 246, 360–378. [Google Scholar] [CrossRef]
- Katina, K.; Juvonen, R.; Laitila, A.; Flander, L.; Nordlund, E.; Kariluoto, S.; Poutanen, K. Fermented wheat bran as a functional ingredient in baking. Cereal Chem. 2012, 89, 126–134. [Google Scholar] [CrossRef]
- Wang, J.; Smits, E.; Boom, R.M.; Schutyser, M.A.I. Arabinoxylans concentrates from wheat bran by electrostatic separation. J. Food Eng. 2015, 155, 29–36. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Dimberg, L.; Åman, P.; Landberg, D. Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci. 2014, 59, 294–311. [Google Scholar] [CrossRef]
- Rosenkvist, H.; Hansen, Å. Contamination profiles and characterisation of Bacillus species in wheat bread and raw materials for bread production. Int. J. Food Microb. 1995, 26, 353–363. [Google Scholar] [CrossRef]
- Tungland, B.C.; Meyer, D. Nondigestible oligo-and polysaccharides (Dietary Fiber): Their physiology and role in human health and food. Compr. Rev. Food Sci. Food Saf. 2002, 1, 90–109. [Google Scholar] [CrossRef] [PubMed]
- Caprez, A.; Arrigoni, E.; Amado, R.; Zeukom, H. Influence of different types of thermal treatment on the chemical composition and physical properties of wheat bran. J. Cereal Sci. 1986, 4, 233–239. [Google Scholar] [CrossRef]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, C.S. The effects of dietary fibre addition on the quality of common cereal products. J. Cereal Sci. 2013, 58, 216–227. [Google Scholar] [CrossRef]
- Noort, M.W.J.; Van Haaster, D.; Hemery, Y.; Schols, H.A.; Hamer, R.J. The effect of particle size of wheat bran fractions on bread quality-evidence for fibre- protein interactions. J. Cereal Sci. 2010, 52, 59–64. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; Gallagher, E. Recent advances in the development of high-fibre baked products. Trends Food Sci. Technol. 2012, 28, 414. [Google Scholar] [CrossRef]
- Tufail, T.; Saeed, F.; Pasha, I.; Umair Arshad, M.; Afzaal, M.; Bader Ul Ain, H.; Bashir, S.; Imran, M.; Zia Shahid, M.; Abdullah, M.; et al. Extraction, quantification, and biochemical characterization of cereal industry by-product cell wall. J. Food Process. Preserv. 2021, 45, e15023. [Google Scholar] [CrossRef]
- Schmiele, M.; Jaekel, L.Z.; Patricio, S.M.C.; Steel, C.J.; Chang, Y.K. Rheological properties of wheat flour and quality characteristics of pan bread as modified by partial additions of wheat bran or whole grain wheat flour. Int. J. Food Sci. Tech. 2012, 47, 2141–2150. [Google Scholar] [CrossRef]
- Zhang, D.; Moore, W.R. Effect of wheat bran particle size on dough rheological properties. J. Sci. Food Agric. 1997, 74, 490–496. [Google Scholar] [CrossRef]
- Shogren, M.D.; Pomeranz, Y.; Finney, K.F. Counteracting the deleterious effects of fiber in bread making. Cereal Chem. 1980, 58, 142–144. [Google Scholar]
- Fendri, L.B.; Chaari, F.; Maaloul, M.; Kallel, F.; Abdelkafi, L.; Chaabouni, S.E.; Ghribi-Aydi, D. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT 2016, 73, 584–591. [Google Scholar] [CrossRef]
- Coda, R.; Kärki, I.; Nordlund, E.; Heiniö, R.L.; Poutanen, K.; Katina, K. Influence of particle size on bioprocess induced changes on technological functionality of wheat bran. Food Microbiol. 2014, 37, 69–77. [Google Scholar] [CrossRef]
