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Abstract: The present research produces a new technique for the optimum operation of an isolated
microgrid (MGD) based on an enhanced block-sparse adaptive Bayesian algorithm (EBSABA). To
update the proportional-integral (PI) controller gains online, the suggested approach considers the
impact of the actuating error signal as well as its magnitude. To reach a compromise result between
the various purposes, the Response Surface Methodology (RSMT) is combined with the sunflower
optimization (SFO) and particle swarm optimization (PSO) algorithms. To demonstrate the success
of the novel approach, a benchmark MGD is evaluated in three different Incidents: (1) removing
the MGD from the utility (islanding mode); (2) load variations under islanding mode; and (3) a
three-phase fault under islanding mode. Extensive simulations are run to test the new technique using
the PSCAD/EMTDC program. The validity of the proposed optimizer is demonstrated by comparing
its results with those obtained using the least mean and square root of exponential method (LMSRE)
based adaptive control, SFO, and PSO methodologies. The study demonstrates the superiority of the
proposed EBSABA over the LMSRE, SFO, and PSO approaches in the system’s transient reactions.

Keywords: adaptive control; enhanced block-sparse adaptive Bayesian algorithm; microgrid;
response surface methodology

1. Introduction
1.1. Problem Understudy

To accommodate the spike in the load profile, decentralized renewable power networks
are undergoing major reformation. These advancements have resulted in technical and
scientific progress as well as environmental and economic advantages. Nevertheless, load
demand is rising fast. This circumstance emphasizes the criticality of replacing centralized
power plants with distributed generators (DGRs) placed over distribution networks [1].
This might be an effective countermeasure for reducing transmission losses and eliminating
any need for extensive transmission networks. Some factors must be considered for the
DGR units to supply the load continuously. As a result, the microgrid (MGD) concept arose
as a set of DGRs and their associated loads in such a sub-network.

The MGDs are tiny conventional grids that may be operated and managed electrically
in either grid-connected or grid-disconnected (islanded) mode [2]. The system point of
common coupling (PCC) voltages and frequencies are identified by the utility in the grid-
connected mode. Nonetheless, their active and reactive powers must be managed. In
contrast, the microgrid’s voltage and frequency must be modified in the islanded mode [3].
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As a result, it is necessary to manage the DGR unit’s functioning in order to supply the
load continuously.

Different sophisticated control systems are used in islanded mode to ensure proper
and reliable functioning. These control methods are classified into droop control (DPC),
centralized, and multivariable and servomechanism (MAS) approaches. DPC provides
peer-to-peer management and plug-and-play functionality by autonomously regulating
the distinct DGR’s outputs without requiring contact or communication among DGRs. A
remote controller technique focused on active and reactive power DPC is suggested [4]. A
fully decentralized method based on dual-frequency-droop control is proposed [5]. One of
the profits of utilizing DPC is the capability to individualistically regulate scattered units
without requiring contact between them. From the perspective of robustness and reliability,
this technique beats previous power-sharing and MGD frequency-regulating methods.
However, for lower voltage MGDs, line impedance significantly influences this control’s
efficiency, resulting in power conjugation [6]. The imaginary vectors conversion approach
has been improved to avoid power conjugation [7]. However, it affects reliability. On the
other hand, centralized control approaches need increased bandwidth linkages, and any
break in those networks might cause a MGD collapse. A centralized control scheme for DC
MGD built on independent communications was created and used [8]. Finally, a unique
technique for creating multivariable robust servomechanism systems for several inputs
and outputs and open-loop systems control is proposed [9]. Nevertheless, its immense
complexity is a hindrance.

Because of its high stability margins, the proportional-integral (PI) controller has be-
come the most commonly used controller for non-linear systems. However, it has difficulty
dealing with parameter variation sensitivity and network nonlinearities. Consequently,
identifying the proper PI configuration in this scheme is a significant challenge. In recent
years, extensive studies have been conducted to develop the ideal controller for MGD
controls to maintain a reliable system. In this aspect, PI controllers use a d-q frame to adjust
the voltage of the voltage source converter [10]. Furthermore, whenever the system is
assumed linear, PI controllers are tuned by simple procedures such as the Ziegler-Nichols
method [11]. In contrast, the PI controller produces a saturated result, reducing the system
stability due to a more significant phase lag. A decentralized PI controller for regulating a
hybrid power scheme is introduced in [12]. As a result, several metaheuristic algorithms
that simulate biological or physical events can resolve objective functions.

