Harnessing Ecosystem Services from Invasive Alien Grass and Rush Species to Suppress their Aggressive Expansion in South Africa
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Taxonomic Nomenclature and Origin of Species
3.2. Ecosystem Service Benefits, Invasion Status and Legal Categories
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassini, M.H. A review of the critics of invasion biology. Biol. Rev. 2020, 95, 1467–1478. [Google Scholar] [CrossRef]
- Sayol, F.; Cooke, R.S.; Pigot, A.L.; Blackburn, T.M.; Tobias, J.A.; Steinbauer, M.J.; Antonelli, A.; Faurby, S. Loss of functional diversity through anthropogenic extinctions of island birds is not offset by biotic invasions. Sci. Adv. 2021, 7, eabj5790. [Google Scholar] [CrossRef]
- Pouteau, R.; Brunel, C.; Dawson, W.; Essl, F.; Kreft, H.; Lenzner, B.; Meyer, C.; Pergl, J.; Pyšek, P.; Seebens, H.; et al. Environmental and socioeconomic correlates of extinction risk in endemic species. Div. Distrib. 2022, 28, 53–64. [Google Scholar] [CrossRef]
- Latombe, G.; Catford, J.A.; Essl, F.; Lenzner, B.; Richardson, D.M.; Wilson, J.R.; McGeoch, M.A. GIRAE: A generalised approach for linking the total impact of invasion to species’ range, abundance and per-unit effects. Biol. Invasions 2022, 24, 3147–3167. Available online: https://link.springer.com/content/pdf/10.1007/s10530-022-02836-0.pdf (accessed on 3 August 2022). [CrossRef]
- Mantintsilili, A.; Shivambu, N.; Shivambu, T.C.; Downs, C.T. Online and pet stores as sources of trade for reptiles in South Africa. J. Nat. Conserv. 2022, 67, 126154. [Google Scholar] [CrossRef]
- Chakona, A.; Jordaan, M.S.; Raimondo, D.C.; Bills, R.I.; Skelton, P.H.; van Der Colff, D. Diversity, distribution and extinction risk of native freshwater fishes of South Africa. J. Fish Biol. 2022, 100, 1044–1061. [Google Scholar] [CrossRef]
- Sagoff, M. Invasive species denialism: A reply to Ricciardi and Ryan. Biol. Invasions 2018, 20, 2723–2729. [Google Scholar] [CrossRef]
- Howard, P.L. Human adaptation to invasive species: A conceptual framework based on a case study metasynthesis. Ambio 2019, 48, 1401–1430. [Google Scholar] [CrossRef] [Green Version]
- Van Riper, C.J.; Browning, M.H.; Becker, D.; Stewart, W.; Suski, C.D.; Browning, L.; Golebie, E. Human-nature relationships and normative beliefs influence behaviors that reduce the spread of aquatic invasive species. Environ. Manag. 2019, 63, 69–79. [Google Scholar] [CrossRef]
- Ravhuhali, K.E.; Mudau, H.S.; Moyo, B.; Hawu, O.; Msiza, N.H. Prosopis Species—An Invasive Species and a Potential Source of Browse for Livestock in Semi-Arid Areas of South Africa. Sustainability 2021, 13, 7369. [Google Scholar] [CrossRef]
- Shrestha, B.B.; Shrestha, U.B.; Sharma, K.P.; Thapa-Parajuli, R.B.; Devkota, A.; Siwakoti, M. Community perception and prioritization of invasive alien plants in Chitwan-Annapurna Landscape, Nepal. J. Environ. Manag. 2019, 229, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.; Metcalf, A.L.; Gill, N.; Niemiec, R.; Moreno, C.; Bach, T.; Ikutegbe, V.; Hallstrom, L.; Ma, Z.; Lubeck, A. Opportunities for better use of collective action theory in research and governance for invasive species management. Conserv. Biol. 2019, 33, 275–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reitz, S.R.; Gao, Y.; Kirk, W.D.; Hoddle, M.S.; Leiss, K.A.; Funderburk, J.E. Invasion biology, ecology, and management of western flower thrips. Ann. Rev. Entomol. 2020, 65, 17–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, P.M.; Esler, K.J.; Gaertner, M.; Geerts, S.; Hall, S.A.; Nsikani, M.M.; Richardson, D.M.; Ruwanza, S. Biological invasions and ecological restoration in South Africa. Biol. Invasions S. Afr. 2020, 14, 665–700. [Google Scholar]
