Dynamic Stability Evaluation of an Integrated Biodiesel-Geothermal Power Plant-Based Power System with Spotted Hyena Optimized Cascade Controller
Abstract
:1. Introduction
- (a)
- Construction of a trio-arena structure with thermal-thermal-biodiesel energy in arena-1, thermal-thermal-GPPt energy in arena-2, and hydrothermal energy in arena-3.
- (b)
- The attributes of PIDN/TIDN/TIDN-FOID are concurrently augmented separately via the SHO algorithm so as to attain an outstanding controller.
- (c)
- The impact of biodiesel and GPPt energy on system dynamics is studied with the best obtained controller from (b).
- (d)
- The impact of time delay on system dynamics is studied with the best obtained controller from (b).
- (e)
- The impact of RFB on system dynamics is studied with the best obtained controller from (b).
- (f)
- Eigenvalue assessment is performed to comment on the stability of the system.
- (g)
- Sensitivity analysis is performed to examine the robustness of the best controller’s gains with a higher value of step load disturbance.
1.1. Novelty of Work
- (a)
- The performance evaluation of RFB-biodiesel-GPPt-based interconnected AGC system with time delay under conventional scenario are carried out for the first time;
- (b)
- To design a new cascade TIDN-FOID controller in AGC studies;
- (c)
- Application of RFB-based biodiesel and GPPt in AGC studies;
- (d)
- A maiden effort was made to conduct the stability analysis considering eigenvalue assessment and sensitivity analysis;
- (e)
- Solicitation of SHO algorithms for the instantaneous optimization of the suggested cascade controller.
1.2. Contribution
- (a)
- Investigations are carried out with RFB considering biodiesel and GPPt plants in conventional AGC systems;
- (b)
- A new cascade TIDN-FOID is proposed and its performance is found to be better than PIDN and TIDN controllers;
- (c)
- Controller parameters are optimized by the SHO algorithm and the system dynamics with SHO optimized TIDN-FOID enhances system dynamics over WOA, CS, FA, and PSO techniques;
- (d)
- Studies on the selection of performance indices are carried out, and it is observed that ISE outperforms ITSE, IAE, and ITAE;
- (e)
- System dynamics with RFB considering biodiesel and GPPt are found to be better than other combinations;
- (f)
- Case studies on various values of time delays are carried out, and it is evident that with time delay the system dynamics are degraded;
- (g)
- Sensitivity analysis is carried out, and it is suggested that the obtained controller parameters at nominal conditions are robust.
1.3. Organization of the Article
2. Scheme Representation
2.1. Overall Representation of the Scheme
2.2. Energy Stowing Device-RFB
3. Projected Controller
4. Optimization Approach—Spotted Hyena Optimizer (SHO)
- i.
- Surrounding of catch: To evolve this mathematical archetype, it is expected that the current premium challenger is the intended catch, provided that the pursuit field is recognized formerly. In this pursuit, the catch will be introduced to a location familiar to the pursuit mediator to gain an advantage. An arithmetical sample is demonstrated by Equations (21) and (22):
- ii.
- Tricking: With the purpose to portray the demeanor of SHy arithmetically, it is expected that the premium pursuit mediator has data concerning the location of the hunt. The enduring pursuit mediator forms assemblages on the way to the premium pursuit mediator, and stores the premium consequence to reestablish their location, as calculated by Equations (26)–(28):
- iii.
- Intruding quest (exploitation): In order to design the prototype on the basis of equations, so as to attack the prey, numerical measure is diminished. The discrepancy in is likewise condensed from 5 to 0 with computation. |E| < 1 pressurizes the assemblage of SHy to outbreak on the way to hunt. The mathematical strategy for inflowing the prey is as follows:
- iv.
- Hunt for aim (exploration): SHy habitually pursues the prey, according to the location of the SHy, which subsist in . They swing separately to pursue and hunt their prey. Then, is utilized with random standards >1 or <−1 to coerce the pursuit mediators to swing far away from the prey. This stratagem certificates the SHO algorithm to pursue extensive attainment. SHO’s flow diagram is shown in Figure 3.
5. Outcomes and Valuation
5.1. Valuation of Potent Outcomes for the Choice of Superlative Controller (Including Biodiesel and Geothermal Energy)
5.2. Suggestion of Pix
5.3. Suggestion of Optimization Procedure
5.4. Valuation of the Influence of Biodiesel and GPPt on the Dynamics of the System
5.5. Valuation of the Influence of Time Delay on the Potency of the Scheme including Biodiesel and GPPt
5.6. Valuation of the Influence of RFB on the Potency of the Scheme, including Biodiesel and GPP, with Time Delay
5.7. Eigenvalue Assessment
5.8. Sensitivity Assessment for a Higher Value of Disturbance
6. Discussion
- (a)
- The proposed TIDN-FOID controller provides the best results compared to PIDN and TIDN for structure-1, including thermal-thermal-biodiesel energy in area-1, thermal-thermal-GPPt energy in area-2, and hydrothermal energy in area-3. The results in Figure 4 show the superiority of TIDN-FOID compared to PIDN/TIDN, concerning the diminished level of peak overshoot (Δf1 = 0.0004 Hz, Δf2 = 0.0003 Hz, ΔPtie2–3 = 0.0021 p.u. MW, ΔPtie1–3 = 0.0004 p.u. MW), extent of oscillations, peak undershoot (Δf1 = 0.0153 Hz, Δf2 = 0.0093 Hz, ΔPtie2–3 = 0.0004 p.u. MW, ΔPtie1–3= 0.0042 p.u. MW), and settling time (Δf1 = 62.36 s, Δf2= 57.44 s, ΔPtie2–3 = 57.37 s, ΔPtie1–3 = 56.69 s).