The metaheuristic algorithms are derived from natural phenomena such as animals,
people, and physics [13], such as the Binary Chimp Optimization Algorithm (BCA) [14],
the Heap optimization algorithm [15], the Sunflower (SFO) algorithm [16], the Aquila Opti-
mizer algorithm (AO) [17], the Political Optimizer (PO) [18], the Archimedes algorithm [19],
the Cuttlefish optimization algorithm (CFA) [20], and coot bird metaheuristic optimizer
(CBMO) [11]. Several of these techniques have advantages and problems [21]. We are still
far from having a global framework for the MGD scheme.

1.2. Literature Review

Although the optimization methodologies are efficient and robust tools for designing
PI controllers, they have significant drawbacks, such as a complicated process, a con-
siderable memory demand, and more time in the optimization procedure. As a result,
the adaptive PI controller is a strong choice for tuning PI controller parameters online
without any optimization methods. This reduces the time spent on the layout and the
effort expended on this problem. In addition, several adaptation techniques were used
to adjust the PI controller. Adaptive control (ACT) is introduced, depending on an affine
projection algorithm with quicker convergence and fewer system complexities than opti-
mization techniques [22]. It also displays some appealing elements, including the coefficient
vector. Moreover, this strategy repeatedly approaches accurate data independent of the
variables, as described in [23]. A novel ACT utilizing a set-membership engine algorithm
outperforming existing strategies is presented [24]. In [25], the least mean (LM) and the
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square root of exponential (SRE) techniques are presented as unique ACT. The use of an
absolute negative error causes this approach to be normalized. LMSRE also offers quick
convergence and reliability with minimum error. The proposed enhanced block-sparse
adaptive Bayesian algorithm (EBSABA) outperforms conventional adaptive techniques [26].
The EBSABA’s advantages include quick convergence, a straightforward technique, and
decreased computing complexities. Furthermore, the suggested technique may consider
the influence of the actuation mistake, its magnitude signal, and the sparse block method.
This is the primary motivation for the authors to use this high-performance technique for
live updating the PI controller gains of the DGRs.

This work adds to that pool by introducing a unique way for an optimum regulation
of islanded MGDs based on the EBSABA. This study employs this adaptive technique
in a PI controller optimum control strategy with multiple PI controller parameters to
improve the efficiency of the off-grid mode process. To verify the proposed technique,
several simulations are run to demonstrate the effectiveness of the proposed EBSABA in
the system’s transient responses over LMSRE-based ACT and specific other optimization
strategies, such as the SFO and PSO approaches.

1.3. The Major Contribution

This research contributes to filling the gaps already revealed by:

(1) Testing the newly suggested EBSABA algorithm on customized PI controllers to boost
MGD efficiency,

(2) Demonstrate the success of the novel approach by investigating the MGD under three
altered operating states:

(a) Removing the MGD from the utility (islanding mode);
(b) Load variations under islanding mode; and
(c) A three-phase fault under islanding mode,

(3) Demonstrate the strength of the presented adaptive technique by comparing its results
with other optimization approaches.

This is how the article’s remaining Sections are organized. Section 2 shows the MGD
modeling. Section 3 describes the control scheme. Section 4 depicts the design processes.
Section 5 represents the old optimization techniques and EBSABA modeling stages. Sec-
tion 6 presents and discusses the simulation outputs. Finally, in Section 7, the conclusion
is stated.

2. MGD Demonstrating

A MGD is shown in Figure 1, which has been primarily split into three DGRs connected
by transmission lines. Transmission lines link the primary grid to the DGRs throughout
PCC 1. To prevent unnecessary power quality difficulties, each DGR comprises a DC supply
coupled to pulse width modulation (PWM) connected to a transformer through a filter. A
complex load is added after the ∆-Y transformer. Table 1 has the MGD details.

Table 1. MGD information.

Transformer Data ∆/Y = 0.6/13.8 KV

Load data

Load 1 Cl = 50 µF, Rl1 = 9 Ω, Rl2 = 150 Ω,
Ll = 0.6 H

Load 2 C2 = 42 µF, R22 = 5 Ω, Rl2 = 75 Ω,
L2 = 0.4 H

Load 3 C3 = 33 µF, R33 = 20 Ω, Rl2 = 50 Ω,
L3 = 1.5 H

Transmission Line Parameters
ZTL1 RTL1 = 0.7 Ω, LTL1 = 0.5 mH
ZTL2 RTL2 = 1.5 Ω, LTL2 = 0.9 mH

Filter data (Zf) Rf = 1.5 mΩ, Xf = 0.5 mH
Grid parameters V = 13.8 KV, Rg = 0.2 Ω, Lg = 0.3 mH
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Figure 1. MGD diagram.