- Jubase, N.; Shackleton, R.T.; Measey, J. Motivations and contributions of volunteer groups in the management of invasive alien plants in South Africa’s Western Cape province. Bothalia-Afr. Bio. Conserv. 2021, 51, 1–13. [Google Scholar] [CrossRef]
- Yang, X.; Wyckhuys, K.A.; Jia, X.; Nie, F.; Wu, K. Fall armyworm invasion heightens pesticide expenditure among Chinese smallholder farmers. J. Environ. Manag. 2021, 282, 111949. [Google Scholar] [CrossRef]
- Abrahams, B.; Sitas, N.; Esler, K.J. Exploring the dynamics of research collaborations by mapping social networks in invasion science. J. Environ. Manag. 2019, 229, 27–37. [Google Scholar] [CrossRef]
- Moran, V.C.; Zachariades, C.; Hoffmann, J.H. Implementing a system in South Africa for categorizing the outcomes of weed biological control. Biol. Control 2021, 153, 104431. [Google Scholar] [CrossRef]
- Lamsal, P.; Kumar, L.; Aryal, A.; Atreya, K. Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio 2018, 47, 697–710. [Google Scholar] [CrossRef]
- Van Wilgen, B.W.; Raghu, S.; Sheppard, A.W.; Schaffner, U. Quantifying the social and economic benefits of the biological control of invasive alien plants in natural ecosystems. Curr. Opin. Insect Sci. 2020, 38, 1–5. [Google Scholar] [CrossRef]
- Van Wilgen, B.W.; Measey, J.; Richardson, D.M.; Wilson, J.R.; Zengeya, T.A. Biological Invasions in South Africa: An Overview. In Biological Invasions in South Africa; Springer: Cham, Switzerland, 2020; Volume 14, p. 975. [Google Scholar]
- Sinthumule, N.I.; Mashau, M.L. Traditional ecological knowledge and practices for forest conservation in Thathe Vondo in Limpopo Province, South Africa. Global Ecol. Conserv. 2020, 22, e00910. [Google Scholar] [CrossRef]
- Shackleton, S.E.; Shackleton, R.T. Local knowledge regarding ecosystem services and disservices from invasive alien plants in the arid Kalahari, South Africa. J. Arid Environ. 2018, 159, 22–33. [Google Scholar] [CrossRef]
- Potgieter, L.J.; Gaertner, M.; O’Farrell, P.J.; Richardson, D.M. Perceptions of impact: Invasive alien plants in the urban environment. J. Environ. Manag. 2019, 229, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, R.T.; Larson, B.M.; Novoa, A.; Richardson, D.M.; Kull, C.A. The human and social dimensions of invasion science and management. J. Environ. Manag. 2019, 229, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mugwedi, L. Harnessing opportunities provided by the invasive Chromolaena odorata to keep it under control. Sustainability 2020, 12, 6505. [Google Scholar] [CrossRef]
- Atyosi, Z.; Ramarumo, L.J.; Maroyi, A. Alien plants in the Eastern Cape province in South Africa: Perceptions of their contributions to livelihoods of local communities. Sustainability 2019, 11, 5043. [Google Scholar] [CrossRef] [Green Version]
- Kariyawasam, C.S.; Kumar, L.; Ratnayake, S.S. Invasive plant species establishment and range dynamics in Sri Lanka under climate change. Entropy 2019, 21, 571. [Google Scholar] [CrossRef] [Green Version]