- (b)
- The results in Figure 5 show the superiority of system dynamics, using performance index ISE, compared to IAE/ITAE/ITSE, concerning the diminished level of peak overshoot (Δf1 = 0.0004 Hz, ΔPtie2–3 = 0.0021 p.u. MW, ΔPtie1–3 = 0.0004 p.u. MW), extent of oscillations, peak undershoot (Δf1 = 0.0153 Hz, ΔPtie2–3 = 0.0004 p.u. MW, ΔPtie1–3= 0.0042 p.u. MW), and settling time (Δf1 = 62.36 s, ΔPtie2–3 = 57.37 s, ΔPtie1–3 = 56.69 s).
- (c)
- In Figure 6, it is observed that the SHO-augmented TIDN-FOID controller provides the lowest value of PIxISE, i.e., 0.00071; PIxISE values for WOA, PSO, CS, and FA are 0.00077, 0.00078, 0.00081, and 0.00083, respectively. Additionally, SHO provides the lowest computational time value.
- (d)
- In Figure 7, responses of the systems with and without biodiesel and GPPt are compared. The results in Figure 7 show the superiority of the system with biodiesel and GPP, concerning the diminished level of peak overshoot (Δf2 = 0 Hz, Δf3 = 0 Hz, ΔPtie1–2 = 0 p.u. MW, ΔPtie1–3 = 0 p.u. MW), extent of oscillations, peak undershoot (Δf2 = 0.009 Hz, Δf3 = 0.0012 Hz, ΔPtie1–2 = 0.0042 p.u. MW, ΔPtie1–3= 0.0041 p.u. MW), and settling time (Δf2 = 52.11 s, Δf3= 53.42 s, ΔPtie1–2 = 53.81 s, ΔPtie1–3 = 53.22 s).
- (e)
- In Figure 8, it is shown that the incorporation of time delay degrades the system. However, in order to make the system reflect real-world conditions, an association of time delay is needed; hence, the rest of the assessments were performed with time delay. With time delay, the level of peak overshoot (Δf1 = 0.0005 Hz, Δf2 = 0.00046 Hz, ΔPtie1–2 = 0.0018 p.u. MW, ΔPtie1–3 = 0.0011 p.u. MW), peak undershoot (Δf1 = 0.015 Hz, Δf2 = 0.011 Hz, ΔPtie1–2 = 0.0043 p.u. MW, ΔPtie1–3 = 0.0045 p.u. MW), and settling time (Δf1 = 68.11 s, Δf2 = 67.72, ΔPtie1–2 = 63.42 s, ΔPtie1–3 = 54.56 s) were much increased.
- (f)
- In Figure 9, it is shown that the system with RFB with time delay has a great impact in terms of the diminished level of peak overshoot (Δf1 = 0.00001 Hz, Δf3 = 0.00001 Hz, ΔPtie1–2= 0 p.u. MW, ΔPtie1–3 = 0.000001 p.u. MW), extent of oscillations, peak undershoot overshoot (Δf1 = 0.0141 Hz, Δf3 = 0.0061 Hz, ΔPtie1–2= 0.0021 p.u. MW, ΔPtie1–3 = 0.0019 p.u. MW), and settling time overshoot (Δf1 = 50.11 s, Δf3 = 50.21 s, ΔPtie1–2= 49.81 s, ΔPtie1–2 = 51.42 s).
- (g)
- Eigenvalue assessment was performed to comment on the stability of the system. It is observed that the systems with renewable sources, time delay, and RFB are stable, as they all have eigenvalues with negative real parts and the highest damping ratio.
- (h)
- In Figure 10, the sensitivity assessment shows that the controllers gains and parameters obtained at the nominal condition for 1% SLP is healthy enough. The values with 1% SLP provide similar responses to those obtained with optimized controller gains and parameters obtained at 3% SLP. Thus, the values should be altered.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- i.
- Nominal scheme parameters: f = 60 Hz, Tjk,AC = 0.086 pu MW/rad, Hj = 5 s, Kpj = 120 Hz/MW pu, Dj = 8.33 × 10−3 pu MW/Hz, Bj = 0.425 pu MW/Hz, Rj = 2.4 pu MW/Hz.
- ii.
- Thermal component: Trk = 10 s, Krk = 5, Ttk= 0.3 s, Tgk= 0.08 s.
- iii.
- RFB: Kr =1, Td = 0, Tr = 0.78 s, KRFB = 1.8.
- iv.
- Hydro: TRH = 48.7 s, TR1 = 5 s, TGH1 = 0.513 s, Tw1 = 1 s.
- v.
- Biodiesel component: Kvrk = 1, Tvrk =0.05 s, Kcek = 1, Tcek = 0.5 s.
