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Abstract: Inclement weather and environmental factors impact traffic operations resulting in travel
delays and a reduction in travel time reliability. Precipitation is an example of an environmental
factor that affects travel conditions, including traffic speed. While Intelligent Transportation Systems
services aim to proactively mitigate congestion on roadways, these services are often not sensitive
to weather conditions. This paper investigates the application of high-resolution weather data in
improving the performance of proactive transportation management models and proposes short-term
speed prediction models that fuse real-time high-resolution weather surveillance radar data with
traffic stream data to conduct spatial and temporal prediction of the speed of roadway segments.
Extreme gradient boosting weather-aware speed prediction models were developed for a 7-km
segment of Interstate 270 in St. Louis, MO, USA. The performance of the weather-aware models was
compared with the performance of weather-insensitive speed prediction models that did not take
precipitation into account. The results indicated that in the majority of instances, the weather-aware
models outperformed the weather-insensitive models. The extreme gradient boosting models were
compared with the K-nearest neighbors algorithm and feed-forward neural network models. The
extreme gradient boosting model consistently outperformed the other two methods. In addition
to speed prediction models, van Aerde speed-flow traffic stream models were developed for rain
and no-rain conditions to study the impact of precipitation on the traffic stream across the corridor.
Results indicated that the impact of precipitation is not identical across the corridor, which was
mirrored in the results obtained from weather-aware speed prediction models.

Keywords: Intelligent Transportation Systems; precipitation rate; speed prediction; weather radar

1. Introduction

Proactive traffic management systems are a subset of Intelligent Transportation Sys-
tems (ITS) that allow the transportation operators to anticipate short-term traffic conditions
(e.g., traffic speed in the next five minutes) and enable them to take preventive actions to
mitigate traffic congestion and improve the efficiency of the transportation system. Such ac-
tions include proactively harmonizing the traffic through variable speed limits or informing
the public through advanced traveler information systems [1–4]. Although great progress
has been made in developing ITS subsystems that fuse diverse data sources and combining
historical and real-time data to predict the state of transportation networks [5–9], very
limited studies have focused on incorporating the impact of weather in proactive trans-
portation management systems [10,11]. Even though every commuter is intuitively aware
of the impact of inclement weather on the quality of travel, transportation management
systems are often insensitive to weather conditions. Several factors may have contributed to
the limited research on the implementation of weather-aware transportation management
strategies. First, the primary focus of the researchers and practitioners has been improving
traffic management strategies for normal weather conditions because the majority of trips
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occur during normal weather conditions. Moreover, inclement weather is less frequent
and has not historically gained the attention of transportation operators. Second, the
absence or lack of access to real-time weather data may have hindered the development of
weather-aware systems. Even though Road Weather Information Systems (RWIS) are used
by some transportation agencies to collect environmental data, these systems are installed
sparsely on the roadway network and do not have the same density as traffic detectors.
Thus, they do not provide real-time and full coverage of the roadway network.

Recently, the weather has been recognized as an important factor that could create
challenges to the operation of the transportation system [12,13]. This paper contributes to
the very limited body of research on weather-aware transportation management models by
proposing a weather-aware model for short-term traffic speed prediction. High-resolution
weather surveillance radar data were processed to obtain real-time and localized pre-
cipitation rates at each freeway traffic sensor location and are fused with traffic stream
data, including flow, speed, and occupancy obtained from roadway detectors. The eX-
treme Gradient Boosting (XGBoost) method is used to develop two categories of models:
(1) weather-aware models and (2) weather-insensitive models. The results obtained from
XGBoost are compared with the K-Nearest Neighbor (KNN) and Neural Network (NNET)
methods. Even though the cause-and-effect relationship between traffic congestion and
inclement weather is well-known to any commuter, modeling the complex relationship
between precipitation and other weather events and traffic congestion is not a trivial task.
To better understand the impact of precipitation on traffic flow, van Aerde traffic stream
models were developed for no-rain and with-rain conditions. These models also help to
explain the impact of precipitation on speed changes across the case study roadway.

The outline of this paper is as follows: The next section reviews the relevant literature
on short-term traffic flow and speed prediction. Then information on the case study
location is provided. Next, the framework for the development of the short-term speed
prediction models is described. Following that, the results and findings obtained from the
prediction models and van Aerde models are discussed. Lastly, the conclusion summarizes
the findings from this study and offers suggestions for future research.