- Weidlich, E.W.; Flórido, F.G.; Sorrini, T.B.; Brancalion, P.H. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 2020, 57, 1806–1817. [Google Scholar] [CrossRef]
- Bennett, B.M.; van Sittert, L. Historicising perceptions and the national management framework for invasive alien plants in South Africa. J. Environ. Manag. 2019, 229, 174–181. [Google Scholar] [CrossRef]
- Dzerefos, C.M.; Witkowski, E.T.; Kremer-Köhne, S. Aiming for the biodiversity target with the social welfare arrow: Medicinal and other useful plants from a Critically Endangered grassland ecosystem in Limpopo Province, South Africa. Int. J. Sustain. Dev. World Ecol. 2017, 24, 52–64. [Google Scholar] [CrossRef]
- Kraaij, T.; Baard, J.A. Use of a rapid roadside survey to detect potentially invasive plant species along the Garden Route, South Africa. Koedoe 2019, 61, 1–10. [Google Scholar]
- Nsikani, M.M.; Geerts, S.; Ruwanza, S.; Richardson, D.M. Secondary invasion and weedy native species dominance after clearing invasive alien plants in South Africa: Status quo and prognosis. S. Afr. J. Bot. 2020, 132, 338–345. [Google Scholar] [CrossRef]
- Visser, V.; Maitre, D.; Wilson, J.R.; Nänni, I.; Canavan, K.; Canavan, S.; Fish, L.; Mashau, C.; O’Connor, T.G.; Ivey, P.; et al. Grasses as invasive plants in South Africa revisited: Patterns, pathways and management. Bothalia-Afr. Bio. Conserv. 2017, 47, 1–29. [Google Scholar] [CrossRef]
- Canavan, K.; Paterson, I.D.; Hill, M.P.; Dudley, T.L. Testing the Enemy Release Hypothesis on tall-statured grasses in South Africa, using Arundo donax, Phragmites australis, and Phragmites mauritianus as models. Bulletin Entomol. Res. 2019, 109, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Nkuna, K.V.; Visser, V.; Wilson, J.R.U.; Kumschick, S. Global environmental and socio-economic impacts of selected alien grasses as a basis for ranking threats to South Africa. NeoBiota 2018, 41, 19–65. [Google Scholar] [CrossRef] [Green Version]
- Magwede, K.; van Wyk, B.E.; van Wyk, A.E. An inventory of Vhavenda useful plants. S. Afr. J. Bot. 2019, 122, 57–89. [Google Scholar] [CrossRef]
- Henderson, L. Invasive Alien Plants in South Africa; Novus Print: Cape Town, South Africa, 2020; pp. 1–384. [Google Scholar]
- Novoa, A.; Shackleton, R.; Canavan, S.; Cybele, C.; Davies, S.J.; Dehnen-Schmutz, K.; Fried, J.; Gaertner, M.; Geerts, S.; Griffiths, C.L.; et al. A framework for engaging stakeholders on the management of alien species. J. Environ. Manag. 2018, 205, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Shackleton, R.T.; Shackleton, C.M.; Kull, C.A. The role of invasive alien species in shaping local livelihoods and human well-being: A review. J. Environ. Manag. 2019, 229, 145–157. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The constituents and biological effects of Arundo donax—A review. Int. J. Phytopharm. Res. 2015, 6, 34–40. [Google Scholar]
- Webster, R.J.; Driever, S.M.; Kromdijk, J.; McGrath, J.; Leakey, A.D.; Siebke, K.; Demetriades-Shah, T.; Bonnage, S.; Peloe, T.; Lawson, T.; et al. High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax. Sci. Rep. 2016, 6, 20694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dilley, B.J.; Schramm, M.; Ryan, P.G. Modest increases in densities of burrow-nesting petrels following the removal of cats (Felis catus) from Marion Island. Polar Biol. 2017, 40, 625–637. [Google Scholar] [CrossRef]