- Sanz Penella, J.M.; Collar, C.; Haros, M. Effect of wheat bran and enzyme addition on dough functional performance and phytic acid levels in bread. J. Cereal Sci. 2008, 48, 715–721. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Coda, R.; Mazzacane, F.; Minervini, D.; Gobbetti, M. Micronized by-products from debranned durum wheat and sourdough fermentation enhanced the nutritional, textural and sensory features of bread. Food Res. Int. 2012, 46, 304–313. [Google Scholar] [CrossRef]
- Nelles, E.; Randall, P.; Taylor, J. Improvement of brown bread quality by prehydration treatment and cultivar selection of bran. Cereal Chem. 1998, 75, 536–540. [Google Scholar] [CrossRef]
- Hussain, M.; Saeed, F.; Niaz, B.; Afzaal, M.; Ikram, A.; Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Anjum, F.M. Biochemical and nutritional profile of maize bran-enriched flour in relation to its end-use quality. Food Sci. Nutr. 2021, 9, 3336–3345. [Google Scholar] [CrossRef]
- Rusu, A.; Randriambelonoro, M.; Perrin, C.; Valk, C.; Álvarez, B.; Schwarze, A.-K. Aspects influencing food intake and approaches towards personalising nutrition in the elderly. J. Popul. Ageing 2020, 13, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.; Khurshid, S.; Sarwar, A.; Aziz, T.; Naveed, M.; Ali, U.; Makhdoom, S.I.; Nadeem, A.A.; Khan, A.A.; Sameeh, M.Y.; et al. Enhancing Bread Quality and Shelf Life via Glucose Oxidase Immobilized on Zinc Oxide Nanoparticles—A Sustainable Approach towards Food Safety. Sustainability 2022, 14, 14255. [Google Scholar] [CrossRef]
- Katina, K.; Poutanen, K. Nutritional aspects of cereal fermentation with lactic acid bacteria and yeast. In Handbook on Sourdough Biotechnology; Springer: Boston, MA, USA, 2013; pp. 229–244. [Google Scholar] [CrossRef]
- Skendi, A.; Zinoviadou, K.G.; Papageorgiou, M.; Rocha, J.M. Advances on the Valorisation and Functionalization of By-Products and Wastes from Cereal-Based Processing Industry. Foods 2020, 9, 1243. [Google Scholar] [CrossRef]
- Saeed, F.; Hussain, M.; Arshad, M.S.; Afzaal, M.; Munir, H.; Imran, M.; Tufail, T.; Anjum, F.M. Functional and nutraceutical properties of maize bran cell wall non-starch polysaccharides. Int. J. Food Prop. 2021, 24, 233–248. [Google Scholar] [CrossRef]
- Hussain, M.; Khan, A.U.; Saeed, F.; Afzaal, M.; Mushtaq, Z.; Niaz, B.; Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Anjum, F.M. Physicochemical characterization of cereal bran cell wall with special reference to its rheological and functional properties. Int. J. Food Prop. 2022, 25, 305–314. [Google Scholar] [CrossRef]
- Bangar, S.P.; Suri, S.; Trif, M.; Ozogul, F. Organic acids production from lactic acid bacteria: A preservation approach. Food Bioscience 2022, 46, 101615. [Google Scholar] [CrossRef]
- Soleymanpour, Z.; Nikzad, M.; Talebnia, F.; Niknezhad, V. Xanthan gum production from acid hydrolyzed broomcorn stem as a sole carbon source by Xanthomonas Campestris. 3 Biotech. 2018, 8, 296. [Google Scholar] [CrossRef] [PubMed]
- Demirci, A.S.; Arici, M.; Gumus, T. Xanthan gum production from hydrolyzed rice bran as a carbon source by Xanthomonas spp. Korean J. Microbiol. Biotechnol. 2012, 40, 356–363. [Google Scholar] [CrossRef]
- Martău, G.A.; Călinoiu, L.F.; Vodnar, D.C. Bio-vanillin: Towards a sustainable industrial production. Trends Food Sci. Technol. 2021, 109, 579–592. [Google Scholar] [CrossRef]