2. Literature Review

Traffic prediction models are broadly classified as long-range and short-term prediction
models. Long-range models consider factors such as land use, population, and socio-
economic characteristics to predict travel in future years. These models, which are more
commonly known as travel demand models or long-range transportation planning models,
are often developed for an entire region rather than one corridor. Input data for these
models is costly to collect and do not significantly change on a daily or hourly basis. For
the aforementioned reasons, these models cannot be practically used for short-term traffic
prediction. To address this shortcoming, machine learning methods are employed for
short-term traffic prediction. These short-term traffic prediction models utilize data that can
be regularly, frequently, reliably, and consistently collected to predict the state of roadway
systems on a short-term basis. For this reason, data that can be automatically collected by
detectors are utilized as predictor variables in these models. Even though events such as
marches, protests, and sports events could influence traffic, they are not used as a predictor
variable because they are difficult to automatically obtain and are hard to quantify and
classify to be used in the models. In this section, the state-of-the-art in short-term speed
prediction is reviewed with a particular focus on studies that have utilized weather data in
the prediction of traffic speed or volume. Long-range transportation planning models are
out of the scope of this paper and are not reviewed.

Asif et al. [14] suggested that unsupervised data mining methods, K-means clustering,
and self-organizing maps could be used to discover the spatial and temporal trends in
traffic patterns of local roads and major networks on 5024 road segments in Singapore.
The roadway segments were grouped into four clusters, and the support vector regression
(SVR) algorithm was then used to develop a speed prediction model for each cluster. Two
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months of traffic data were used to train and test the models and predict speed in 5-min to
60-min prediction horizons. The reported mean absolute percentage error (MAPE) values
ranged between 2.69% and 24.58% for 5-min and 60-min prediction horizons.

Bouktif et al. [15] developed weather-sensitive models that forecasted speed for 6-,
24- and 36-h horizons in Manhattan, New York, United States. Three distinct models were
developed to predict speed on the basis of: (1) only traffic data, (2) traffic and weather
data, and (3) Bayesian-based optimized traffic and weather data. The traffic data were
collected by detectors located in uneven locations by the New York City department of
transportation. The weather data included hourly readings of temperature, total snow, sun
hours, wind speed, wind direction, and precipitation.

Ma et al. [16] proposed Convolutional Neural Networks (CNN) for network speed
prediction. CNN models are often used for image processing; however, Ma et al. [16]
proposed an approach similar to image processing for predicting the roadway network
speed. The traffic data were collected with a 2-min resolution for 37 days in 2015. The
results obtained from the CNN model were compared with results obtained from K-Nearest
Neighbors, Ordinary Least Squares, Artificial Neural Networks, Random Forests, Recurrent
Neural, Stacked Autoencoder, and Long-Short-Term Memory Networks. The model was
developed to predict speed in the next 10 and 20 min based on the traffic condition in
the previous 30 and 40 min. The mean squared error (MSE) for the 10-min prediction
horizon was 22.825 km2/h2 and was less than the error reported for the 20-min speed
prediction horizon.

Wanli and Laura [17] proposed models to predict speed and volume in 5-min intervals
for up to one hour in advance. The model was developed for a network that consisted of
502 links. Loop detector data were aggregated to 5-min intervals for each link and were
supplemented with data collected by taxis to infer the traffic conditions between 7 a.m. and
8 p.m. The models were evaluated based on accuracy, where the accuracy was defined as
one minus the average absolute relative error of the predicted traffic parameter for all links
and for all prediction intervals. The volume prediction accuracy ranged between 0.82 and
0.89, whereas the speed prediction accuracy ranged between 0.82 and 0.941. These results
indicated that the accuracy of speed prediction was better than volume prediction.

Wang et al. [18] utilized Long Short-Term Memory Neural Networks (LSTM NN)
to develop speed prediction models and compared the results with K-nearest neighbors
(KNN), Convolutional Neural Networks (CNN), and Artificial Neural Networks (ANN)
models. Traffic data collected over 90 days on a roadway network that consisted of 112 road
segments were used to train and validate the models. Three sets of predictor variables were
used in this study to predict the next 5-, 15-, and 30-min speeds, namely a 15-min span,
30-min span, and 45-min span. The best MSE values of the LSTM NN were approximately
10.14 km2/h2, 14.12 km2/h2, and 15.65 km2/h2 for each prediction span, respectively. The
weather data were not used to predict speed in this study.

Yu et al. [19] proposed the Spatio-Temporal Graph Convolutional Networks (STGCN)
method to predict traffic speed in five-minute intervals for a highway in Beijing City, China.
Traffic data collected over two months were used to train and test the model. The mean
absolute error obtained from the model was 3.78 km/h, the mean average percentage error
was 9.11%, and the root-mean-squared was 5.2 km/h. This study did not utilize weather
data in the prediction process.

Huang and Ran [20] used multi-layer perceptron (MLP) networks to predict traffic
speed with the effect of the weather being considered. Historical data for the Chicago
metropolitan area were retrieved from an internet archive with a 5-min resolution for traffic
data and a 1-h resolution for weather data. The results obtained from the MLP model were
compared with a time-series-based model. It was reported that the MLP model slightly
outperformed the time-series model. The mean absolute error for the MLP model was
12.4 km/h.

