Use of Water from Petroleum Production in Colombia for Soil Irrigation as a Sustainable Strategy Adapted from the Oman Desert
Abstract
:1. Introduction
- Parts of the Libyan Desert, located 3000 km southeast of Benghazi, were recovered through the development of artificial wetlands, where native Pharagmites australis were planted. This project led to the reuse of 377–503 barrels of produced water per [7].
- Production water used as irrigation water in hydroponic crop development led to the reuse of approximately 50,000 barrels of water per day [10].
- The reuse of 12,500 barrels of production water was associated with methane extraction in the process of recovering 40.5 hectares of arid land and as crop irrigation water [8].
- In Moscow, researchers investigated how livestock wastewater irrigation affects the quality and agricultural potential of soil through germination experiments conducted on radish seeds irrigated with livestock wastewater [11].
2. Materials and Methods
2.1. Expert Matrix
2.2. Multicriteria Analysis
2.3. Statistical Analysis
2.4. Triple Bottom Line Diagram
3. Results
3.1. Characterization of the Strategy of Nimr, Oman
3.2. Identification and Prioritization of Variables
3.3. Characterization of Nimr and Colombia’s Production Water
3.4. Biological Characterization of the Omani and Colombian Plants
3.5. Project Sustainability Assessment
- Economic: The economic variables evaluated in the project are related to technical-financial aspects such as different techniques to ensure water quality. These evaluate additional treatment systems and the optimal seedlings for this project. Likewise, costs for the implementation of an artificial wetland must be established to increase the financial viability of the project [36]. This viability must consider capital costs associated with the required infrastructure (adaptation of land, etc.) and the operating costs based on the cost per volume of reused water (supplies, labor for artificial wetland and crop water quality monitoring activities, maintenance and harvesting of the plant, etc.).
- Social Factor: During the development of a project, it is important to evaluate the potential positive and/or negative impact on the local communities. Because of this, the social variables are related to the Colombian regulations for agricultural activities and the different groups with a direct or indirect interest in the project [36]. These interests can influence the social acceptance of the project, which highlights the importance of communicating clear and truthful information to the various interest groups about the implications of its development. This ensures that they have the necessary elements to adopt a position of acceptance or rejection and guarantees the right of access to information and citizen participation according to the mechanisms established in national regulations. In relation to the right of access to information, The Interstate Technology and Regulatory Council suggests that the information to be communicated must include at the least: potential risks to the community, possible impacts on the production capacity of the land, and whether there are nearby sensitive ecosystems [37].
- Environmental Factor: The environmental variables consist of those characteristics that can be evaluated for the development of an artificial wetland that generates the least possible impact on the environment. Likewise, it is necessary to evaluate the features and biological requirements of the sugar cane [36].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seright, R.; Brattekas, B. Water shutoff and conformance improvement: An introduction. Petrol. Sci. 2021, 18, 450–478. [Google Scholar] [CrossRef]
- Mesa, S.; Orjuela, J.; Ortega, A.; Sandoval, J. Revisión del panorama actual del manejo de agua de producción en la industria petrolera en Colombia. Gestión. Y Ambiente 2018, 21, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Suárez, A.; Jaramillo, M.; Gonzaléz, A.; Londoño, J.; Pacavita, J. Reporte integrado de gestión sostenible 2016: Gestión integral de recursos hídricos. Ecopetrol 2017, 1, 294–314. Available online: https://www.ecopetrol.com.co/wps/wcm/connect/6abce830-d990-433b-a744-2e790ad19044/reporte-integrado-gestion-sostenible-2016.pdf?MOD=AJPERES&attachment=true&id=1583688051100 (accessed on 15 May 2022).
- Ecopetrol. Resultados segundo trimestre 2020—Resiliencia y sostenibilidad ante una situación sin precedentes. Ecopetrol SAS 2020, 1, 1–32. Available online: https://www.ecopetrol.com.co/wps/wcm/connect/6f451f52-55cb-45ea-ac03-762f03e66f14/PPT%202Q20%20%20y%20Plan%202020%2020%2022%20Espa%C3%B1ol%20vf.pdf?MOD=AJPERES&attachment=false&id=1596632832682 (accessed on 15 May 2022).
- Takechita, R.; Sullivan, L.; Smith, C.; Collier, T. The Deepwater Horizon oil spill marine mammal injury assessment. Endang. Species Res. 2017, 33, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Yánez, A.; Antón, C. Descriptive analysis of the impact on the life system of the inhabitants of the Parish of Dayuma caused by the oil industry in the Ecuadorian Amazon. Int. J. Innov. Appl. Stud. 2017, 20, 1180–1197. Available online: http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-16-349-08 (accessed on 1 June 2022).