The proposed MGDs may be operated and managed electrically in either grid-connected
or grid-disconnected (islanded) mode. The utility in the grid-connected mode identifies the
PCC voltages and frequencies. Nonetheless, their active and imaginary powers must be
managed. In contrast, the microgrid’s voltage and frequency need to be modified in the
islanded mode. As a result, it is necessary to address the DGR unit’s functioning in order
to supply the load continuously. This article concentrates on boosting the MGD efficiency
in islanded mode by using the cascading control mechanism described in detail in the
next section.

3. Control Scheme

The cascading control approach is utilized in every DGR with two control loops. In
the grid-connected mode, the outer control loop regulates the real and imaginary powers
(P, Q). At the same time, the direct and quadrature current components (Iconv._d, Iconv_q)
are tuned by the inner loop to regulate the voltages of the PCCs. In the off-grid mode,
both terminal voltage components (Vq, Vd) are regulated using the outer loop, while the
Iconv_d and Iconv_q are tuned utilizing the inner control loop. The references voltages
(Vconv._a*, Vconv._b*, Vconv._c*) are obtained via the transformation of the d-q references volt-
ages (Vconv._d*, Vconv._q*). Vconv._d*and Vconv._q* are calculated using the four PIs presented
in Figure 2. Finally, the inverter switches pulses using a comparator that matches a triangle
signal at 1980 Hz (60 HZ pairs) to the reference voltages (Vconv._a*, Vconv._b*, Vconv._c*).
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The EBSABA method and other approaches are used to calculate the gains of the
four PI controllers. Section 4 delves more into this.

P is the actual active power of the converter, Q is the actual reactive power of the
converter, Iconv_d is the direct axis component current of the inverter, Iconv_q is the quadra-
ture axis component current of the inverter, Vd is the grid direct axis voltage, Vq is the
grid quadrature axis voltage, Id is the grid direct axis current, Iq is the grid quadrature
axis current, and Vconv._a*, Vconv._b*, and Vconv._c* are the three-phase inverter reference
voltages Ia,b,c are the three-phase inverter voltages and currents.

4. Procedure for Designing
4.1. Gains Configuration

In this paper, two PIs are used in every DGR: PI11 and PI12 are PI controllers used in
DGR1, PI21, and PI22 are PI controllers used in DGR2, and PI31 and PI32 are PI controllers
used in DGR3.

In this paper, the parameters of the PI controllers are proportional gain (KP) and
integral time constants (TI), where: U1 is the KP of the PI11, U2 is the TI of the PI11, U3 is
the KP of the PI12, . . . . . . , U11 is the KP of the PI32, and U12 is the TI of the PI32.

Table 2 displays the three levels used in this study for the controllers’ parameters.

4.2. PSCAD/EMTDC Program

The MGD system is simulated using the PSCAD software. The data collected from
these simulations in different circumstances is used as the RSMT’s inputs.

4.3. RSMT & MINITAB Programs

The RSMT is a numerical tool that empirically generates solutions by employing a
robust analytical method to find connections between the inputs and outputs [11]. The
RSMT input signals are the steady-state error (Est), maximum percentages under and
overshoots (MPUST and MPOST), and settling time (Tst) of the profile voltage, which
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is taken from PSCAD and reported in [11]. The MINITAB software is used to design
the RSMT.

Table 2. RSMT levels.

Gains Limits (−1) (0) (1)

U1 2.1 4.8 7.6
U2 0.00085 0.007925 0.015
U3 1.7 2.375 3.05
U4 0.055 1.5775 3.1
U5 1.6 4.4 7.2
U6 0.00095 0.008225 0.0155
U7 1.45 2 2.55
U8 0.1 1.475 2.85
U9 1.1 3.825 6.55
U10 0.00095 0.005975 0.011
U11 1.25 1.7 2.15
U12 0.055 1.3275 2.6

Levels (−1), (0), (1): are the lowest, midpoint, and highest safe values.

The minimization of the MPOST (B1), MPUST (B2), Tst (B3), and Est (B4) for the
specified circumstances defines the multi-objective function for this MGD. The second-
order polynomial RSMT model is depicted in Equation (1).

Bi = S1 + S2U1 + S3U2 + S4U3 + S5U4 + S6U2
1 + S7U2

2 + S8U2
3 + S9U2

4 + S10U1U2 + S11U1U3 + S12U1U4
+S13U2U3 + S14U2U4 + S15U3U4

(1)

where i = 1, 2, 3, 4, and S1, S2, . . . , S15 are the estimated RSMT constants for the circum-
stances presented in [11].