References
- Elgerd, O.I. Electric Energy Systems Theory: An Introduction; Tata McGraw-Hill: New Delhi, India, 2007. [Google Scholar]
- Kundur, P. Power System Stability and Control; Mc Graw Hill: New Delhi, India, 1993. [Google Scholar]
- Ibraheem Kumar, P.; Kothari, D.P. Recent philosophies of automatic generation control strategies in power systems. IEEE Trans. Power Syst. 2005, 20, 346–357. [Google Scholar] [CrossRef]
- Elgerd, O.I.; Fosha, C.E. Optimum Megawatt-Frequency Control of Multiarea Electric Energy Systems. IEEE Trans. Power Appar. Syst. 1970, 89, 556–563. [Google Scholar] [CrossRef]
- Das, D.; Aditya, S.K.; Kothari, D.P. Dynamics of diesel and wind turbine generators on an isolated power system. Electr. Power Energy Syst. 1999, 21, 183–189. [Google Scholar] [CrossRef]
- Das, D.C.; Roy, A.K.; Sinha, N. GA based frequency controller for solar thermal–diesel–wind hybrid energy generation/energy storage system. Int. J. Electr. Power Energy Syst. 2012, 43, 262–279. [Google Scholar] [CrossRef]
- Ismayil, C.; Sreerama, K.R.; Sindhu, T.K. Automatic generation control of single area thermal power system with fractional order PID (PIλDμ) controllers. In Proceedings of the Third International Conference on Advances in Control and Optimization of Dynamical Systems, Kanpur, India, 13–15 March 2014; pp. 552–557. [Google Scholar]
- Bhatt, P.; Roy, R.; Ghoshal, S.P. GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control. Int. J. Electr. Power Energy Syst. 2010, 32, 299–310. [Google Scholar] [CrossRef]
- Nanda, J.; Saikia, L.C. Comparison of performances of several types of classical controller in automatic generation control for an interconnected multi-area thermal system. In Proceedings of the 2008 Australasian Universities Power Engineering Conference, AUPEC ’08, Sydney, NSW, Australia, 14–17 December 2008. [Google Scholar]
- Nanda, J.; Mishra, S.; Saikia, L.C. Maiden application of bacterial foraging based optimization technique in multi area automatic generation control. IEEE Trans. Power Syst. 2009, 24, 602–609. [Google Scholar] [CrossRef]
- Golpira, H.; Bevrani, H.; Golpira, H. Application of GA optimization for automatic generation control design in an interconnected power system. Energy Convers. Manag. 2011, 52, 2247–2255. [Google Scholar] [CrossRef]
- Dhamanda, A.; Dutt, A.; Bhardwaj, A.K. Automatic Generation Control in Four Area Interconnected Power System of Thermal Generating Unit through Evolutionary Technique. Int. J. Electr. Eng. Inform. 2015, 7, 569–583. [Google Scholar]
- Saikia, L.C.; Nanda, J.; Mishra, S. Performance comparison of several classical controllers in AGC for multi-area interconnected thermal system. Int. J. Electr. Power Energy Syst. 2011, 33, 394–401. [Google Scholar] [CrossRef]
- Nanda, J.; Mangla, A.; Suri, S. Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers. IEEE Trans. Energy Convers. 2006, 21, 187–194. [Google Scholar] [CrossRef]
- Abraham, R.J.; Das, D.; Patra, A. AGC of a hydrothermal system with thyristor controlled phase shifter in the tie-line. In Proceedings of the 2006 IEEE Power India Conference, New Delhi, India, 10–12 April 2006. [Google Scholar]
- Arya, Y. AGC performance enrichment of multi-source hydrothermal gas power systems using new optimized FOFPID controller and redox flow batteries. Energy 2017, 127, 704–715. [Google Scholar] [CrossRef]
- Panwar, A.; Agarwal, V.; Sharma, G.; Sharma, S. Design of a Novel AGC Action for a Linked Hydro Governing System. Electr. Power Compon. Syst. 2021, 49, 1201–1211. [Google Scholar] [CrossRef]
- Arya, Y.; Dahiya, P.; Çelik, E.; Sharma, G.; Gözde, H.; Nasiruddin, I. AGC performance amelioration in multi-area interconnected thermal and thermal-hydro-gas power systems using a novel controller. Eng. Sci. Technol. Int. J. 2021, 24, 384–396. [Google Scholar] [CrossRef]
- Saha, A.; Saikia, L.C. Renewable energy source-based multiarea AGC system with integration of EV utilizing cascade controller considering time delay. Int. Trans. Electr. Energy Syst. 2019, 29, e2646. [Google Scholar] [CrossRef] [Green Version]
- Tasnin, W.; Saikia, L.C. Performance comparison of several energy storage devices in deregulated AGC of a multi-area system incorporating geothermal power plant. IET Renew. Power Gener. 2018, 12, 761–772. [Google Scholar] [CrossRef]