- Ortega, A.T.; Marin, D.F.; Ochoa, E.D. Revisión general de la producción elevada de agua en la industria del petróleo. Revista Fuentes El Reventón Energético 2019, 17, 39–50. [Google Scholar] [CrossRef]
- Rial, A.; González, A. Reúso del agua de producción de hidrocarburos: Reto y oportunidad. Gestión. Y Ambiente 2020, 23, 111–114. [Google Scholar] [CrossRef]
- Gupta, A.; Shamar, N.K.; Bhardwaj, S.; Srivastava, P.K. Chapter 4—Treated waste water as an alternative to fresh water irrigation with improved crop production. In Agricultural Water Management; Academic Press: Cambridge, MA, USA, 2021; pp. 49–65. [Google Scholar] [CrossRef]
- Memon, S.; Kim, Y.; Soomro, S.; Soomro, M.; Kim, W. A new approach for freshwater production and energy recovery from an oil field. J. Water Process Eng. 2020, 34, 101145. [Google Scholar] [CrossRef]
- Mukhametov, A.; Kondrashev, S.; Zvyagin, G.; Spitsov, D. Treated livestock wastewater influence on soil quality and possibilities of crop irrigation. Saudi J. Biol. Sci. 2022, 29, 2766–2771. [Google Scholar] [CrossRef]
- Winckelmann, D.; Bleeke, F.; Thomas, B.; Elle, C.; Klock, G. Open pond cultures of indigenous algae grown on non-arable land in an arid desert using watewater. Int. Aquat. Res. 2015, 7, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Piedrahíta, J. Caracterización Petrofísica de un Área en el Bloque CPO 16 en la Cuenca de Los Llanos Orientales—Colombia. [Trabajo de Grado, EAFIT Universidad]. 2016. Available online: https://repository.eafit.edu.co/bitstream/handle/10784/9738/JesusAlberto_PiedrahitaLor-duy_2016.pdf?sequence=2&isAllowed=y (accessed on 16 May 2022).
- Cortés, L.; Delgado, M. Evaluación Técnico-Financiera Para el Cambio Del Sistema de Levantamiento Artificial Actual Por Bombeo Por Cavidades Progresivas Con Motor en Fondo de Imanes Permanentes en Tres Pozos de un Campo Petrolero. [Trabajo de Grado, Universidad de América]. Repositorio Institucional. 2018. Available online: https://bit.ly/3jpwMdP (accessed on 16 May 2022).
- Ministerio de Medio Ambiente y Desarrollo Sostenible. Resolución 631 of 2015—Parámetros y Valores Máximos Permisibles en los Vertimientos Puntuales a Cuerpos de Agua Superficiales y a Sistemas de Alcantarillado Público. Ministerio de Medio Ambiente y Desarrollo Sostenible. 2015. Available online: https://www.minambiente.gov.co/images/normativa/app/resoluciones/d1-res_631_marz_2015.pdf (accessed on 25 June 2022).
- Ortega, A.T.; Arcila, Y.F.; Vargas, L.M. Revisión Del Diagnóstico de Tratamiento de Aguas de Producción en Campos Petroleros Colombianos. Rev. Ing. Investig. Y Desarro. 2019, 19, 61–75. Available online: https://revistas.uptc.edu.co/index.php/ingenieria_sogamoso/article/view/13085/10724 (accessed on 20 May 2022). [CrossRef]
- Franco, C.; Villegas, J.; Arcila, N.; Ortega, D.; Cortés, F. Remoción de hidrocarburos de aguas de producción de la industria petrolera utilizando nanointermedios compuestos por SiO2 funcionalizados con nanopartículas magnéticas. DYNA 2017, 84, 65–74. [Google Scholar] [CrossRef]
- Siemens. Columna Vertebral Del Suministro de Energía—Se Requieren Tecnologías Inteligentes y Soluciones Avanzadas. Siemens. 2018. Available online: https://new.siemens.com/mx/es/compania/temas-clave/energia-sostenible/futuro-petroleo-gas.html (accessed on 20 May 2022).
- Breuer, R. Nimr Water Treatment Project, Oman; BAUER Resources GmbH: Schroben-hausen, Germany, 2019; Available online: https://www.bauer.de/export/shared/documents/pdf/bre/project_sheets/bre_nimrpaper_en.pdf (accessed on 20 May 2022).
- Petroleum Development Oman. Nimr Reeed Beds. Petroleum Development Oman. 2017. Available online: https://www.pdo.co.om/en/technical-expertise/nimr-reed-beds/Pages/default.aspx (accessed on 20 May 2022).