- Habuš, M.; Mykolenko, S.; Iveković, S.; Pastor, K.; Kojić, J.; Drakula, S.; Ćurić, D.; Novotni, D. Bioprocessing of Wheat and Amaranth Bran for the Reduction of Fructan Levels and Application in 3D-Printed Snacks. Foods 2022, 11, 1649. [Google Scholar] [CrossRef]
- Polat, S.; Trif, M.; Rusu, A.; Šimat, V.; Čagalj, M.; Alak, G.; Meral, R.; Özogul, Y.; Polat, A.; Özogul, F. Recent advances in industrial applications of seaweeds. Crit. Rev. Food Sci. Nutr. 2021, 8, 1–30. [Google Scholar] [CrossRef]
- Sobczak, P.; Nadulski, R.; Kobus, Z.; Zawi´slak, K. Technology for Apple Pomace Utilization within a Sustainable Development Policy Framework. Sustainability 2022, 14, 5470. [Google Scholar] [CrossRef]
Bran Component | Range %, Dry-Matter (d. m.) | References |
---|---|---|
Dietary fiber | 33.4–63.0 | [43] |
Moisture | 8.1–12.7 | [44] |
Ash | 3.9–8.10 | [45,46] |
Protein | 9.60–18.6 | [46] |
Total carbohydrates | 60.0–75.0 | [45] |
Starch | 9.10–38.9 | [44,46] |
Phytochemicals | mg·g−1 | References |
---|---|---|
Alkylresorcinol | 489–1429 | [58] |
Phytosterols | 344–2050 | [59] |
Ferulic acid | 1376–1918 | [60,61] |
Bound phenolic compound | 473–2020 | [60,62] |
Flavonoids | 3000–4300 | [59,62] |
Components | Functionality | Impact on Health | References |
---|---|---|---|
Dietary fiber | Increased viscosity in the gut and reduced postprandial glycemic response | The laxative effect, lowered blood cholesterol levels. Colon cancer prevention. | [46] |
Arabinoxylans | Estrogenic effect/anti-tumor properties | Reduced risk of cardiovascular disease and type II diabetes | [62] |
Lignin | Anticarcinogenic and antioxidant properties. Inhibition of LDL oxidation | Reduced risk of breast, and prostate cancer | [69,70] |
Phenolic Compounds | Inhibits absorption of cholesterol in the small intestine | Reduced risk of colon cancer and cardiovascular disease | [58] |
Phytosterols, tocopherols | Inhibits cholesterol absorption | Reduced plasma cholesterol | [50,59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tufail, T.; Ain, H.B.U.; Saeed, F.; Nasir, M.; Basharat, S.; Mahwish; Rusu, A.V.; Hussain, M.; Rocha, J.M.; Trif, M.; et al. A Retrospective on the Innovative Sustainable Valorization of Cereal Bran in the Context of Circular Bioeconomy Innovations. Sustainability 2022, 14, 14597. https://doi.org/10.3390/su142114597
Tufail T, Ain HBU, Saeed F, Nasir M, Basharat S, Mahwish, Rusu AV, Hussain M, Rocha JM, Trif M, et al. A Retrospective on the Innovative Sustainable Valorization of Cereal Bran in the Context of Circular Bioeconomy Innovations. Sustainability. 2022; 14(21):14597. https://doi.org/10.3390/su142114597
Chicago/Turabian StyleTufail, Tabussam, Huma Bader Ul Ain, Farhan Saeed, Makia Nasir, Shahnai Basharat, Mahwish, Alexandru Vasile Rusu, Muzzamal Hussain, João Miguel Rocha, Monica Trif, and et al. 2022. "A Retrospective on the Innovative Sustainable Valorization of Cereal Bran in the Context of Circular Bioeconomy Innovations" Sustainability 14, no. 21: 14597. https://doi.org/10.3390/su142114597
APA StyleTufail, T., Ain, H. B. U., Saeed, F., Nasir, M., Basharat, S., Mahwish, Rusu, A. V., Hussain, M., Rocha, J. M., Trif, M., & Aadil, R. M. (2022). A Retrospective on the Innovative Sustainable Valorization of Cereal Bran in the Context of Circular Bioeconomy Innovations. Sustainability, 14(21), 14597. https://doi.org/10.3390/su142114597