- Sharma, G.; Krishnan, N.; Arya, Y.; Panwar, A. Impact of ultracapacitor and redox flow battery with JAYA optimization for frequency stabilization in linked photovoltaic-thermal system. Int. Trans. Electr. Energy Syst. 2021, 31, e12883. [Google Scholar] [CrossRef]
- Barik, A.K.; Das, D.C. Expeditious frequency control of solar photobiotic/biogas/biodiesel generator based isolated renewable microgrid using Grasshopper Optimisation Algorithm. IET Renew. Power Gener. 2018, 12, 1659–1667. [Google Scholar] [CrossRef]
- Gupta, N.; Kumar, N. Particle swarm optimization based automatic generation control of interconnected power system incorporating battery energy. Procedia Comput. Sci. 2018, 132, 1562–1569. [Google Scholar] [CrossRef]
- Sharma, G.; Narayanan, K.; Adefarati, T.; Sharma, S. Frequency regularization of a linked wind–diesel system using dual structure fuzzy with ultra-capacitor. Prot. Control Mod. Power Syst. 2022, 7, 1–9. [Google Scholar] [CrossRef]
- Arya, Y. Effect of energy storage systems on automatic generation control of interconnected traditional and re-structured energy systems. Int. J. Energy Res. 2019, 43, 6475–6493. [Google Scholar] [CrossRef]
- Pathak, N.; Verma, A.; Bhatti, T.S.; Nasiruddin, I. Modeling of HVDC tie-links and their utilization in AGC/LFC operations of multi-area power systems. IEEE Trans. Ind. Electron. 2019, 66, 2185–2197. [Google Scholar] [CrossRef]
- Kumari, N.; Malik, N.; Jha, A.N.; Mallesham, G. Design of PI Controller for Automatic Generation Control of Multi Area Interconnected Power System using Bacterial Foraging Optimization. Int. J. Eng. Technol. 2016, 8, 2779–2786. [Google Scholar] [CrossRef] [Green Version]
- Jagatheesan, K.; Anand, B.; Samanta, S.; Dey, N.; Ashour, A.S.; Balas, V.E. Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm. IEEE/CAA J. Autom. Sin. 2019, 6, 503–515. [Google Scholar] [CrossRef]
- Dash, P.; Saikia, L.C.; Sinha, N. Comparison of performances of several FACTS devices using Cuckoo search algorithm optimized 2DOF controllers in multi-area AGC. Electr. Power Energy Syst 2015, 65, 316–324. [Google Scholar] [CrossRef]
- Rahman, A.; Saikia, L.C.; Sinha, N. AGC of dish-stirling solar thermal integrated thermal system with biogeography based optimised three degree of freedom PID controller. IET Renew. Power Gener. 2016, 10, 1161–1170. [Google Scholar] [CrossRef]
- Reddy, P.J.; Kumar, T.A. AGC of three-area hydro-thermal system in deregulated environment using FOPI and IPFC. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 2815–2821. [Google Scholar] [CrossRef]
- Dekaraja, B.; Saikia, L.C.; Ramoji, S.K.; Behera, M.K.; Bhagat, S.K. Impact of RFB and HVDC link on Combined ALFC-AVR Studies of a GTPP Integrated Hydro-thermal Systems Using a Cascade Fuzzy PD-TID Controller. In Proceedings of the 2022 4th International Conference on Energy, Power and Environment (ICEPE), Shillong, India, 29 April–1 May 2022. [Google Scholar] [CrossRef]
- Pan, I.; Das, S. Fractional order AGC for distributed energy resources using robust optimization. IEEE Trans. Smart Grid 2016, 7, 2175–2186. [Google Scholar] [CrossRef] [Green Version]
- Ismayil, C.; Sreerama, R.K.; Sindhu, T.K. Fractional order pid controller for automatic generation control of multiarea power systems. Int. Trans. Electr. Energy Syst. 2015, 25, 3329–3348. [Google Scholar] [CrossRef]
- Ramoji, S.K.; Saikia, L.C.; Dekaraja, B.; Behera, M.K.; Bhagat, S.K. Performance Comparison of Various Tilt Controllers in Coalesced Voltage and Frequency Regulation of Multi-Area Multi-Unit Power System. In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022. [Google Scholar] [CrossRef]
- Rajput, G.K.; Yadav, A.; Kumar, A.; Gautam, A.; Tiwari, A.; Babu, N.R.; Chiranjeevi, T. Design of TID controller based on firefly algorithm for controlling the speed of a DC Motor. E3S Web Conf. 2020, 184, 01038. [Google Scholar] [CrossRef]
- Moschos, I.; Parisses, C. A novel optimal PIλDND2N2 controller using coyote optimization algorithm for an AVR system. Eng. Sci. Technol. Int. J. 2022, 26, 100991. [Google Scholar] [CrossRef]
