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Abstract: Many reasons have caused a worldwide water stress problem. Thus, the recycling of
wastewater streams has been extensively studied. In this work, eco-friendly mixed matrix membranes
(MMMs) were fabricated, characterized, and tested for the removal of two separate dyes from
simulated waste streams. The environmentally friendly nano activated carbon (NAC) was extracted
from water hyacinth to be impregnated as a membrane nano-filler to enhance the neat membrane
performance. The extracted NAC was further studied and characterized. Cellulose acetate (CA)-based
membranes were obtained by phase inversion and electrospinning mechanisms. All four synthesized
blank and MMMs were characterized via scanning electron microscope (SEM) and contact angle to
study their structure and hydrophilic nature, respectively. However, the membrane with optimum
performance was further characterized using Fourier transfer infrared (FTIR) and X-ray diffraction
(XRD). The four prepared cast and electro-spun, blank, and mixed matrix CA-based membranes
showed an acceptable performance in the removal and selectivity of methylene blue (MB) dye over
Congo red (CR) dye with a removal percentage ranging from 31 to 70% depending on the membrane
used. It was found that the CA/NAC hybrid nanofiber membrane possessed the highest removal
efficiency for MB, where the dye concentration declined from 10 to 2.92 mg/L. In contrast, the cast
blank CA membrane showed the least removal percentage among the synthesized membranes with
only 30% removal. As a result, this paper suggests the use of the CA/NAC hybrid membrane as an
alternative and cost-effective solution for MB dye removal.

Keywords: adsorption; membrane; adsorptive membrane; activated carbon; dye removal;
hybrid membrane

1. Introduction

Due to globalization and the developed human lifestyle, dyes are widely used in vari-
ous industrial fields. They are extensively used not only in the textile and paper industries,
but also in food, pharmaceuticals, cosmetics, and many other vital industries [1]. In aqueous
solutions, dyes are classified into two main categories: anionic and cationic [2]. It is esti-
mated that around 10% of the textile industry’s dyes are lost directly into water streams [3].
Even in low concentrations, most synthetic dyes have a harmful impact on flora and fauna,
humans, and the environment. They are generally characterized by their toxicity, carcino-
genic effects, and high color visibility [4–6]. Furthermore, they prevent the penetration
of oxygen and sunlight into water systems. Consequently, they affect the photosynthetic
ability of the flora, causing harm to aquatic life [7,8]. In addition, they are hardly removed
from water bodies due to their high stability and water solubility [9–11]. As a result of the
current water depletion situation, the available water sources need to be protected [12].
Accordingly, discharging industrial untreated waste streams containing dye contamination
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is considered one of the main environmental problems that require immediate interven-
tion. As a result, many researchers are eager to discover cost-effective and eco-friendly
techniques to discard dyes and other pollutants from waterways [13–16]. Up to this point,
numerous methods have been utilized in dye removal from waste streams. They can be
categorized into physical, chemical, biological, or hybrid methods [17]. Those methods,
including but not limited to, coagulation [18], adsorption [19], photolysis [20], electrochem-
ical [21], biological treatment [22], membrane processes [23], and their hybrids [24–26] have
all been investigated. Amongst them, adsorption is used for its efficiency, easy processing,
and cheap cost [27], while membranes are used for their low required energy, low required
space, reduced chemical consumption, and relatively low cost of operation [6]. However,
they still have some limitations and drawbacks. Thus, the hybrid adsorptive membranes
concept was investigated by incorporating adsorptive nanoparticles (NPs) into the synthe-
sized membranes, resulting in a membrane that has the ability to possess the function of
both systems [28–30].