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef]
- Sullivan, E.; Dean, C.; Yoshida, T.; Twary, S.; Teshima, M.; Alvarez, M.; Zidenga, T.; Heikoop, H.; Perkins, G.; Rahn, T.; et al. Oil and gas produced water as a growth medium for microalgae cultivation: A review and feasibility analysis. Alga Res. 2017, 24, 492–504. [Google Scholar] [CrossRef]
- García, E.; Lena, F. Aplicación del método Delphi en el diseño de una investigación cuantitativa sobre el fenómeno. Fablab. Empiria Rev. Metodol. Cienc. Soc. 2018, 40, 129–166. [Google Scholar] [CrossRef]
- Espejel, A.; Romero, J.; Barrera, A.; Torres, B.; Félix, J. Determinación del uso potencial agrícola mediante modelación geoespacial y análisis multicriterio para la cuenca Balsas Mezcala. Ra Ximhai 2015, 11, 77–98. Available online: https://www.redalyc.org/pdf/461/46142593005.pdf (accessed on 20 May 2022). [CrossRef]
- Muñoz, B.; Romana, M. Aplicación de métodos de decisión multicriterio discretos al análisis de alternativas en estudios informativos de infraestructuras de transporte. Pensam. Matemáticos 2016, 6, 27–46. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=5998856 (accessed on 10 June 2022).
- Cevallos, L.J.; Valencia, N.A.; Barros, R.L. Análisis Estadístico Univariado. Guayaquil: Grupo Compas—Universidad de Guayaquil. 2017. Available online: http://142.93.18.15:8080/jspui/bitstream/123456789/86/1/LIBRO%20CORRECCIONES.pdf (accessed on 10 June 2022).
- Stratigea, A.; Grammatikogiannis, E. A Multicriteria Decision Support Framework for Assessing Alternative Wind Park Locations: The Case of Tanagra—Boiotia. Reg. Sci. Inq. J. 2012, 4, 105–120. Available online: http://www.rsijournal.eu/ARTICLES/June_2012/105-120.pdf (accessed on 10 June 2022).
- García, M.J. La Cuenta del Triple Resultado o Triple Bottom Line. Rev. De Contab. Y Dir. Univ. Rey Juan Carlos 2015, 20, 65–77. Available online: https://accid.org/wp-content/uploads/2018/11/LA_CUENTA_DEL_TRIPLE_RESULTADO.pdf (accessed on 25 June 2022).
- Rodríguez, L.; Ríos, L. Evaluación de la sostenibilidad mediante metodología GRI. Dimens. Empres. 2016, 14, 73–89. [Google Scholar] [CrossRef]
- Ministerio de Asuntos Exteriores, Unión Europea y Cooperación. Oman: Sultanato de Oman. Gobierno de España—Oficina de Información Diplomática. 2018. Available online: http://www.exteriores.gob.es/documents/fichaspais/oman_ficha%20pais.pdf (accessed on 10 June 2022).
- Al-Rawahi, M.; Prigent, S.; Headley, T.; Breuer, R. Constructing Wetlands in the Desert: An Example of Sustainable Produced Water Management in Oman. OnePetro 2014, 1–8. [Google Scholar] [CrossRef]
- Stefanakis, A. Constructed Wetlands for Industrial Wastewater Treatment; Wiley Blackwell: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Cárdenas, L.K.; López, D. Análisis del uso de inhibidores para mitigar la corrosión interna en tuberías de aguas de formación petrolera. [Trabajo de grado, Universidad de América]. Repositorio Institucional. 2020. Available online: https://bit.ly/3sWldOw (accessed on 25 June 2022).
- Colombia Ministerio de Ambiente y Desarrollo Sostenible. Decreto Único Reglamentario Del Sector Ambiente y Desarrollo Sostenible; Decreto 1076 de 2015. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=78153 (accessed on 10 June 2022).
- Rodríguez, G.; Huertas, B.; Polo, S.; González, C.; Tauta, J.; Rodríguez, J.; Velásquez, F.; Duran, J.; Espitia, J.; López, R. Modelo Productivo de la Caña de Azúcar (Saccharum officinarum) Para la Producción de Panela en Cundinamarca; Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA): Mosquera, Colombia, 2020; pp. 1–179. [Google Scholar] [CrossRef]
- Wilcox, J.; Nasiri, F.; Bell, S.; Rahaman, M.S. Urban water reuse: A triple bottom line assessment framework and review. Sustain. Cities Soc. 2016, 27, 448–456. [Google Scholar] [CrossRef]
- ITRC. Technical/Regulatory Guidance Evaluating LNAPL Remedial Technologies for Achieving Project Goals; Interstate Technology and Regulatory Council: Washington, DC, USA, 2009; Available online: https://itrcweb.org/guidancedocuments/LNAPL-2.pdf (accessed on 25 June 2022).