Leong et al. [21] investigated the impact of including rainfall intensity data on im-
proving the accuracy of low-resolution traffic speed band prediction models. The authors
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developed Support Vector Machine (SVM) models using three months of traffic speed data
collected from 616 road segments in Singapore. The traffic data were collected in 5 min
intervals, and the weather data were collected from radar at intervals ranging between
5 and 10 min. The rainfall intensity data were converted to a scale of 0 to 10 to be used
in the model, where 0 was no rain, and 10 indicated very heavy rain. A base model that
predicted speed in the next 5-min on the basis of current speed and speed at the previous
5-min interval was developed and compared with the weather-aware model that predicted
speed on the basis of speed and rainfall data. The results demonstrated that including
rainfall data in the models reduced the speed prediction error on some links, while other
links did not show improvements when using rainfall.

Jia et al. [22] combined hourly weather data with high-resolution traffic data to develop
traffic flow prediction models on the basis of the LSTM method to investigate the impact
of weather data on a traffic variable. The results obtained from the LSTM model were
compared with a deep belief network (DBN) model. Six months of data collected in
Beijing, China, were used to train and test the model. The results indicated that LSTM
outperformed the DBN model, and the prediction errors decreased when weather data
was included in the model. Table 1 summarizes the methods, data, and results of all the
research mentioned above.

Table 1. Summary of Literature Review.

Study Method Weather
Sensitive

Temporal
Resolution of
Weather Data

Case Study Prediction
Horizon

Performance
Measure

Asif et al. [14] Support Vector
Regression No - 60 days/

Singapore
5-min to
60-min

5.69–24.58%
(MAPE) *

Bouktif et al. [15] Bayesian Optimized
XGBoost Yes 1 h 834 days/

Manhattan
6, 24, and

36 h
2.8, 4.82, 4.26

(RMSE) **

Ma et al. [16] Convolutional
Neural Networks No - 37 days/Beijing 10-min to

20-min 22.825 (MSE) ***

Wanli and Laura [17]
Multivariate

Spatial-Temporal
Autoregressive

No -
60 days/business

district in an
urban area

5-min to
60-min

82% to 94.1%
Accuracy

Wang et al. [18]
Long Short-Term
Memory Neural

Networks
No - 90 days/China

5-min,
15-min,
30-min

10.14, 14.12, 15.65
(RMSE)

Yu et al. [19]

Spatio-Temporal
Graph

Convolutional
Networks

No - 88 days/Beijing
and California 5-min 5.2 (RMSE)

Huang and Ran [20]
Multi-Layer

Perceptron (MLP)
networks

Yes 1 h
180 days/

Chicago, Seattle,
Minneapolis

5-min 12.4 (MAE) ****

Leong et al. [21] Support Vector
Machines Yes 5-min to 10-min 90 days/

Singapore 5-min
None to significant

improvement
using rain

Jia et al. [22] Long Short-Term
Memory Yes 1 h 180 days/Beijing 10-min and

30-min
255.04 and 346.83
(RMSE (veh/h))

* Mean Average Percentage Error; ** Root Mean Squared Error (km/h); *** Mean Squared Error (km2/h2);
**** Mean Absolute Error (km/h).

In summary, several patterns were observed in the literature review. First, while
various prediction methods have been utilized for roadway speed prediction, there are very
few studies that have incorporated weather and precipitation data in the speed prediction
process. Bouktif et al. [15] and Huang and Ran [20] utilized weather data with 1-h resolution
and Leong et al. [21] utilized high-resolution precipitation data to predict speed. However,
Leong et al. [21] did not directly use the precipitation intensity to predict the speed; instead,
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the intensity of rainfall was classified on a scale of one to ten, and speed prediction was
conducted based on the scale of rainfall instead of the direct measurement of rainfall.

Second, previous studies have utilized weather data with low-spatial and low-temporal
resolutions to predict traffic stream parameters. Low-spatial resolution indicates that the
data obtained from a weather station was generalized to several traffic detectors in the
vicinity of the weather station, and it was assumed that weather-related parameters are all
the same across the traffic detectors in that vicinity. For example, Bouktif et al. [15] assumed
that the data obtained from the weather station is even across all the traffic detectors in a
study area of about a 3.27 km radius. Low-temporal resolution indicates that the weather
records were aggregated to intervals such as 1 h, and it was assumed that the weather did
not change during the aggregation period.

Third, factors such as marches, sports events, and accidents are not considered in
short-term traffic prediction. However, as data collection technologies improve in the
future, these factors could be included in the short-term prediction models to account for
their impact on traffic flow.

To the best of the authors’ knowledge, this is the first paper that investigates the
application of high-spatial and high-temporal resolution rainfall data for short-term speed
prediction. Furthermore, this paper contributes to the limited body of knowledge related
to the impact of weather on traffic stream models by developing speed-flow traffic stream
models for rain and no-rain conditions. While short-term traffic speed prediction models
could be directly implemented into ITS and are practice-ready, traffic stream models have
more theoretical value and can provide the foundation for the development of weather-
aware traffic simulation models and other engineering design criteria. Thus, this paper
contributes to both applied research and fundamental research.