- Rabêlo, F.H.; Borgo, L.; Lavres, J. The Use of Forage Grasses for the Phytoremediation of Heavy Metals: Plant Tolerance Mechanisms, Classifications, and New Prospects. In Phytoremediation: Methods, Management and Assessment; Nova Science Publishers: New York, NY, USA, 2018; pp. 59–103. [Google Scholar]
- Aarts, N.; Drenthen, M. Socio-Ecological Interactions and Sustainable Development—Introduction to a Special Issue. Sustainability 2020, 12, 6967. [Google Scholar] [CrossRef]
- Reynolds, C.; Venter, N.; Cowie, B.W.; Marlin, D.; Mayonde, S.; Tocco, C.; Byrne, M.J. Mapping the socio-ecological impacts of invasive plants in South Africa: Are poorer households with high ecosystem service use most at risk? Eco. Serv. 2020, 42, 101075. [Google Scholar] [CrossRef]
- Sintayehu, D.W.; Dalle, G.; Bobasa, A.F. Impacts of climate change on current and future invasion of Prosopis juliflora in Ethiopia: Environmental and socio-economic implications. Heliyon 2020, 6, e04596. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, S.P.; Soreng, R.J.; Sylvester, M.D.; Mapaura, A.; Clark, V.R. New records of alien and potentially invasive grass (Poaceae) species for southern Africa. Bothalia-Afr. Bio. Conserv. 2021, 51, 1–9. [Google Scholar] [CrossRef]
- Dos Santos, L.L.; do Nascimento, A.L.B.; Vieira, F.J.; da Silva, V.A.; Voeks, R.; Albuquerque, U.P. The cultural value of invasive species: A case study from semi–arid northeastern Brazil. Econ. Bot. 2014, 68, 283–300. [Google Scholar] [CrossRef]
- Amores-Salvadó, J.; Martin-de Castro, G.; Navas-López, J.E. The importance of the complementarity between environmental management systems and environmental innovation capabilities: A firm level approach to environmental and business performance benefits. Tech. Forecasting Soc. Change 2015, 96, 288–297. [Google Scholar] [CrossRef]
- Ekblom, A.; Shoemaker, A.; Gillson, L.; Lane, P.; Lindholm, K.J. Conservation through biocultural heritage—Examples from sub-Saharan Africa. Land 2019, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, M.; Kufer, J.; Leonti, M.; Pardo-de-Santayana, M. Ethnobotany and ethnopharmacology—Interdisciplinary links with the historical sciences. J. Ethnopharmacol. 2006, 107, 157–160. [Google Scholar] [CrossRef]
- Ogunkunle, T.J.; Adewumi, A.; Adepoju, A.O. Biodiversity: Overexploited but underutilized natural resource for human existence and economic development. Environ. Eco. Sci. 2019, 3, 26–34. [Google Scholar]
- Mustafa, M.O. Implications of environmental and natural resources education among rural stakeholders of forestry and wildlife administration: A review. Nigeria Agric. J. 2019, 50, 135–138. [Google Scholar]
- Verma, A.K. Sustainable development and environmental ethics. Int. J. Environ. Sci. 2019, 10, 1–5. [Google Scholar]
- Volenzo, T.; Odiyo, J. Integrating endemic medicinal plants into the global value chains: The ecological degradation challenges and opportunities. Heliyon 2020, 6, e04970. [Google Scholar] [CrossRef]
- Maja, M.M.; Ayano, S.F. The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Systems Environ. 2021, 5, 271–283. [Google Scholar] [CrossRef]
- Vuorinen, K.E.; Oksanen, T.; Oksanen, L.; Vuorisalo, T.; Speed, J.D. Why don’t all species overexploit? Oikos 2021, 130, 1835–1848. [Google Scholar] [CrossRef]
- Rull, V. Biodiversity crisis or sixth mass extinction? Does the current anthropogenic biodiversity crisis really qualify as a mass extinction? EMBO Rep. 2022, 23, e54193. [Google Scholar] [CrossRef]