For the process to be as effective as possible, the polymeric membrane material and the
suitable incorporated adsorbent should be selected carefully. According to the literature,
chitosan [31], alginate [32], and cellulose acetate [33] have been previously investigated
for dye removal for their eco-friendly characteristics and removal efficiency. Amongst
them, cellulose acetate (CA) has been extensively used because it is a biodegradable,
low-cost, easily tailored, and available biopolymer [33,34]. Moreover, it is well known
for its chemical and thermal stability [35]. Despite that, its inferior adsorption efficiency
lessens its application for dye removal [36]. Therefore, impregnating adsorptive particles
within CA may enhance the neat membrane adsorptive capacity [37]. The mechanism of
adsorptive membranes depends on two steps: rejection and adsorption. In the rejection
step, the particles with sizes larger than the pore size of the membrane are rejected by
the membrane’s surface, or what is called the membrane’s active layer. In the next step,
adsorption takes place, where small particles react or attach to the impregnated adsorbent,
which in turn increases the overall removal efficiency of the membrane [38]. Previously,
various adsorbents were tested for dye removal, namely zeolites, clay, limestone, lignite,
and graphene oxide [39,40]. Among the most commonly used adsorbents, activated carbon
(AC) is recognized as a perfect adsorbent for dye removal [41]. AC has an undoubtable
dye removal performance, and it has previously proven to be a competitive adsorbent.
AC is well known for its high adsorption capacity, large porous structure, high available
active sites, and large surface area [42,43]. Additionally, nano activated carbon (NAC)
is characterized by a much higher surface area and in return better adsorption capacity
over AC [44]. Nevertheless, it has some limitations due to its high cost and non-renewable
source. Thus, many studies have been conducted in order to provide an alternative low-cost
adsorbent [34,45]. Agricultural wastes provide a competitive raw material for obtaining
cheap, efficient, and renewable ACs [46]. Water hyacinth is an unwanted waste that can
cause severe damage to aquatic life [47]. The control of water hyacinth is an effort, time, and
money-consuming problem. Consequently, turning this irritating plant into an effective
bio-sorbent could be more valuable [48,49].

To the best of the authors’ knowledge, there is no other study that has investigated the
impregnation of NAC fabricated from agricultural waste with blank cast and electro-spun
CA-based membranes for dye decontamination from polluted water. Accordingly, in the
current study, eco-friendly CA-based membranes were synthesized via phase inversion and
electrospinning techniques. Additionally, nano activated carbon (NAC) was fabricated from
Egyptian water hyacinths. The effect of impregnating the synthesized NAC bio-sorbent
into the cast and the nanofibrous membranes was investigated. Methylene blue (MB) and
Congo red (CR) were selected as cationic and anionic dyes, respectively. The selectivity of
the fabricated, cast and electro-spun, neat CA and hybrid CA/NAC membranes towards
MB and CR was studied.
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2. Materials and Methods
2.1. Materials

All chemicals included in this study were used as purchased without any further
modification. Cellulose acetate (CA) polymer with a molecular weight of 30,000 was
supplied by Lobachemie, acetone (ACS > 99.5%) and dimethylformamide (DMF > 99.9%)
were purchased from Fisher, sodium hydroxide (NaOH), methylene blue (MB) dye, and
Congo red (CR) dye, and distilled water were bought from Sigma Aldrich. Additionally,
activated carbon was prepared from Egyptian water hyacinth, which was collected from
Itay El-Baroud Drainage, Al-Buhayrah governorate, Egypt.

2.2. Synthesis of Nano Activated Carbon (NAC)

Water hyacinth roots were used as the precursor for the preparation of dye removal
bio-sorbent material [50]. To remove dust or any trapped particles, the collected raw
precursor was rinsed extensively with distilled water. The washed water hyacinth was
then dried in an electrical oven before being crushed into a fine powder. Then, for alkaline
chemical treatment, 1 g of the obtained powder was further suspended in 100 mL of 2 M
NaOH for 1 h under stirring at 60 ◦C. The chemically treated materials were then filtered
and washed several times to get rid of any basic or acidic residuals. The treated washed
materials were finally dried overnight at 70 ◦C, followed by a carbonization process in an
Across muffle furnace for 1 h at 600 ◦C.

2.3. Synthesis of Neat and Composite CA-Based Dope Solutions

For the neat CA membrane, a suitable amount of CA polymeric powder was dissolved
in a binary solvent mixture of acetone and DMF with a ratio of 2:1, respectively, to prepare
a 15 wt% of neat CA dope solution. On the other hand, 5 wt% of the nano-filler (NAC) was
sonicated firstly with the same binary solvent mixture for 1 h before the CA powder was
added and stirred with it to obtain the composite CA/NAC dope solution. The previous
solutions were then used to fabricate the neat and composite CA-based membranes via
phase inversion and electrospinning techniques.

2.3.1. Synthesis of Cast Neat and Composite CA-Based Membranes

The membrane phase inversion method has been used for many years for the fabrica-
tion of flat sheet polymeric membranes [51–53]. The previously prepared blank CA and
composite CA/NAC dope solutions were cast on a clean glass plate at room temperature. A
doctor knife blade with a micrometer fixed at 0.25 mm was used to prepare the membranes
with the required thickness. The cast films were left to evaporate in the air for 60 s before
being immersed at (0–4 ◦C) in a distilled water bath. The obtained flat sheet membrane was
then rinsed to get rid of any residual solvent. As a final treatment step, the membrane was
then annealed at 80 ◦C for 10 min in another distilled water bath. The fabricated membranes
were preserved in distilled water for at least 24 h for further use and characterization.