5. Phase of Optimization

Equation (1) employs the weight approach [27] to the SFO and PSO procedures to
optimize PI parameters while minimizing transients. Table 3 shows the utilized weights.

Table 3. Weights levels.

Weights (Wg) DGR #

Wg1

DGR1

MPUST 0.19
Wg2 MPOST 0.19
Wg3 Tst 0.06
Wg4 Est 0.02

Wg5

DGR2

MPUST 0.13
Wg6 MPOST 0.13
Wg7 Tst 0.05
Wg8 Est 0.015

Wg9

DGR3

MPUST 0.08
Wg10 MPOST 0.08
Wg11 Tst 0.03
Wg12 Est 0.015

5.1. The SFO Algorithm

The fundamental motivation for adopting SFO in optimizing complex problems is the
growth of soft computing capabilities. The SFO is an approach that is inspired by nature.
Its primary concept is to mimic the arrangement of sunflowers (SFs) in order to collect
sunlight [28]. The SF pattern is repetitive daily, beginning in the morning and ending at
dusk. At dusk, the SF returns to its initial location in readiness for the sun to rise. It is
believed that every SF has only one pollen gamete. In this Incident, emission from the
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inverse square technique is crucial. SFs gather much of the sun’s energy compared to those
far away. In this position, the SFs facing the sun are calmer [28]. Equation (2) shows each
group’s energy storage [28].

Es =
H

4πd2
t

(2)

where H signifies the source and dt the spaces among the recent best and population i.

Equation (3) depicts the movement of SFs [29]:

→
Ni =

P∗ − Pi

||P∗ − Pi||
, i = 1, 2, . . . , np (3)

Equation (4) represents the movement of SFs in path N:

SN = C × Zi(Pi + Pi−1)× ||Pi + Pi−1|| (4)

where P and P* are the normal and best population, np is the population’s number, C
describes the inertial constant of the SFs, and Zi(||pi + pi−1||) is the pollen possibility. The
limitation of these aspects is indicated in Equation (5):

Rmax =
||Pmax. − Pmin.||

2× np
(5)

Pmax. and Pmin. represent the boundaries. The following equation describes the next plant:

P → i+1 = P → i + SN × N → i (6)

The SFO outcomes were obtained from [26].

5.2. LMSRE Algorithm

As shown in Figure 3, adaptive filtering (AF) techniques are commonly employed to
calculate the impulse response (IR) filter (J0) parameter [25]. On the other hand, the input
IG is a Gaussian noise NG that passes through an FIR filter. As a result, it is determined by
the error (eG) equation:

eG = dG − XT
GJG (7)

dG = XT
0 JG + NG (8)

where NG is the noise signal, XG is the estimated weight vector, X0 is the unknown weight
vector, and dG is the predicted signal.
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Equation (9) shows that the AF algorithms are iterated utilizing a gradient approach [25]:

JG+1 = JG − µ · ∇J · T(JG) (9)

where G is the number of iterations, and JG is the input vector. The gradient (∇J) of the
cost function (T) is then calculated using Equation (10):

∇JT(JG) = sign(eG) · (−IG)−
[

exp(−|eG|)√
1 + exp(−|eG|)

]
(10)

Equation (7) is substituted into Equation (8) to get:

JG+1 = JG − µG · βG · sign(eG) · IG (11)

where µG is configured to limit the errors, µG must be signed for a colossal error to allow for
fast convergence. In contrast, µG must be lowered for minor errors. As a result, βG deviates
from [0, 1] and is reduced for little mistakes and vice versa. As a result, µG diverges in
proportion to βG specified in Equation (12):

µG = µ · βα−1
G (12)

where µ and α are constants in charge of µG’s deviance. At that point, substituting Equation
(11) for Equation (12) obtains:

JG+1 = JG − µ · βα
G · sign(eG) · IG (13)

The LMSRE technique alters PI Controller gains that employ Equation (13). The
modified PI gains are as follows:

kp(G+1) = kp(G) + ∆kp(G) (14)

Ti(G+1) = Ti(G) + ∆Ti(G) (15)

∆kp(G) = ∆Ti(G) = µ · βα
G · sign(eG) · IG (16)

The initial PI gains for all PI controllers are manually determined by evaluating the
system within its limits specified in Table 4. The LMSRE results were derived from [25].

Table 4. The opening PI parameters.