3. Data Description and Study Area

Short-term speed prediction models were developed for an approximately 7.3 km-long
section of Interstate 270 Northbound (I-270 NB) in St. Louis, MO, USA, as shown in Figure 1.
Traffic data were obtained from six microwave radar traffic detectors. These detectors are
referred to as locations A, B, C, and D, in addition to two other traffic detectors, A-U and
D-D. Data from locations A-U and D-D were used to inform the models on the upstream
and downstream traffic conditions and the speed was not predicted for these two locations.
Figure 2 shows an example of a microwave radar traffic detector installed on a freeway
location in the study corridor. The radar field of view coverage area includes 50 degrees of
the elevation angle, 12 degrees azimuth, 0 m to 76 m range, 24 GHz frequency band, −40◦

to +74 ◦C temperature range, and up to 190 km/hr maximum wind speed. The detectors
at the corridor were permanently installed on the side of the road by the department of
transportation to monitor all the travel lanes in each direction. Flow rate, speed, and
occupancy were collected at these locations in five-minute intervals and reported to the
Traffic Management Center (TMC). Data collected over 43 days between 6:00 a.m. to
7:00 p.m. were used to train and test the models. A total of 38,346 detector readings
collected at six detector locations was fused to create 6391 data points for training and
testing the models.
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Figure 1. Study area on I-270 NB, St. Louis, MO, USA.

Figure 2. Side-fired microwave radar traffic detector [23].
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Traffic flow parameters fluctuated on a daily basis and varied over the 43 days. The
average traffic speed during the rain was between 86.32 km/h and 99.21 km/h across
the six detectors locations and was between 94.81 km/h and 104.46 km/h during no-
rain weather conditions. The average traffic volume in rainy conditions varied between
64.18 veh/5 min/ln and 84.35 veh/5 min/ln across the corridor while traffic volume varied
between 70.30 veh/5 min/ln and 85.9 veh/5 min/ln during no-rain conditions. A similar
trend was observed for occupancy. During rainy periods, an average occupancy between
6.95% and 9.94% was reported, while the average occupancy was measured to be between
6.14% and 7.90% during no-rain conditions.

In addition to traffic data, precipitation data were considered in the prediction of
traffic speed. The precipitation rate was estimated using radar data collected by a Weather
Surveillance Radar 1988 Doppler (WSR-88D) located in St. Louis (KLSX). WSR-88Ds utilize
a dual-polarization mode, which significantly enhances radar capabilities in quantitative
precipitation estimation (QPE), severe weather detection and forecasting, and cloud mi-
crophysics studies. In this work, radar data were first processed with a physically based
quality control approach [24], which removes those radar echoes contaminated by clutters
(such as ground clutter, insects, birds, etc.). The precipitation rate was then estimated using
a novel developed radar QPE approach utilizing radar-specific attenuation and a specific
differential phase [25]. Compared to conventional radar QPE approaches using reflectivity
and/or differential reflectivity, the newly developed approach can significantly enhance
QPE in robustness and accuracy [25]. The spatial and temporal resolutions of QPE are 1 km
by 1 km, and 5 min, respectively, which enables the models to capture higher precipitation
resolutions spatially and temporally. Precipitation was reported on 43 days of the study
period. The precipitation rate varied from one location to another from zero to a maximum
of 160 mm/h at location A-U, 116 mm/h at location A, 130 mm/h at location B, 150 mm/h
at location C, 200 mm/h at location D, and 170 mm/h at location D-D. The averages of the
precipitation rate at each location during rainy conditions were 4.06 mm/h at location A-U,
4.68 mm/h at locations A and B, 4.86 mm/h at location C, 5.27 and 5.01 mm/h at locations
D and E, respectively.

4. Methods

This section provides an overview of the proposed methodology for short-term speed
prediction. First, the structure of the models is discussed. Second, the eXtreme Gradient
Boosting (XGB) algorithm is explained. Third, the k-folds cross-validation technique is
described. Lastly, the performance metrics used to evaluate the models are defined.

The objective of this paper is to develop a model that predicts speed in short-term
intervals (e.g., next 5 min) at a location on the freeway on the basis of the prevailing freeway
traffic and weather conditions at the current time (t) as Equation (1) shows.

y(l,t+i) = fl,p(Xt) (1)

where y(l,t+i) is the predicted speed at location l at time t + i and i ∈ {5, 10, 15}. fl,p(Xt) is
the weather-aware model that predicts the speed at location l and time t + i. The predictor
variables for the model, traffic and weather conditions on the corridor at time t, are shown
as Xt in Equation (2).

Xt =


u(A−U), u(A), . . . , u(D−D)

q(A−U), q(A), . . . , q(D−D)

o(A−U), o(A), . . . , o(D−D)

p(A−U), p(A), . . . , p(D−D)

 (2)

where,

Xt is traffic and weather conditions at time t.
um is speed at location m in km/h at time t.
qm is traffic volume at location m in veh/5 min/ln at time t.
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om is occupancy at location m in % at time t.
pm is precipitation at location m in mm/h at time t.
m is the location of the traffic detector.