- Sharma, P.; Prakash, A.; Shankar, R.; Parida, S.K. A Novel Hybrid Salp Swarm Differential Evolution Algorithm Based 2DOF Tilted-Integral-Derivative Controller for Restructured AGC. Electr. Power Compon. Syst. 2019, 47, 1775–1790. [Google Scholar] [CrossRef]
- Abd-Elazim, S.M.; Ali, E.S. Load frequency controller design via BAT algorithm for nonlinear interconnected power system. Int. J. Electr. Power Energy Syst. 2016, 77, 166–177. [Google Scholar] [CrossRef]
- Arya, Y.; Kumar, N.; Dahiya, P.; Sharma, G.; Çelik, E.; Dhundhara, S.; Sharma, M. Cascade-IλDμN controller design for AGC of thermal and hydro-thermal power systems integrated with renewable energy sources. IET Renew Power Gener. 2021, 15, 504–520. [Google Scholar] [CrossRef]
- Sharma, G.; Panwar, A.; Arya, Y.; Kumawat, M. Integrating layered recurrent ANN with robust control strategy for diverse operating conditions of AGC of the power system. IET Gener. Transm. Distrib. 2020, 14, 3886–3895. [Google Scholar] [CrossRef]
- Sharma, M.; Dhundhara, S.; Arya, Y.; Prakash, S. Frequency stabilization in deregulated energy system using coordinated operation of fuzzy controller and redox flow battery. Int J Energy Res. 2021, 45, 7457–7475. [Google Scholar] [CrossRef]
- Venkateswara Rao, B.; Devarapalli, R.; Malik, H.; Bali, S.K.; García Márquez, F.P.; Chiranjeevi, T. Wind integrated power system to reduce emission: An application of bat algorithm. J. Intell. Fuzzy Syst. 2022, 42, 1041–1049. [Google Scholar] [CrossRef]
- Vandrasi, R.K.; Kumar, B.S.; Devarapalli, R. Solar photo voltaic module parameter extraction using a novel Hybrid Chimp-Sine Cosine Algorithm. Energy Sources Part A Recovery Util. Environ. Eff. 2022. [Google Scholar] [CrossRef]
- Devarapalli, R.; Kumar, V. Power system oscillation damping controller design: A novel approach of integrated HHO-PSO algorithm. Arch. Control Sci. 2021, 31, 553–591. [Google Scholar]
- Devarapalli, R.; Sinha, N.K.; García Márquez, F.P. A review on the computational methods of power system stabilizer for damping power network oscillations. Arch. Comput. Methods Eng. 2022, 29, 3713–3739. [Google Scholar] [CrossRef]
- Verma, S.K.; Devarapalli, R. Fractional order PIλDμ controller with optimal parameters using Modified Grey Wolf Optimizer for AVR system. Arch. Control Sci. 2022, 32, 429–450. [Google Scholar]
- Ram Babu, N.; Bhagat, S.K.; Saikia, L.C.; Chiranjeevi, T.; Devarapalli, R.; García Márquez, F.P. A Comprehensive Review of Recent Strategies on Automatic Generation Control/Load Frequency Control in Power Systems. Arch. Comput. Methods Eng. 2022. [Google Scholar] [CrossRef]
- Saha, A.; Dash, P.; Babu, N.R.; Chiranjeevi, T.; Venkateswararao, B.; Knypiński, Ł. Impact of Spotted Hyena Optimized Cascade Controller in Load Frequency Control of Wave-Solar-Double Compensated Capacitive Energy Storage Based Interconnected Power System. Energies 2022, 15, 6959. [Google Scholar] [CrossRef]
- Devarapalli, R.; Kumar Sinh, N.; Bathinavenkateswara, R.; Knypiński, Ł.; Jaya Naga, N.; Marquez, F.P.G. Allocation of real power generation based on computing over all generation cost: An approach of Salp Swarm Algorithm. Arch. Electrical. Eng. 2021, 70, 337–349. [Google Scholar]
- Knypiński, Ł. Constrained optimization of line-start PM motor based on the grey wolf optimizer. Eksploat. I Niezawodn.—Maint. Reliab. 2021, 23, 1–10. [Google Scholar] [CrossRef]
- Knypiński, Ł.; Kuroczycki, S.; Márquez, F.P.G. Minimization of Torque Ripple in the Brushless DC Motor Using Constrained Cuckoo Search Algorithm. Electronics 2021, 10, 2299. [Google Scholar] [CrossRef]
- Madasu, S.D.; Sai Kumar, M.L.S.; Singh, A.K. A flower pollination algorithm based automatic generation control of interconnected power system. Ain Shams Eng. J. 2018, 9, 1215–1224. [Google Scholar] [CrossRef] [Green Version]
- Sahu, R.K.; Panda, S.; Rout, U.K. DE optimized parallel 2-DOF PID controller for load frequency control of power system with governor dead-band nonlinearity. Int. J. Elect. Power Energy Syst. 2013, 49, 19–33. [Google Scholar] [CrossRef]