Gains PI11 PI12 PI21 PI22 PI31 PI32

kp 5.52 3.1 5.52 3.1 5.52 3.1
Ti 0.0031 0.31 0.0031 0.31 0.0031 0.31

5.3. EBSABA Algorithm

AF algorithms have been extensively utilized in various applications, including linear
models, noise signal cancellation, digital communications networks, and data-driven
monitoring [30]. An uncertain system may be sparse in the system identification issue,
indicating that some IR variables are close to zero. Several methods for identifying sparse
networks have been proposed [31]. The system IR of block-sparse (BS) systems includes
multiple clusters with nonzero components. Well-known BS system examples are acoustic
echo devices and satellite communications [29]. In addition, several techniques have
been proposed in BS systems identification to minimize convergence time and improve
algorithm resilience. For such applications, stochastic gradient descent techniques have
been proposed [32].

A modern EBSABA is described in this paper. The Gaussian Markov model is used
in the suggested technique to generate the unknown BS system. The suggested EBSABA
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outperforms conventional adaptive algorithms such as LMS and resilient recursive algo-
rithms in numerous ways. Among the benefits are rapid convergence, a straightforward
technique, and less computing complexity. The suggested approach considers the impact
of the actuating error signal, its magnitude, and the block sparse approach. In this case, the
AF’s actuating error (ea) may be expressed as follows [26]:

ea = da − XT
a wa (17)

where da is the AF’s output signal, XT
a is the transposition of the input, and wa is the AF’s

weight vector. The maximum posterior estimation method is employed to calculate the
AF coefficient w. This is accomplished by maximizing the posterior probability Pp(w|d),
which is described as follows:

PP(w|d) =
PP(w)PP(d|w)

∑w′ PP(w′)PP(d|w′)
(18)

The following equation gives the maximum posterior estimation of w:

ŵ = argmax PP(w)PP(d|w) (19)

PP(d|w) =
1√

2πσ2
a

exp

−
(

d− XTŵ
)2

2σ2
a

 (20)

Then Equation (17) may be applied as follows:

ŵ = argmax(log PP(w) + log PP(d|w)) (21)

ŵ = argmax L(w) (22)

L(w) = log PP(w1) +
L−1

∑
i=1

log(PP(wi+1|wi)) −

(
d− XTŵ

)2

2σ2
a

(23)

The optimum solution of Equation (22) of the BSABA relying on the steepest ascending
technique is expressed as follows:

wa+1 = wa + ρ
∂L(w)

∂w
|w=wa (24)

In Equation (24), ρ indicates the step size variable. As a result, the gradient of L(w)
concerning w is described as follows:

∂L(w)

∂w
=

∂

∂w
log(Pp(w1)) +

∂

∂w ∑L−1
i=1 log(PP(wi+1|wi))−

1
2σ2

a

∂

∂w

(
d− XTŵ

)2
(25)

As a result, Equation (24) may be modified as follows:

wa+1 = wa − ρ(g(wa) + a(wa) ) (26)

a(wa) =
−Xaea

σ2
a

(27)

g(wa) = [g(w1,a), g(w2,a), . . . . . . , g(wL,a)]
T (28)
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Equation (29) expresses the equation g(wi,a) for index i = 1, 2 . . . , L:

g(wi,a) =

Z1wi,a
σ3

off
exp

(
−w2

i,a
2σ2

off

)
+

Z2wi,a
σ3

on
exp

(
−w2

i,a
2σ2

on

)
Z1
σoff

exp
(
−w2

i,a
2σ2

off

)
+ Z2

σon
exp

(
−w2

i,a
2σ2

on

) (29)

A modern EBSABA is provided in this study. In addition, this AF algorithm’s weight-
ing factor iteration is outlined as follows:

wa+1 = wa + γ1eaXa + γ2|ea|Xa − ρg(wa) (30)

where wa is the current weight factor, wa+1 is the next weight variable vector, γ1 and γ2
are minuscule positive numbers of 0.001 and 0.002, respectively, and the constant ρ is
0.11. Finally, it is worth noting that the EBSABA method matches the LMS algorithm but
with block sparse term penalties (g(wa)). Furthermore, γ1 = pg, γ1 = 1 − pg, and pg is
the Gaussian Mixture Markov probability, which is 0.91. The factors σon and σoff are set
at 1 and 0.01, respectively. These are the most commonly utilized values for creating AF.
In this research, all PI controller gains are continually updated live using Equation (30).
In this regard, kp(n) and Ti(n) of the PI controllers are continuously updated using the
following equations:

kp(n + 1) = kp(n) + ∆kp(n) (31)

Ti(n + 1) = Ti(n) + ∆Ti(n) (32)

The modified gains of the PI controller are stated by comparing Equations (30)–(32):

∆kp(n) = γ1e(n)X(n) + γ2|e(n)|X(n)− ρg
(
kp(n)

)
(33)

Ti∆ki(n) = γ1e(n)X(n) + γ2|e(n)|X(n)− ρg(ki(n)) (34)

where e(n) is the PI controller’s input signal and X(n) is the actual instantaneous signal, an
input signal to the comparator.