The proposed model in Equation (1) was compared with the weather-insensitive model in
Equation (3), where precipitation is not considered in the prediction process.

y(l,t+i) = fl(Xt) (3)

where fl(Xt) is the weather-insensitive model that predicts the speed at location l and time
t + i.

Xt =

u(A−U), u(A), . . . , u(D−D)

q(A−U), q(A), . . . , q(D−D)

o(A−U), o(A), . . . , o(D−D)

 (4)

where,

Xt is traffic conditions at time t. The other parameters were defined previously.

The proposed framework for developing the speed prediction models includes the
following steps: (1) The radar and traffic data observations are fused on the basis of their
spatio-temporal identities to ground truth data; (2) Training and testing data sets are
created by assigning 70% of observations to the training set and the remaining 30% to the
holdout testing set; (3) A prediction algorithm (e.g., XGBoost), in conjunction with 20-fold
cross-validation, is utilized to train the models and choose the model with lowest error
function value; (4) The 30% holdout testing set is utilized to evaluate the chosen model
and to calculate the performance metrics. The remaining subsections provide additional
information about the models’ development process.

4.1. Extreme Gradient Boosting

eXtreme Gradient Boosting (XGB) is an ensemble learning method that has been
successfully applied to the regression and classification problems. Ensemble learning
methods consist of a group of weak learners that are iteratively trained to construct a
concrete predictive model. In the XGB method, decision trees are successively built using
the boosting technique [26]. Boosting is an iterative process in which trees are consecutively
added to the model, such that each new tree reduces the residual error of the previous tree.
The boosting method consists of three steps:

First, the initial model, F0(x), is developed to predict the response variable (y). The
residual of this model is denoted by (y− F0), with which the model is associated. Second,
the model h1(x) is fitted to the residual obtained in the first step. In the third step, the initial
model F0(x) is combined with the model h1(x) to generate F1(x), the boosted version of F0
and with a lower mean squared error as shown in Equation (5).

F1(x) = F0(x) + h1(x) (5)

To improve the performance of F1, F2 is generated by modeling the residuals from F1,
as follows:

F2(x) = F1(x) + h2(x) (6)

The process of boosting the model is repeated for m iterations until an acceptable mean
squared error is achieved. Each new learner contributes to the models by reducing the
error of the learner that was added to it in a previous step, resulting in a final model Fm(x)
as shown in Equation (7).

Fm(x) = Fm−1(x) + hm(x) (7)

The model is initialized with a function F0(x) that minimizes the loss function (8) and (9).

F0(x) = argminγ

n

∑
i=1

(yi, γ) (8)
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argminγ

n

∑
i=1

(yi, γ) = argminγ

n

∑
i=1

(yi − γ)2 (9)

where, γ is the constant value of function F0(x) that serves as a threshold for the splitting
process of the trees. Taking the first differential with respect to γ of the above equation, the
boosted model is initialized with:

F0(x) = ∑n
i=1 (yi)

n
(10)

The gradient boosting involves the following steps: First, Defining F0(x) with which the
boosting algorithm is initialized as Equation (8) shows. Second, the gradient of the loss
function in the ith observations is calculated for each iteration m, as shown Equation (11):

rim = −α[
∂(L(yi, F(xi))

∂F(xi)
]F(x) = F(m−1)(x) (11)

where, α is the learning rate of the model. L(yi, F(xi)) is the loss function which is calculated
as the squared loss as shown in Equation (12).

L(θ) = ∑
i
(ȳi − yi)

2 (12)

Each hm(x), obtained from step two, is fit on the obtained gradient at each step. Finally,
the multiplicative γm is derived for each terminal node and the boosted model Fm(x) is
defined as Equation (13):

Fm(x) = Fm−1(x) + γm ∗ hm(x) (13)

A grid of values is used to investigate the best set of algorithmic parameters to train XGB
for each location, prediction horizon, and weather sensitivity.

4.2. K-Folds Cross-Validation

Machine learning methods, including the Extreme Gradient Boosting method, have
been successfully applied to model complex problems in various fields [27]; often producing
error indexes smaller than the common statistical models. However, overfitting and
memorizing the training data are common concerns with the use of machine learning
methods. Thus, machine learning models are often validated. Traditionally, a data set that
was not previously used for training is presented to the model and the prediction error
for this previously unseen data set is then calculated. The model is considered acceptable
when the error indexes for the training and validation data sets are comparable.