2.3.2. Synthesis of Electro-Spun Nanofibrous Neat and Composite CA-Based Membranes

Thanks to the electrospinning technique, the fabrication of nanofibrous membranes
is possible. Due to the outstanding properties of higher surface area as well as higher
membrane porosity [54,55], the technique was investigated. The pristine CA and hybrid
CA/NAC polymeric solutions were spun with the help of (NanoNC) electro-spinning
equipment under different conditions of feed pumping flow rate, applied voltage, and
tip-to-collector distance. The optimum nanofibrous membrane was obtained at operating
conditions of 0.7 mL/h, 19 kV, and 15 cm, respectively. The fabricated nanofiber membranes
were then left to dry in a drying oven overnight for further use and characterization.

2.4. Characterization of the Extracted NAC and Fabricated CA-Based Membranes

Various techniques were involved in characterizing the synthesized electro-spun
and cast CA-based membranes as well as the extracted NAC. Fourier transform infrared
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spectroscopy (FTIR) (Bruker Vertex 70) was used to observe and confirm the presence of
the functional groups of the used materials. A Shimadzu XRD-6100 X-ray diffraction (XRD)
device was used to study the crystalline nature of the fabricated membranes. The spectra
were recorded from 3500 to 500 cm−1.

The morphology of the membranes and the extracted NAC was investigated using a scanning
electron microscope (SEM) device (JOEL JSM-6010 LV). The hydrophilic/hydrophobic nature
of the membranes was measured using a contact angle system (DSA 100, KRÜSS). For more
accurate results, five random locations on each membrane surface were selected to measure the
contact angle.

2.5. Performance Testing of the Synthesized Electro-Spun and Cast CA-Based Membranes

In this study, the performance of the fabricated neat and hybrid membranes in the
removal of cationic (MB) and anionic (CR) dyes was investigated. All decolorization ex-
periments were repeated 4 times and the average measurements were recorded for more
accuracy. Accordingly, as shown in Figure 1, each membrane’s efficiency was evaluated us-
ing an Amicon cell setup with an active filtration area of around 480 mm2. Each membrane
was divided into circular shapes similar to the active area of the cell. Two stock solutions
of MB and CR, 10 ppm each, were prepared to simulate the industrial dye-containing
waste streams. At room temperature, the cell was then filled with the dye solution and
connected to a syringe pump to apply a small pressure that allowed the water to flow
through the membrane. The filtrate was recirculated until equilibrium was reached. A
sample of the filtrate of each cycle was taken and the dye concentration was measured
using a spectrophotometer device.
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The rejection factor (R) was calculated from Equation (1)

%R = (1 − CP

CR
) (1)

where CP and CR are the dye concentrations of the filtrate and the feed solution (mg/L), respectively.

3. Results and Discussion
3.1. Characterization of Nano Activated Carbon (NAC)

As the functional groups of the obtained NAC have an impact on the adsorption
efficiency [56], FTIR was used to recognize those functional groups. As can be seen in
Figure 2a, the peak at 3401 cm−1 refers to the O-H functional group, which gives an
indication of the bonded hydroxide in the prepared NAC. The band found at 1635 cm−1

could be due to C=C or C=O stretching [57]. The broad band found at 1157 cm−1 suggests
the surface group of C-O stretching [58]. The absorption band at 616 cm−1 might refer to
the C-H stretching or C=O bonding [59].
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Figure 2. (a) FTIR spectrum (b) XRD pattern of the fabricated nano activated carbon NAC.

The XRD pattern was investigated in order to study the crystalline nature of the
prepared NAC. As illustrated in Figure 2b, the obtained NAC has a semi-crystalline
structure. In addition, the appearance of a broad peak in the range of 22◦ to 24◦ indicates
the existence of carbon. On the other hand, the absence of other characteristic peaks gives
an indication of the absence of any other contaminants [60].

The morphology of the prepared NAC was investigated by SEM images as presented
in Figure 3a. SEM micrographs confirmed that a uniform nanosized material was obtained
and the average diameter of the fabricated particles was estimated at 58 nm.
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Figure 3. (a) SEM image (b) BET of the fabricated nano activated carbon (NAC).