6. Description and Outcomes of the Simulations

This section is dedicated to establishing the outcomes to demonstrate the cogency
and usefulness of the proposed control scheme using the EBSABA. The success of the
proposed approach is measured primarily by its ability to retain the PCC voltages within
the defined limits in various MGD operating Incidents. In addition, the simulation results
show the controller scheme’s sanity, which was obtained using the PSCAD software. To
demonstrate the efficiency of the new EBSABA-based adaptive control, it is matched to
the outcomes produced with the other optimizations described in [25]. In addition, a
benchmark MGD is evaluated in three different Incidents: (1) removing the MGD from the
utility (islanding mode); (2) load variations under islanding mode; and (3) a three-phase
fault under islanding mode.

6.1. Incident 1 (Off-Grid Mode)

In the initial Incident, the MGD usually operates and is linked to the grid. At 2 s, the
MGD is forcefully split from the grid (off-grid mode). Table 5 shows the optimal PI gains
for the DGRs with EBSABA, LMSRE, PSO, and SFO techniques. Figure 4a–c show the
DGR’s voltages with EBSABA and the other methods. Figure 5a–c display the complex
power in the DGRs with EBSABA, LMSRE, PSO, and SFO techniques. It is essential to keep
in mind that the MPUST for the off-grid mode of the given approach is less than 8.5% in
Figure 4a. Furthermore, the suggested controller’s Tst is lowered to 37 ms according to the
2% criteria, and the Est is 0.2%. As a result, the introduced optimizer provides the least
overshoots, the fastest damping, and the most appropriate Est. It is worth noting that the
EBSABA outperforms the LMSRE, PSO, and SFO approaches in MPUST, MPOST, Tst, and
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Est, demonstrating the rigor, validity, and practicality of the proposed EBSABA over the
LMSRE, PSO, and SFO techniques.

Table 5. The outcomes of the three DGRs for Incident 1 with EBSABA, LMSRE, PSO, and
SFO techniques.