In the k-fold cross-validation method, the available data are randomly partitioned
into k groups or folds. The number of observations in each fold is approximately the same.
The model is trained and validated k times using various combinations of folds. In the
first iteration, the first fold is used for validation, and the remaining k−1 folds are used
for training the model. In the second iteration, the second fold is used for validation and
the model is trained using the remaining folds. This process is repeated until every fold
is treated as a validation set. The average training error for the models developed in k
iterations is reported as the overall training error; the validation error is calculated similarly.
In this paper, the case study data were split into 70% and 30% training and testing data
sets. The 70% training data were split into 20 folds in the training process.
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4.3. Performance Metrics

Root Mean Square Error (RMSE), Average Absolute Error (AAE), and Mean Abso-
lute Percentage Error (MAPE) were used to evaluate and compare the models. These
performance measures are defined in Equations (14)–(16):

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(14)

AAE =
1
n

n

∑
i=1
|yi − ŷi| (15)

MAPE =
1
n

n

∑
i=1

(
|yi − ŷi|
|yi|

) ∗ 100 (16)

where,

yi: observed speed for interval i.
ŷi: predicted speed for interval i.
n: number of observations (i.e., prediction intervals).

5. Results

One of the objectives of this paper was to investigate whether including the precip-
itation rate in the prediction models improves the predictive performance of the speed
prediction models. Figure 3 provides an example of the potential impacts of precipitation
on speed on the I-270 NB corridor during a day that was not used for training or testing the
models. The precipitation rate is reported in millimeters per hour (mm/h), and speed is
reported in kilometers per hour (km/h). Light rain with an intensity of less than 15 mm/h
is noticed after 6:00 a.m. and rain with an intensity of less than 15 mm/h is also noticed
around 9:00 a.m. During these rainfall periods, speed dropped from about 105 km/h to
between 40 km/h to 60 km/h. After 4:00 pm, the corridor witnessed very heavy rain with
varying intensity between 50 mm/h to 200 mm/h, especially at location D with an intensity
of 200 mm/h for about 5 min. As illustrated in Figure 3, the heavy rainfall at location D
is potentially contributing to a speed drop with a magnitude of 55 km/h. However, the
most significant reductions in speed are not necessarily observed during the most intense
periods of rainfall. For example, between 16:35 (4:35 p.m.) and 17:50 (5:50 p.m.), location
C witnessed intermittent rainfall with varying intensity of 15 mm/h to 50 mm/h, which
resulted in speed drop with magnitudes ranging from 35 km/h to 100 km/h. During this
period, the speed was on average 60 km/h less than the free flow speed.

Comparing the precipitation rate at locations C and D between 17:00 (5 p.m.) and
18:00 (6 p.m.) in Figure 3 illustrates that the intensity and duration of rain at location C
were lighter and shorter than the intensity and duration of rain at station D. In spite of
the lighter rain at location C, the magnitude of speed dropped at location C was more
significant than the speed drop at station D. The magnitude of the reduction in speed at
location D does not appear to correlate with the intensity of precipitation at location D. It
appears that location C became an active bottleneck and reduced the number of vehicles
that were arriving at location D, and thus location D did not witness a significant speed
drop during the precipitation period. The active bottleneck at location C mitigated the
effect of precipitation at location D. This hypothesis was further investigated by developing
traffic stream models for locations A to D.

To investigate the impact of precipitation on the speed at the corridor, speed-flow
traffic stream models for rain and no-rain conditions were developed for locations A to
D. The van Aerde traffic-stream model was used to describe the relationship between the
speed and gap between vehicles during rain and no-rain conditions. Equation (17) shows
the macroscopic speed–flow relationship of the van Aerde models.
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Figure 3. (A) Precipitation on the I-270 NB corridor during the 27 May 2016 reporting period;
(B) Speed on the I-270 NB corridor during the 27 May 2016 reporting period (mm/h) and speed
(km/h).

In Equation (17), q represents the flow rate (veh/h/ln), u indicates speed (km/h),
u f shows the free-flow speed (km/h), and c1, c2, and c3 are constants [28]. A computer
program developed by Rakha and Arafeh [29] was used to calibrate the van Aerde models
for locations A to D, which is shown in Figure 4. Table 2 reports the parameters of the
traffic stream models.

q =
u

c1 +
c2

u f−u + c3u
(17)

The van Aerde models for locations A to D indicate that precipitation negatively
affects the traffic stream. Specifically, the models indicate that precipitation consistently
reduces free flow speed and capacity at all four locations. However, the magnitude of
precipitation influence on the four locations is not the same. The difference in the impact of
rain, as well as the traffic flow characteristics of these locations, is partially related to the
geometric design of these locations. Location A is a diamond interchange; location B is on a
tangent section of I-270; location C is at a directional interchange, and location D is a partial
diamond interchange. As demonstrated in Figure 4, the capacity at location C is lower than
the capacity at location D, and location C limits the number of vehicles arriving at location
D during congestion periods. This potentially explains the reason for the minimal impact
of heavy precipitation periods on location D speed.
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Table 2. Traffic stream characteristics of I-270 NB corridor.