- Smith, G.; Block, L.B.; Ajami, N.; Pombo, A.; Velasco-Aulcy, L. Trade-offs across the water-energy-food nexus: A triple bottom line sustainability assessment of desalination for agriculture in the San quintín Valley, Mexico. Environ. Sci. Policy 2020, 114, 445–452. [Google Scholar] [CrossRef]
Variable | Average |
---|---|
Water quality | 3.9 |
Treatment seedlings in artificial wetland | 3.0 |
Climate conditions | 2.6 |
Additional water treatment systems | 1.6 |
Final water use | 4.0 |
Variable | Treatment Seedlings in Artificial Wetland | Climatic Conditions | Additional Water Treatment Systems | Final Water Use |
---|---|---|---|---|
Water quality | 2.8 | 1.9 | 2.7 | 2.8 |
Treatment seedlings in artificial wetland | 2.1 | 2.0 | 2.3 | |
Climatic conditions | 1.3 | 1.8 | ||
Additional water treatment systems | 2.7 | |||
Final water use |
Parameter | Oman | Colombia | Colombia vs. Oman |
---|---|---|---|
Sodium (mg/L) | 2470 | 1490 | Lesser |
Chlorine (mg/L) | 3201 | 2570 | Lesser |
Boron (mg/L) | 4.59 | 8.95 | Greater |
HCO3 (mg/L) | 189 | 378 | Greater |
Calcium (mg/L) | 62 | 429 | Greater |
Magnesium (mg/L) | 22 | 72.30 | Greater |
Total Sulfur as SO4 (mg/L) | 283 | 8.15 | Lesser |
Ca/SO4 (mg/L) | 0.22 | 52.64 | Greater |
Ca/Mg (mg/L) | 2.82 | 5.93 | Greater |
Na/Cl (mg/L) | 0.77 | 0.58 | Lesser |
Cl/Br (mg/L) | 697.39 | 287 | Lesser |
Parameter | Unit of Measurement | Colombian Case | Colombian Normative Limit | Suitable/Unsuitable |
---|---|---|---|---|
pH at 25 °C | pH units | 7.22 | 6.0–9.0 | Suitable |
Conductivity | µS/cm | 8850 | 1500 | Unsuitable |
Total phenols | mg/L | 8.04 | 1.5 | Unsuitable |
Chlorides | mg Cl/L | 3000 | 300 | Unsuitable |
Sulfates | mg SO4/L | 8.15 | 500 | Suitable |
Iron | mg Fe/L | 2.62 | 5.0 | Suitable |
Sodium | mg Na/L | 1490 | 200 | Unsuitable |
Plant Properties | Sugar Cane (Colombia) | Common Reed (Oman) |
---|---|---|
Scientific name | Saccharum officinarum L. | Phragmites australis |
Kingdom | Vegetable | Vegetable |
Family | Poaceae | Gramineae |
Tribe | Andropogoneas | Arundinae |
Genus | Saccharum | Phragmites |
Species | Spontaneum and Robustum | Australis and Chrusathus |
Relative humidity | Medium or high | Medium or high |
pH | 5.5–7.8 | Unlimited |
Stem height | 5 m | 6 m |
Stem diameter | 2–5 cm | 2 cm |
Leaf length | 30–60 cm | 20–45 cm |
Leaf width | 1–5 cm | 1–5 cm |
Inflorescence length | 20–60 cm | 15–50 cm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Ramírez, A.T.; Angulo-De Castro, I.; Becerra, N.L.; Gómez Caipa, J.C.; Huerta-Quiñones, V.A. Use of Water from Petroleum Production in Colombia for Soil Irrigation as a Sustainable Strategy Adapted from the Oman Desert. Sustainability 2022, 14, 14892. https://doi.org/10.3390/su142214892
Ortega-Ramírez AT, Angulo-De Castro I, Becerra NL, Gómez Caipa JC, Huerta-Quiñones VA. Use of Water from Petroleum Production in Colombia for Soil Irrigation as a Sustainable Strategy Adapted from the Oman Desert. Sustainability. 2022; 14(22):14892. https://doi.org/10.3390/su142214892
Chicago/Turabian StyleOrtega-Ramírez, Angie Tatiana, Ivonne Angulo-De Castro, Nubia Liliana Becerra, Juan Camilo Gómez Caipa, and Victor Alexei Huerta-Quiñones. 2022. "Use of Water from Petroleum Production in Colombia for Soil Irrigation as a Sustainable Strategy Adapted from the Oman Desert" Sustainability 14, no. 22: 14892. https://doi.org/10.3390/su142214892
APA StyleOrtega-Ramírez, A. T., Angulo-De Castro, I., Becerra, N. L., Gómez Caipa, J. C., & Huerta-Quiñones, V. A. (2022). Use of Water from Petroleum Production in Colombia for Soil Irrigation as a Sustainable Strategy Adapted from the Oman Desert. Sustainability, 14(22), 14892. https://doi.org/10.3390/su142214892