EBSABA LMSRE SFO PSO

Incident 1 DGR 1

Optimum size online online

U1 6.421 U1 2.1472

U2 0.0054 U2 0.00572

U3 2.952 U3 1.6791

U4 0.3472 U4 0.3392

MPUST 8.21% 7.93% 12.93% 20.4%

MPOST 0% 0% 0% 0%

Tst 0.037 s 0.045 s 0.0343 s 0.0562 s

Est 0.2% 0.34% 0.37% 0.42%

Incident 1 DGR 2

Optimum size online online

U5 5.982 U5 1.5692

U6 0.0042 U6 0.00431

U7 2.5082 U7 1.2342

U8 0.299 Y8 0.30572

MPUST 8.1% 7.82% 12.54% 20.21%

MPOST 0% 0% 0% 0%

Tst 0.0353 s 0.0424 s 0.0325 s 0.0554 s

Est 0.19 % 0.32% 0.36% 0.415%

Incident 1 DGR 3

Optimum size online online

U9 5.5343 U9 1.07

U10 0.00314 U10 0.0034

U11 2.0991 U11 0.995

U12 0.2479 U12 0.259

MPUST 7.95% 7.64% 12.32% 20.05%

MPOST 0% 0% 0% 0%

Tst 0.03495 s 0.0418 s 0.0319 s 0.0551 s

Est 0.187% 0.312% 0.354% 0.408%

6.2. Incident 2 (Load Variations under Islanding Mode)

In the second Incident, the MGD runs steadily in the islanding operation. The MGD
is first designed with a complex load, as shown in Table 1. Then, R12 is raised to 300 Ω at
t = 3 s and returned to its previous value of 150 Ω at t = 3.4 s. Table 6 shows the optimal PI
gains for the DGRs with EBSABA, LMSRE, PSO, and SFO techniques. Figure 6a–c shows
the DGR’s voltages with EBSABA and the other methods. Figure 7a–c displays the complex
power in the DGRs with EBSABA, LMSRE, PSO, and SFO techniques. It is essential to
remember that the MPUST for the load variation Incident of the given approach is less
than 0.5% in Figure 6a. Moreover, the suggested controller’s Tst is lowered to zero seconds
according to the 2% criteria, and the Est is 0.21%. As a result, the presented optimizer
provides the least overshoots, the fastest damping, and the most appropriate Est. It is
important to remember that in Figure 6a, the active power of DGR1 is lowered to 1.3 MW
and effectively returned to the previous level at t = 3.4 s. Nevertheless, the powers of
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the remaining DGRs’ have faster damping and lower swings. It is worth noting that the
EBSABA outperforms the LMSRE, PSO, and SFO approaches in MPUST, MPOST, Tst, and
Est, proving the rigor, cogency, and practicality of the suggested EBSABA over the LMSRE,
PSO, and SFO techniques.
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Figure 4. (a–c) The reference voltages for Incident 1 in the three DGRs with EBSABA, LMSRE, PSO,
and SFO techniques.
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Table 6. The outcomes of the three DGRs for Incident 2 with EBSABA, LMSRE, PSO, and
SFO techniques.

EBSABA LMSRE SFO PSO

Incident 2 DGR 1

Optimum size online online

U1 6.469 U1 1.924

U2 0.0125 U2 0.0118

U3 2.2793 U3 2.3123

U4 0.238 U4 0.2315

MPUST 0.478% 1.91% 2.205% 3.27%

MPOST 0.9745% 2.216% 2.967% 3.532%

Tst zero 0.4015 s 0.4331 s 0.453 s

Est 0.21% 0.425% 0.453% 0.496%

Incident 2 DGR 2

Optimum size online online

U5 6.0246 U5 1.4025

U6 0.0095 U6 0.0103

U7 1.8614 U7 1.7983

U8 0.2074 U8 0.1999

MPUST 0.461% 1.821% 2.15% 3.234%

MPOST 0.96% 2.202% 2.921% 3.457%

Tst zero 0.4003 s 0.4284 s 0.447 s

Est 0.203% 0.412% 0.441% 0.491%

Incident 2 DGR 3

Optimum size online online

U9 5.4974 U9 0.8995

U10 0.0069 U10 0.0656

U11 1.5784 U11 1.4879

U12 0.1753 U12 0.1625

MPUST 0.454% 1.813% 2.07% 3.211%

MPOST 0.952% 2.197% 2.906% 3.436%

Tst zero 0.3941 s 0.4233 s 0.418 s

Est 0.201% 0.403% 0.432% 0.486%

6.3. Incident 3 (A Three-Phase Fault under Islanding Mode)

In Incident 3, the MGD runs steadily in the islanding operation. At t = 4 s, a three-phase
fault occurs at PCC 1 and then returns to its previous case at t = 4.1 s. Table 7 shows the
finest PI gains for the DGRs with EBSABA, LMSRE, PSO, and SFO techniques. Figure 8a–c
shows the DGR’s voltages with EBSABA and the other methods. Figure 9a–c displays
the complex power in the DGRs with EBSABA, LMSRE, PSO, and SFO techniques. It is
essential to keep in mind that in Figure 8a, the suggested controller’s Tst is lowered to 22 ms
according to the 2% criteria, and the Est is 0.19%. As a result, the introduced optimizer
provides the least MPOST, the fastest damping, and the most appropriate Est. It is worth
noting that the EBSABA outperforms the LMSRE, PSO, and SFO approaches in MPUST,
MPOST, Tst, and Est, proving the rigor, cogency, and practicality of the suggested EBSABA
over the LMSRE, PSO, and SFO techniques.
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Figure 6. (a–c) The reference voltages for Incident 2 in the three DGRs with EBSABA, LMSRE, PSO,
and SFO techniques.
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Figure 7. (a–c) The complex load powers for Incident 2 in the three DGRs with EBSABA, LMSRE,
PSO, and SFO.
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Table 7. The outcomes of the three DGRs for Incident 3 with EBSABA, LMSRE, PSO, and
SFO techniques.