- Panwar, A.; Agarwal, V.; Sharma, G. Studies on Frequency Regulation of Hydro System via New JAYA Optimized LQR Design. In Proceedings of the 2021 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Durban, South Africa, 5–6 August 2021. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 2017, 114, 48–70. [Google Scholar] [CrossRef]
- Alghamdi, M.I. Optimization of Load Balancing and Task Scheduling in Cloud Computing Environments Using Artificial Neural Networks-Based Binary Particle Swarm Optimization (BPSO). Sustainability 2022, 14, 11982. [Google Scholar] [CrossRef]
- Salah, B.; Hasanien, H.M.; Ghali, F.M.A.; Alsayed, Y.M.; Abdel Aleem, S.H.E.; El-Shahat, A. African Vulture Optimization-Based Optimal Control Strategy for Voltage Control of Islanded DC Microgrids. Sustainability 2022, 14, 11800. [Google Scholar] [CrossRef]
- Dai, L.; Lu, H.; Hua, D.; Liu, X.; Chen, H.; Glowacz, A.; Królczyk, G.; Li, Z. A Novel Production Scheduling Approach Based on Improved Hybrid Genetic Algorithm. Sustainability 2022, 14, 11747. [Google Scholar] [CrossRef]
- Chiranjeevi, T.; Devarapalli, R.; Babu, N.R.; Vakkapatla, K.B.; Rao, G.S.; Marquez, P.G. Fixed terminal time fractional optimal control problem for discrete time singular system. Arch. Control Sci. 2022, 32, 489–506. [Google Scholar]
- Oustaloup, A.; Mathieu, B.; Lanusse, P. The CRONE Control of Resonant Plants: Application to a Flexible Transmission. Eur. J. Control 1995, 1, 113–121. [Google Scholar] [CrossRef]
Name of Controller | Corresponding Gains and Parameters | Area-1 | Area-2 | Area-3 |
---|---|---|---|---|
PIDN | KPi * | 0.0016 | 0.0025 | 0.0027 |
KIi * | 0.3784 | 0.4651 | 0.5068 | |
KDi * | 0.4882 | 0.3788 | 0.3569 | |
Ni * | 12.11 | 13.01 | 15.00 | |
TIDN | KPi * | 0.1532 | 0.4706 | 0.3715 |
KIi * | 0.4888 | 0.4426 | 0.5827 | |
KDi * | 0.8056 | 0.6795 | 0.5687 | |
Ni * | 45.01 | 56.11 | 38.21 | |
ni * | 1.4091 | 2.5088 | 2.1078 | |
TIDN-FOID | KPi * | 0.5470 | 0.7826 | 0.8511 |
KIi * | 0.6584 | 0.7650 | 0.8756 | |
KDi * | 0.8033 | 0.8862 | 0.9617 | |
Ni * | 92.08 | 85.82 | 82.68 | |
ni * | 3.9977 | 2.8985 | 1.1748 | |
KFIi * | 0.4707 | 0.3868 | 0.4477 | |
λi * | 0.0020 | 0.0082 | 0.0021 | |
KFDi * | 0.7356 | 0.4747 | 0.5937 | |
μi * | 0.0722 | 0.0259 | 0.0473 |
Responses | Name of Controller | C_O | C_U | S_D (In Seconds) |
---|---|---|---|---|
Δf1 (Figure 4a) | PIDN | 0.0008 | 0.0176 | 118.10 |
TIDN | 0.0006 | 0.0161 | 98.72 | |
TIDN-FOID | 0.0004 | 0.0153 | 62.36 | |
Δf2 (Figure 4b) | PIDN | 0.0007 | 0.0110 | 111.50 |
TIDN | 0.0005 | 0.0103 | 89.71 | |
TIDN-FOID | 0.0003 | 0.0093 | 57.44 | |
ΔPtie2–3 (Figure 4c) | PIDN | 0.0024 | 0.0007 | 119.30 |
TIDN | 0.0022 | 0.0006 | 100.81 | |
TIDN-FOID | 0.0021 | 0.0004 | 57.37 | |
Δptie1–3 (Figure 4d) | PIDN | 0.0002 | 0.0051 | 109.11 |
TIDN | 0.0001 | 0.0045 | 88.27 | |
TIDN-FOID | 0.00004 | 0.0042 | 56.69 |
Outcomes | Performance Indices | C_O | C_U | S_D (In Seconds) |
---|---|---|---|---|
Δf1 (Figure 5a) | IAE | 0.0053 | 0.0176 | 72.97 |
ITAE | 0.0041 | 0.0171 | 69.82 | |
ITSE | 0.0036 | 0.0175 | 68.85 | |
ISE | 0.0004 | 0.0153 | 62.36 | |
ΔPtie2–3 (Figure 5b) | IAE | 0.0023 | 0.0008 | 70.39 |
ITAE | 0.0023 | 0.0005 | 70.05 | |
ITSE | 0.0024 | 0.0005 | 66.04 | |
ISE | 0.0021 | 0.0004 | 57.37 | |
ΔPtie1–3 (Figure 5c) | IAE | 0.0013 | 0.0048 | 66.89 |
ITAE | 0.0008 | 0.0047 | 66.87 | |
ITSE | 0.0005 | 0.0046 | 64.67 | |
ISE | 0.00004 | 0.0042 | 56.69 |
Responses | Name of Algorithm | C_O | C_U | S_D (In Seconds) | Computational Time (In Seconds) |
---|---|---|---|---|---|
Δf3 (Figure 6a) | WOA | 0.0021 | 0.0120 | 60.28 | 380 |
PSO | 0.0026 | 0.0122 | 65.31 | 375 | |
CS | 0.0026 | 0.0121 | 66.39 | 378 | |
FA | 0.0028 | 0.0124 | 67.64 | 353 | |
SHO | 0.0002 | 0.0120 | 54.92 | 310 | |
ΔPtie1–2 (Figure 6b) | WOA | 0.0005 | 0.0042 | 62.32 | 380 |
PSO | 0.0008 | 0.0042 | 71.01 | 375 | |
CS | 0.0009 | 0.0042 | 68.09 | 378 | |
FA | 0.0009 | 0.0042 | 66.87 | 353 | |
SHO | 0 | 0.0041 | 50.72 | 310 | |
Δptie1–3 (Figure 6c) | WOA | 0.0005 | 0.0043 | 80.28 | 380 |
PSO | 0.0005 | 0.0043 | 78.28 | 375 | |
CS | 0.0006 | 0.0043 | 80.68 | 378 | |
FA | 0.0006 | 0.0044 | 67.87 | 353 | |
SHO | 0.00004 | 0.0042 | 56.69 | 310 |
Name of Controller | Corresponding Gains and Parameters | Area-1 | Area-2 | Area-3 |
---|---|---|---|---|
TIDN-FOID | KPi * | 0.0762 | 0.0274 | 0.0385 |
KIi * | 0. 3913 | 0.3850 | 0.3913 | |