Location Model
Free Flow

Speed
(km/h)

Speed at
Capacity
(km/h)

Capacity
(veh/h/ln)

Jam Density
(veh/km/ln) c1 (km) c2 (km2/h) c3 (h)

A No-Rain 107.5 100 2147.6 77.4 0.01285 0.00781 0.00033
With Rain 96.3 86.9 1882.8 70.1 0.01410 0.01607 0.00035

B No-Rain 96.2 85 1875 51.1 0.01923 0.03269 0.00027
With Rain 94.6 82.5 1575 58.8 0.01664 0.03461 0.00040

C No-Rain 98.7 85 1737.8 123.8 0.00787 0.02071 0.00047
With Rain 94.3 85 1692 109.4 0.00903 0.01032 0.00047

D No-Rain 111.7 100 1855.5 75 0.01315 0.02039 0.00039
With Rain 107.5 100 1649.5 69.2 0.01437 0.00874 0.00045

Figure 4. Traffic stream models for I-270 NB corridor.

In the next step, two categories of speed prediction models were developed for the
I-270 NB corridor: (1) weather-insensitive models and (2) weather-aware models. Weather-
insensitive models did not consider the precipitation rate in the prediction of speed and
serve as base models to evaluate the hypothesis that the precipitation rate is an important
factor for short-term speed prediction. In contrast, weather-aware models took into account
the precipitation rate in predicting the I-270 NB corridor speed. Speed was predicted on
the basis of flow rate, speed, occupancy, and precipitation rate that were observed at the six
locations on the I-270 NB corridor. Speed was predicted on the basis of the current roadway
conditions (i.e., conditions at time t) for the next three consecutive five-minute intervals,
which are referred to as t + 5, t + 10, and t + 15 prediction intervals. Table 3 provides the
performance metrics for weather-insensitive and weather-aware models obtained from
20-fold cross-validation.

Several trends are observed in the results. First, the predictions are most accurate
in the 5-min interval immediately after the current traffic status. Second, in most cases,
including the precipitation data in the prediction process reduces the prediction error. In
two cases out of 36 cases, including the weather in the prediction process did not change the
results obtained from the models. In eight out of 36 cases, the performance metrics slightly
increased by 0.20% to 2.68% when the weather was included in the models. However,
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including the weather in the prediction process improved the results in 26 cases out of
36 cases. The improvements gained from utilizing the weather data were on average
0.20 km/h for RMSE, 1.87 km/h for AAE and 3.07% for MAPE.

Table 3. Performance metrics for weather-insensitive and weather-aware models.

Location Prediction
Interval

RMSE (km/h) AAE (km/h) MAPE (%)

Weather-
Insensitive

Weather-
Aware

Weather-
Insensitive

Weather-
Aware

Weather-
Insensitive

Weather-
Aware

t + 5 4.98 4.99 2.94 2.94 4.11 4.22
A t + 10 6.7 5.85 3.49 3.33 5.51 4.71

t + 15 7.84 7.97 4.07 4.10 6.74 6.83

t + 5 4.23 4.21 2.56 2.57 3.47 3.47
B t + 10 5.80 5.53 3.24 3.14 4.50 4.33

t + 15 6.27 6.12 3.45 3.40 4.96 4.90

t + 5 5.32 5.27 2.97 3.00 4.38 4.32
C t + 10 6.03 6.07 3.26 3.24 5.10 5.07

t + 15 6.66 6.64 3.51 3.49 5.53 5.52

t + 5 5.00 4.90 2.65 2.61 3.28 3.21
D t+10 6.75 6.52 3.25 3.19 4.15 4.10

t + 15 7.20 7.18 3.65 3.60 4.77 4.64

A comparison of the performance of weather-insensitive and weather-aware models
revealed that in 26 out of 36 cases, when the weather was included in the prediction process,
the prediction error was decreased. These prediction error measures were calculated
regardless of the precipitation event. In other words, the models were evaluated on the
basis of the entire observations from 6:00 a.m. to 7:00 p.m. on study days. The performance
of the models was further investigated during the precipitation events. Figure 5 reports the
precipitation rate and the ground truth speed and compares the predicted speed for t + 5,
t + 10, and t + 15 prediction intervals from weather-insensitive and weather-aware models at
location D. These predictions were obtained based on data that was not previously utilized
for training the model. During off-peak periods, the performance of weather-insensitive
and weather-aware models is comparable. However, during precipitation events, the
weather-aware model provides speed estimates that follow a similar trend to the ground
truth speed. For example, during light precipitation in the morning peak at 7:30 a.m., and
during heavy precipitation in the afternoon peak at around 4:45 p.m., the speed estimated
by the weather-insensitive model demonstrated an average error of 12 km/h, while the
speed estimated by the weather-aware model demonstrated an average error of 2 km/h.
In addition, as illustrated in Figure 5, the weather-aware model successfully captured the
impact of the rainfall on traffic stream speed.