EBSABA LMSRE SFO PSO

Incident 3 DGR 1

Optimum size online online

U1 6.1343 U1 2.1084

U2 0.0045 U2 0.0062

U3 2.4984 U3 2.575

U4 0.1215 U4 0.113

MPUST 92.05% 92.155% 91.65% 93.11%

MPOST 10.5% 12.36% 11.69% 11.97%

Tst 0.22 s 0.4912 s 0.566 s 0.812 s

Est 0.19% 0.257% 0.47% 0.549%

Incident 3 DGR 2

Optimum size online online

U5 6.23 U5 2.179

U6 0.0044 U6 0.006

U7 2.515 U7 2.554

U8 0.1193 U8 0.099

MPUST 91.59% 92.07% 91.598% 93.09%

MPOST 10.31% 12.31% 11.64% 11.89%

Tst 0.214 s 0.488 s 0.556 s 0.806 s

Est 0.187% 0.2521% 0.4687% 0.546%

Incident 3 DGR 3

Optimum size online online

U9 6.122 U9 2.23

U10 0.0046 U10 0.0063

U11 2.475 U11 2.513

U12 0.1213 U12 0.0108

MPUST 91.17% 91.86% 91.43% 92.88%

MPOST 10.14% 12.22% 11.59% 11.83%

Tst 0.212 s 0.483 s 0.551 s 0.795 s

Est 0.184% 0.25% 0.4679% 0.5423%
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Figure 8. (a–c) The reference voltages for Incident 3 in the three DGRs with EBSABA, LMSRE, PSO,
and SFO techniques.
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Figure 9. (a–c) The complex load powers for Incident 3 in the three DGRs with EBSABA, LMSRE,
PSO, and SFO.
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7. Conclusions

This research presents a novel PI controller optimum design based on EBSABA. To
improve MGD efficiency, the proposed approach considers 12 PI controller gains. Two PI
controllers are used for each DGR in the control approach. The simulation outcomes show
the controller scheme’s sanity, obtained using the PSCAD/EMTDC software. Furthermore,
the results show that the suggested controller can maintain active and reactive powers
while efficiently regulating the voltage profile. The outcomes data further indicated fast
damping in the transient responses as well as a rapid Tst and a minor Est under multiple
MGD operative Incidents: (1) removing the MGD from the utility (islanding mode); (2) load
variations under islanding mode; and (3) a three-phase fault under islanding mode. To
verify the proposed technique, several simulations are run to demonstrate the effectiveness
of the proposed EBSABA in the system’s transient responses over LMSRE-based adaptive
control and specific other optimization strategies, such as the SFO and PSO approaches.
More specifically, the EBSABA reduced the voltage MPUST by 75%, 78.3%, and 85.4%
relative to the LMSRE, PSO, and SFO approaches. In Incident 2, when the MGD experienced
a sudden change in the load under islanding mode, the proposed approach reduced Tst to
zero seconds.

The future study will improve the proposed EBSABA to employ it in various appli-
cations such as power systems, energy storage techniques, and smart-grid, achieving the
most satisfactory results in the clean energy schemes.
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Abbreviations

ACT Adaptive Control
AF Adaptive Filtering
AO Aquila Optimizer
AVR Automatic Voltage Regulator
BCA Binary Chimp Optimization Algorithm
CBMO Coot Bird Metaheuristic Optimizer
CFA Cuttlefish Optimization Algorithm
DGR Distributed Generator
DPC Droop Control
EBSABA Enhanced Block-Sparse Adaptive Bayesian Algorithm
EO Equilibrium Optimization
Est Steady-State Error
GA Genetic Algorithm
IR Impulse Response
KP Proportional Gain
LMSRE Least Mean and Square Root of Exponential
MAS Multivariable And Servomechanism
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MGD Microgrid
MPOST Maximum Percentages Overshoot
MPUST Maximum Percentages Undershoot
PCC Point of Common Coupling
PI Proportional-Integral
PO Political Optimizer
PSO Particle Swarm Optimization
PWM Pulse Width Modulation
RSMT Response Surface Methodology
SFO Sunflower Optimization
TI Integral Time Constant
Tst Settling Time
ACT Adaptive Control
Nomenclature
B1 Maximum Percentages Overshoot
B2 Maximum Percentages Undershoot
B3 Settling Time
B4 Steady-State Error
C the inertial constant of the SFs
da is the AF’s output signal
dG the predicted signal
dt the spaces among the recent best and population
Es the amount of energy stored
G is the number of iterations
g(wa) block sparse term penalties
H the source
i Population number
J0 the impulse response filter parameter
JG the input vector
NG the noise signal
np the population’s number
P normal population
P* best population
pg the Gaussian Mixture Markov probability
Pmax. and Pmin. the boundaries
Pp(w|d) posterior probability
Rmax The limitation of the pollen possibility
S1, S2, . . . , S15 the estimated RSMT constants
SN the movement of SFs in path N
T cost function
U1 to U12 the gains of the PI controllers
w the AF coefficient
wa the AF’s weight vector
XT

a the transpose of the input
X0 the unknown weight vector
XG the estimated weight vector
Zi(||pi + pi−1||) the pollen possibility
∇ The gradient
µG Error limiter
µ and α Constants in charge of µG’s deviance
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