KDi * | 0.7666 | 0.4598 | 0.1361 | |
Ni * | 66.72 | 84.07 | 95.12 | |
ni * | 1.8853 | 3.8440 | 2.5914 | |
KFIi * | 0.4189 | 0.8526 | 0.9492 | |
λi * | 0.0084 | 0.0058 | 0.0037 | |
KFDi * | 0.9043 | 0.8201 | 0.7264 | |
μi * | 0.0050 | 0.0065 | 0.0032 |
Name of Controller | Corresponding Gains and Parameters | Area-1 | Area-2 | Area-3 |
---|---|---|---|---|
TIDN-FOID | KPi * | 0.7849 | 0.8416 | 0.9610 |
KIi * | 0.2748 | 0.6100 | 0.2748 | |
KDi * | 0.8866 | 0.6639 | 0.6137 | |
Ni * | 64.66 | 45.11 | 70.88 | |
ni * | 4.5528 | 5.4326 | 6.5170 | |
KFIi * | 0.8555 | 0.4074 | 0.8386 | |
λi * | 0.9755 | 0.7028 | 0.2556 | |
KFDi * | 0.5163 | 0.3872 | 0.5575 | |
μi * | 0.9689 | 0.6345 | 0.6229 |
Name of Controller | Corresponding Gains and Parameters | Area-1 | Area-2 | Area-3 |
---|---|---|---|---|
TIDN-FOID | KPi * | 0.6852 | 0.7387 | 0.7125 |
KIi * | 0.7961 | 0.8147 | 0.8922 | |
KDi * | 0.3798 | 0.4698 | 0.5863 | |
Ni * | 60.25 | 65.23 | 59.11 | |
ni * | 1.9852 | 2.3481 | 3.1520 | |
KFIi * | 0.8513 | 0.8615 | 0.8789 | |
λi * | 0.0328 | 0.0385 | 0.0415 | |
KFDi * | 0.8147 | 0.8789 | 0.8459 | |
μi * | 0.1614 | 0.2078 | 0.2956 |
System Condition | Eigenvalues |
---|---|
Hydrothermal system excluding biodiesel and GPPt, time delay, and RFB | −0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i −12.5000 + 0.0000i −12.5000 + 0.0000i −12.5000 + 0.0000i −12.5000 + 0.0000i −50.0000 + 0.0000i −0.0148 + 0.0000i −0.0320 + 0.0000i −0.0695 + 0.0000i −0.1507 + 0.0000i −0.3268 + 0.0000i −0.7089 + 0.0000i −1.5377 + 0.0000i −3.3353 + 0.0000i −7.2344 + 0.0000i −15.6918 + 0.0000i −34.0363 + 0.0000i −50.0000 + 0.0000i −0.0147 + 0.0000i −0.0319 + 0.0000i −0.0691 + 0.0000i −0.1500 + 0.0000i −0.3253 + 0.0000i −0.7055 + 0.0000i −1.5303 + 0.0000i −3.3192 + 0.0000i −7.1995 + 0.0000i −15.6161 + 0.0000i −33.8722 + 0.0000i −50.0000 + 0.0000i −0.0133 + 0.0000i −0.0289 + 0.0000i −0.0627 + 0.0000i −0.1359 + 0.0000i −0.2948 + 0.0000i −0.6394 + 0.0000i −1.3868 + 0.0000i −3.0080 + 0.0000i −6.5246 + 0.0000i −14.1522 + 0.0000i −30.6969 + 0.0000i 0.0000 + 0.0000i −84.0734 + 0.0000i −12.5000 + 0.0000i −50.0000 + 0.0000i −0.0148 + 0.0000i −0.0320 + 0.0000i −0.0694 + 0.0000i −0.1506 + 0.0000i −0.3266 + 0.0000i −0.7085 + 0.0000i −1.5367 + 0.0000i −3.3333 + 0.0000i −7.2301 + 0.0000i −15.6824 + 0.0000i −34.0160 + 0.0000i −50.0000 + 0.0000i −0.0147 + 0.0000i −0.0318 + 0.0000i −0.0691 + 0.0000i −0.1498 + 0.0000i −0.3249 + 0.0000i −0.7048 + 0.0000i −1.5288 + 0.0000i −3.3160 + 0.0000i −7.1925 + 0.0000i −15.6009 + 0.0000i −33.8392 + 0.0000i 0.0000 + 0.0000i −50.0000 + 0.0000i −66.7220 + 0.0000i −0.0120 + 0.0000i −0.0260 + 0.0000i −0.0564 + 0.0000i −0.1224 + 0.0000i −0.2655 + 0.0000i −0.5758 + 0.0000i −1.2490 + 0.0000i −2.7092 + 0.0000i −5.8764 + 0.0000i −12.7463 + 0.0000i −27.6473 + 0.0000i −95.0002 + 0.0000i −50.2462 + 0.0000i −49.9885 + 0.0000i −33.9013 + 0.0000i −33.9915 + 0.0000i −50.0000 + 0.0000i −29.2381 + 0.0000i −13.4794 + 0.0000i −15.6295 + 0.0000i −15.6712 + 0.0000i −6.2134 + 0.0000i −7.2248 + 0.0000i −7.2059 + 0.0000i 0.0603 + 2.7150i 0.0603 − 2.7150i −2.8395 + 0.0634i −2.8395 − 0.0634i −3.3236 + 0.0000i −3.3298 + 0.0000i −1.3369 + 0.0000i −1.1466 + 0.0000i −1.5306 + 0.0000i −1.5362 + 0.0000i −0.0250 + 2.9529i −0.0250 − 2.9529i −0.7076 + 0.0000i −0.6062 + 0.0000i −0.7066 + 0.0000i 0.0165 + 0.2488i 0.0165 − 0.2488i −0.3263 + 0.0000i −0.2800 + 0.0000i −0.3257 + 0.0000i −0.1260 + 0.0000i −0.1409 + 0.0000i −0.1507 + 0.0000i −0.1496 + 0.0000i −0.0594 + 0.0000i −0.0693 + 0.0001i −0.0693 − 0.0001i −0.0274 + 0.0000i −0.0126 + 0.0000i −0.0320 + 0.0000i −0.0320 − 0.0000i −0.0147 + 0.0000i −0.0147 − 0.0000i − 0.0000 + 0.0000i − 0.0000 + 0.0000i − 0.0000 + 0.0000i −0.0000 + 0.0000i − 0.0000 + 0.0000i − 0.0000 + 0.0000i |
System Condition | Eigenvalue |
---|---|