The BET surface area of the fabricated NAC was measured to evaluate the material
pore size, pore volume, and surface area. As shown in Figure 3b, N2 adsorption/desorption
isotherm of the synthesized bio-sorbent was investigated. The NAC surface area was found
to be 66.2 m2/g. On the other hand, the total pore volume was measured as 0.25 cm3/g,
while its average pore size was recorded as 15.2 nm.

3.2. Characterization of Cast and Electro-Spun Neat and Composite CA-Based Membranes

As illustrated in Figure 4, the surface and cross-sectional structure of the cast neat
CA and composite CA/NAC membranes was investigated via SEM images. Compared
to the clear neat surface of CA, Figure 4a, the impregnated NAC clearly appears as white
particles on the surface of the membrane in Figure 4b. This could give an indication of
the successful dispersion of the NAC particles within the dope solution. In addition, from
the cross-sectional images, it can be seen that the addition of NAC particles transformed
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the structure of the blank CA membrane, Figure 4c, into a more porous structure. A few
longitudinal pores of the composite CA/NAC membrane are demonstrated in Figure 4d.
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Figure 4. SEM images of cast membranes of “(a,c)” CA and “(b,d)” CA/NAC nanofiber membranes.

The optimum electro-spinning operating conditions were selected depending on the
fiber shapes and diameters. The optimum conditions were used to fabricate a full matrix of
CA and CA/NAC. The difference in the morphological structure between the synthesized
blank and composite CA membranes can be seen in Figure 5. SEM images illustrate
that both CA and CA/NAC membranes have uniform, straight, and bead-less fibers. In
Figure 5a, the blank CA membrane nanofibers are shown as a uniform clear network.
However, in Figure 5b, the loaded NAC can be seen as white dispersed particles and show
good distribution with no agglomerations.
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The surface wettability of the four fabricated cast and electro-spun membranes was
investigated in order to study the effect of membrane surface morphology on the contact
angle of each membrane. The hydrophilicity of the surface of the membrane affects the
filtration flux [42]. The contact angle was expected to be less than 90◦ to be hydrophilic.
Additionally, it was expected from the literature that the nanofibrous mat would be more
hydrophilic than the cast one [61]. As displayed in Figure 6, all four membranes were found
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to be hydrophilic to different degrees. The contact angle of the blank cast and nanofiber
membranes decreased after the addition of NAC particles. The contact angle of the blank CA
cast membrane decreased from 63.5◦ to 58.6◦, while it lowered from 60.5◦ for the neat CA
nanofibrous membrane to become 58◦ for the composite CA/NAC nanofibrous membrane.
This means that the addition of NAC has enhanced the membrane’s hydrophilicity, which
is an important and crucial parameter in water filtration.
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For nanofibrous blank CA and mixed matrix CA/NAC, FTIR spectra were further
used to study the functional groups of both membranes. As demonstrated in Figure 6a, a
wide band at 3395 cm−1 represents the presence of hydroxyl (–OH) stretching [62]. This
band was shifted to 3474 cm−1 and its intensity decreased with the addition of NAC, as
seen in Figure 7b. The carbonyl (C=O) group was observed at 1731 cm−1. The adsorption
peak at 1428 cm−1 refers to the (CH2) deformation vibration. The characteristic (C-O-C)
group can be seen at 1225 cm−1. However, as represented in Figure 7b, this adsorption
peak was shifted to become 1218 cm−1. The stretching vibration of (C-OH) in the blank CA
membrane was illustrated at 1029 cm−1 [63].
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As displayed in Figure 8, XRD was further used to give an indication of the successful
impregnation of NAC. Figure 8a depicts the CA characteristic peaks at 10 and 20◦ [64].
Nonetheless, the intensity of the peak at 20◦ increased significantly.
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This might be explained by the presence of carbon atoms and in return the impregna-
tion of NAC particles.

3.3. Filtration Performance of Cast and Electro-Spun Neat and Composite CA-Based Membranes

The filtration performance of both blank and composite CA-based membranes for the
removal of cationic MB and anionic CR was investigated using the previously mentioned
Amicon cell setup. Generally, the four membranes showed a better affinity towards MB
removal than CR. As illustrated in Figures 9 and 10, all the membranes had a noticeable
effect on MB final concentration, while they had a negligible effect on CR final concentration.
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Figure 9. Performance of blank and composite cast membranes on the removal of MB and CR.
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As clarified in Figure 9, the equilibrium concentration of the MB on the blank CA cast
membrane was reached at 6.84 ppm with a removal percentage of 31.6%. However, the
equilibrium concentration of CR on the same membrane was reached at 9.89 ppm with
only 1.1% removal.