The predictive performance of the XGBoost model was compared with the predictive
performance of the K-nearest neighbor algorithm (KNN) and feed-forward neural network
(NNET) models. KNN [30] is a non-parametric algorithm that calculates the average of
a specific number (n) of the nearest neighbors to the value of interest y(l,t+i) for weather-
aware and weather-insensitive scenarios. A grid of neighbors N = {1, 2, 3, . . . , 70} was
investigated to determine the optimal set of neighbors for weather-aware and weather-
insensitive models. For weather-insensitive models, 18 neighbors minimized the prediction
error. In comparison, 15 neighbors were sufficient to produce the minimum RMSE for
weather-aware models.

NNET is an artificial intelligence method that mimics the human brain by connecting
artificial neurons [31]. Two sets of hyperparameters were investigated to determine the
best NNET weather-aware and weather-insensitive models. The set for the number of
neurons was {1, 2, 3, . . . , 10} and the weight decay set was {0.1, 0.2, 0.3, 0.4, 0.5}. One
hidden layer with two neurons and a weight decay of 0.5 resulted in minimum RMSE for
weather-insensitive models. However, three neurons and a weight decay of 0.4 produced
the best performance of weather-aware models. Figure 6 compares AAE, MAPE, and RMSE
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for t + 5, t + 10, and t + 15 prediction horizons obtained from XGBoost models with the
performance metrics of KNN and NNET models. XGBoost models consistently outperform
NNET models and provide performance measures that are slightly more desirable than
KNN models. This pattern is observed for predictions from both the weather-aware and
weather-insensitive models. It is also observed that for KNN, NNET, and XGBoost models,
the weather-aware models consistently provide lower error measures in comparison to the
weather-insensitive models.

Figure 5. Ground truth speed and predicted speed obtained from weather-insensitive and weather-
aware models: (A) t + 5 Prediction interval, (B) t + 10 prediction interval, (C) t + 15 prediction interval.
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Figure 6. Performance measures for KNN, NNET, and XGBoost Models for t + 5, t + 10, and t + 15
prediction horizons at location D.

As discussed in the literature review, very few studies investigated the impact of
weather on short-term speed prediction. Among those, Huang and Ran [20] are the only
researchers who reported AAE as the performance metric. Their study reported a 12.4 km/h
AAE for a 5-min speed prediction horizon, which is higher in comparison to the metrics
reported for I-270 NB in St. Louis, MO, USA. The AAE values obtained for four locations
on I-270 NB were between 2.57 km/h to 3.00 km/h. Leong et al. [21] did not report metrics
such as RMSE, AAE, or MAPE. Instead, they only reported the results of the comparison
between the weather-aware and weather-insensitive models. Their findings were consistent
with the result obtained in this paper that, in some cases, the weather data improved the
performance of the speed prediction models, and in some other cases, the rainfall data did
not influence the models’ performance.

6. Conclusions

Short-term speed prediction models are examples of ITS subsystems that enable traffic
management center operators to communicate anticipated traffic conditions to the public
and take steps to harmonize the traffic on the roadway. While traffic management centers
often issue weather-related advisories to the public, high-resolution weather data are
usually not quantitatively included in the transportation management tools.

In this paper, weather-aware models for short-term speed prediction were proposed.
The high-resolution data obtained from weather surveillance radar were processed to obtain
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precipitation rates at roadway sections. Real-time precipitation rates were fused with data
obtained from traffic detectors to predict speed in five-minute intervals for the next 5-, 10-,
and 15-min periods. The proposed approach for short-term speed prediction was applied
to a segment of Interstate 270 NB in St. Louis, MO, USA. Weather-aware and weather-
insensitive models were developed utilizing the XGBoost method. The performance of
weather-aware models was compared with the performance of weather-insensitive speed
prediction models that did not take precipitation rate into account in the speed prediction
process. The results indicated that weather data improved the predictions in 72% of cases,
did not have an impact on 6% of the cases, and slightly increased the error metrics in 22%
of the cases. In those cases, the increase in AAE error measure was, on average, 0.02 km/h.
The predictions made by the XGBoost method were compared with KNN and NNET
methods. The performance metrics obtained from the XGBoost method outperformed the
performance metrics obtained from KNN and NNET models.

van Aerde speed-flow traffic stream models were developed for the bottleneck lo-
cations on the corridor for no-rain and rainy conditions. The speed-flow models were
distinctly different for rain and no-rain conditions at each location. However, the impact of
rain on each location was not similar. The rain resulted in a reduction of the free flow speed
ranging from 2% to 10% and a reduction in capacity ranging from 2% to 16%. The variations
in the impact of rain on speed-flow traffic stream models are consistent with the variations
in the speed predictions obtained from the weather-aware and weather-insensitive models.
This indicates that in addition to the intensity of precipitation, additional factors such as
the geometry of the roadway and the overall traffic demand may influence the magnitude
of the impact of adverse weather on travel speed. In future research, it is recommended to
expand the case study area to a larger network and to study the impact of other weather
events, such as snow and drizzle, and other weather metrics, such as visibility index.
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