Hydrothermal system including biodiesel and GPPt, time delay, and RFB | −0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i −0.1000 + 0.0000i −3.3333 + 0.0000i −12.5000 + 0.0000i −12.5000 + 0.0000i −12.5000 + 0.0000i −12.5000 + 0.0000i −12.5000 + 0.0000i −59.9198 + 6.5359i −59.9198 − 6.5359i −56.2001 + 3.4843i −56.2001 − 3.4843i −55.8472 + 7.2876i −55.8472 − 7.2876i −49.9874 + 0.0000i −49.9739 + 0.0000i −49.9747 + 0.0000i −36.4359 + 0.0000i −35.1881 + 0.0000i −34.7088 + 0.0000i −33.4630 + 0.0000i −33.6403 + 0.0000i −33.7199 + 0.0000i −50.0000 + 0.0000i −30.0215 + 0.0000i −28.7628 + 0.0000i −27.9137 + 0.0000i −50.0000 + 0.0000i −50.0000 + 0.0000i −16.8387 + 3.1713i −16.8387 − 3.1713i −17.2647 + 0.0000i −15.2569 + 0.0000i −15.4193 + 0.0000i −15.4773 + 0.4694i −15.4773 − 0.4694i −13.8376 + 0.0000i −13.6473 + 0.0000i −8.3891 + 6.2010i −8.3891 − 6.2010i −12.4523 + 0.0000i −13.1265 + 0.0000i −7.9307 + 0.0000i −7.5106 + 0.0000i −7.1518 + 0.0000i −7.1170 + 0.0000i −6.8575 + 0.1307i −6.8575 − 0.1307i −6.3711 + 0.0000i −5.9147 + 0.0000i −5.5548 + 0.0000i −1.9044 + 2.1300i −1.9044 − 2.1300i −0.1910 + 2.1081i −0.1910 − 2.1081i −3.5930 + 0.0000i −3.5387 + 0.0000i −3.2840 + 0.0000i −3.2919 + 0.0000i −3.2353 + 0.1174i −3.2353 − 0.1174i −2.9165 + 0.0000i −2.7281 + 0.0111i −2.7281 − 0.0111i −2.1935 + 0.0000i −2.0714 + 0.1040i −2.0714 − 0.1040i −1.5607 + 0.5131i −1.5607 − 0.5131i −1.1884 + 0.1830i −1.1884 − 0.1830i −1.5489 + 0.0392i −1.5489 − 0.0392i −1.4783 + 0.0575i −1.4783 − 0.0575i −1.4719 + 0.0000i −1.4191 + 0.0000i −0.8067 + 0.0561i −0.8067 − 0.0561i −0.8258 + 0.0000i −0.6371 + 0.0291i −0.6371 − 0.0291i −0.6895 + 0.0092i −0.6895 − 0.0092i −0.6800 + 0.0000i −0.6539 + 0.0000i −0.3959 + 0.0000i −0.3713 + 0.0117i −0.3713 − 0.0117i −0.2945 + 0.0065i −0.2945 − 0.0065i −0.3172 + 0.0023i −0.3172 − 0.0023i −0.3128 + 0.0125i −0.3128 − 0.0125i −0.0664 + 0.1304i −0.0664 − 0.1304i −0.2095 + 0.0000i −0.1856 + 0.0000i −0.1660 + 0.0000i −0.1305 + 0.0000i −0.1492 + 0.0000i −0.1485 + 0.0076i −0.1485 − 0.0076i −0.1460 + 0.0066i −0.1460 − 0.0066i −0.1035 + 0.0000i −0.1124 + 0.0000i −0.0526 + 0.0000i −0.0552 + 0.0000i −0.0598 + 0.0000i −0.0717 + 0.0006i −0.0717 − 0.0006i −0.0693 + 0.0029i −0.0693 − 0.0029i −0.0698 + 0.0030i −0.0698 − 0.0030i −0.0250 + 0.0000i −0.0278 + 0.0000i −0.0332 + 0.0006i −0.0332 − 0.0006i −0.0323 + 0.0010i −0.0323 − 0.0010i −0.0114 + 0.0000i −0.0129 + 0.0000i −0.0261 + 0.0000i −0.0157 + 0.0000i −0.0000 + 0.0000i −0.0325 + 0.0011i −0.0325 − 0.0011i −0.0121 + 0.0000i −0.0150 + 0.0004i −0.0150 − 0.0004i −0.0152 + 0.0000i −0.0151 + 0.0004i −0.0151 − 0.0004i − 0.0000 + 0.0000i − 0.0000 + 0.0000i −0.0000 + 0.0000i − 0.0000 + 0.0000i − 0.0000 + 0.0000i |
System Condition | Damping Ratio (ξ) |
---|---|
Hydrothermal system excluding biodiesel and GPPt, time delay, and RFB | 0.0085 |
Hydrothermal system including biodiesel and GPPt, time delay, and RFB | 0.0903 |
Name of Controller | Corresponding Gains and Parameters | Area-1 | Area-2 | Area-3 |
---|---|---|---|---|
TIDN-FOID | KPi * | 0.7016 | 0.6892 | 0.6895 |
KIi * | 0.6985 | 0.7985 | 0.8789 | |
KDi * | 0.4016 | 0.5014 | 0.6014 | |
Ni * | 62.25 | 61.28 | 62.36 | |
ni * | 2.1111 | 2.1875 | 2.8955 | |
KFIi * | 0.8111 | 0.7895 | 0.7884 | |
λi * | 0.0216 | 0.0356 | 0.0389 | |
KFDi * | 0.7896 | 0.7989 | 0.7954 | |
μi * | 0.1589 | 0.1586 | 0.2478 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, A.; Dash, P.; Babu, N.R.; Chiranjeevi, T.; Dhananjaya, M.; Knypiński, Ł. Dynamic Stability Evaluation of an Integrated Biodiesel-Geothermal Power Plant-Based Power System with Spotted Hyena Optimized Cascade Controller. Sustainability 2022, 14, 14842. https://doi.org/10.3390/su142214842
Saha A, Dash P, Babu NR, Chiranjeevi T, Dhananjaya M, Knypiński Ł. Dynamic Stability Evaluation of an Integrated Biodiesel-Geothermal Power Plant-Based Power System with Spotted Hyena Optimized Cascade Controller. Sustainability. 2022; 14(22):14842. https://doi.org/10.3390/su142214842
Chicago/Turabian StyleSaha, Arindita, Puja Dash, Naladi Ram Babu, Tirumalasetty Chiranjeevi, Mudadla Dhananjaya, and Łukasz Knypiński. 2022. "Dynamic Stability Evaluation of an Integrated Biodiesel-Geothermal Power Plant-Based Power System with Spotted Hyena Optimized Cascade Controller" Sustainability 14, no. 22: 14842. https://doi.org/10.3390/su142214842
APA StyleSaha, A., Dash, P., Babu, N. R., Chiranjeevi, T., Dhananjaya, M., & Knypiński, Ł. (2022). Dynamic Stability Evaluation of an Integrated Biodiesel-Geothermal Power Plant-Based Power System with Spotted Hyena Optimized Cascade Controller. Sustainability, 14(22), 14842. https://doi.org/10.3390/su142214842