From Figure 9, it was noticed that the addition of NAC had a positive effect on the
performance of the blank membrane. As illustrated, the equilibrium concentration of MB
was reduced to be reached at 4.73 ppm, with around 53% removal for the cast CA/NAC
composite membrane. However, this removal percentage is considered higher than that
of the early reported cast CA/MWCNTs membrane. It was found that for 5 mg/L MB
concentration, the recorded removal was less than 30% [65]. Unfortunately, regarding
CR, the equilibrium concentration was affected slightly by the addition of NAC and was
reached at 9.67 ppm to achieve a low removal percentage of only 3.3%.

On the other hand, the performances of the blank and impregnated CA-based nanofiber
membranes are demonstrated in Figure 10. The fibrous membranes were also selective for
MB over CR. The equilibrium concentration of MB over the blank CA fibrous membrane
was found to be 5.67 ppm and after the addition of NAC, it became even lower until it
reached almost 2.92 ppm. In other words, MB was removed using blank and impregnated
fiber membranes by 43% and 70%, respectively.

On the contrary, CR reached the equilibrium concentration at 9.73 ppm using the blank
CA fiber membrane and 9.41 ppm using the impregnated CA/NAC fiber membrane. The
removal of CR using blank CA and impregnated CA/NAC fiber membranes was recorded
at very small amounts of 2.7% and 5.9%, sequentially.

The presence of both the acetyl (CH3CO−) and the hydroxyl (OH−) groups led to
the negatively charged surface of the CA-based membranes. Thus, the selective behavior
and better performance of CA-based membranes towards MB over CR could be due to the
electrostatic interaction that takes place between MB molecules (positively charged) and
the membrane surface (negatively charged) [30].

Regarding MB removal, Figure 11 compares the performance of the four membranes.
Overall, the performance of fibers was better than that of cast membranes. At equilibrium,
CA fiber removed 43.3% of methylene blue, while the blank cast membrane removed
only 31%. The CA/NAC fiber presented the best behavior in removing the MB dye as it
removed more than 70% of the dye. The removal of MB dye on the CA/NAC fiber at a
neutral pH value was higher than that of the previously investigated CA/GO/TiO2-NH2
composite membrane. The literature reported that MB removal efficiency was about 60%
at pH = 7 [66]. To conclude, the addition of NAC improved the performance of the blank
CA membranes. This might be due to the existence of NAC resulting in an increase in the
available active adsorbent sites in the fabricated adsorptive membranes. Those active sites
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may have captured more MB molecules within its porous structure, and this led to the
enhancement of the blank CA membrane’s performance [30].
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4. Conclusions

The current study used water hyacinth biomass as a raw material for the extraction
of nano activated carbon to be used as a filler to enhance the performance of the blank
CA membrane for water treatment. Through this study, the problem of water hyacinth
spreading as a biomass waste could be solved. In addition, a more useful and cheaper
bio-sorbent filler can be synthesized from this waste by a simple and facile technique. In
return, this will help in solving an irritating water pollution problem. The characteristics of
the synthesized NAC and the four fabricated membranes were studied by SEM, FTIR, and
XRD. All the used techniques have allowed the successful impregnation of NAC into CA
membranes. SEM images displayed the surface characteristics of NAC as well as all the
fabricated membranes. FTIR and XRD were used to investigate and confirm the differences
between the neat and composite CA-based membranes. In addition, the contact angle
was used to explore the membrane hydrophilicity. The results showed the hydrophilic
nature of all the fabricated membranes. Moreover, it proved that the nanofibrous mat had a
better hydrophilic nature than the cast one. The performance of the four membranes was
evaluated using an Amicon cell setup. It was found that all the membranes had a better
removal selectivity towards MB dye than CR. Furthermore, the addition of NAC enhanced
the blank CA membrane dye removal efficiency. Among the four tested membranes, the
composite cast and electro-spun CA/NAC recorded the best performances of 52.7 and 70%,
respectively. However, the performance of the neat cast and electro-spun CA membrane
achieved only 30 and 43.3%. In conclusion, the nanofibrous membrane showed a better
performance than the cast membranes. Moreover, the impregnation of NAC had a positive
effect on the membrane dye removal efficiency.
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