- McGaw, L.J.; Omokhua-Uyi, A.G.; Finnie, J.F.; van Staden, J. Invasive alien plants and weeds in South Africa: A review of their applications in traditional medicine and potential pharmaceutical properties. J. Ethnopharmacol. 2022, 283, 114564. [Google Scholar] [CrossRef]
- Vitule, J.R.S.; Freire, C.A.; Vazquez, D.P.; Nuñez, M.A.; Simberloffs, D. Revisiting the potential conservation value of non-native species. Conserv. Biol. 2012, 26, 1153–1155. [Google Scholar] [CrossRef]
- Tassin, J.; Kull, C.A. Facing the broader dimensions of biological invasions. Land Use Policy 2015, 42, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Maroyi, A. Traditional uses of wild and tended plants in maintaining ecosystem services in agricultural landscapes of the Eastern Cape Province in South Africa. J. Ethnobiol. Ethnomed. 2022, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Jetz, W.; McGeoch, M.A.; Guralnick, R.; Ferrier, S.; Beck, J.; Costello, M.J.; Fernandez, M.; Geller, G.N.; Keil, P.; Merow, C.; et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 2019, 3, 539–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milanović, M.; Knapp, S.; Pyšek, P.; Kühn, I. Linking traits of invasive plants with ecosystem services and disservices. Eco. Serv. 2020, 42, 101072. [Google Scholar] [CrossRef]
- Crowley, S.L.; Hinchliffe, S.; McDonald, R.A. Conflict in invasive species management. Front. Ecol. Environ. 2017, 15, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Sardeshpande, M.; Shackleton, C. Urban foraging: Land management policy, perspectives, and potential. PLoS ONE 2020, 15, e0230693. [Google Scholar] [CrossRef]
- Ruwanza, S.; Thondhlana, G. People’s perceptions and uses of invasive plant Psidium guajava in Vhembe Biosphere Reserve, Limpopo Province of South Africa. Eco. People 2022, 18, 64–75. [Google Scholar] [CrossRef]
- Trytsman, M.; Müller, F.L.; van Wyk, A.E. Diversity of grasses (Poaceae) in southern Africa, with emphasis on the conservation of pasture genetic resources. Gen. Res. Crop Evol. 2020, 67, 875–894. [Google Scholar] [CrossRef]
- Muller, M.; Siebert, S.J.; Ntloko, B.R.; Siebert, F. A floristic assessment of grassland diversity loss in South Africa. Bothalia-Afr. Bio. Conserv. 2021, 51, 1–9. [Google Scholar] [CrossRef]
- Trytsman, M.; Muller, F.L.; Morris, C.D.; van Wyk, A.E. Biogeographical patterns of grasses (Poaceae) indigenous to South Africa, Lesotho and Eswatini. Afr. J. Range Forage Sci. 2021, 38, S73–S89. [Google Scholar] [CrossRef]
- Mashau, A.C.; Hempson, G.P.; Lehmann, C.E.; Vorontsova, M.S.; Visser, V.; Archibald, S. Plant height and lifespan predict range size in southern African grasses. J. Biogeogr. 2012, 48, 3047–3059. [Google Scholar] [CrossRef]
- Gallaher, T.J.; Peterson, P.M.; Soreng, R.J.; Zuloaga, F.O.; Li, D.Z.; Clark, L.G.; Tyrrell, C.D.; Welker, C.A.; Kellogg, E.A.; Teisher, J.K. Grasses through space and time: An overview of the biogeographical and macroevolutionary history of Poaceae. J. System. Evol. 2022, 60, 522–569. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jse.12857 (accessed on 20 June 2022). [CrossRef]
- Schubert, M.; Humphreys, A.M.; Lindberg, C.L.; Preston, J.C.; Fjellheim, S. To coldly go where no grass has gone before: A multidisciplinary review of cold adaptation in Poaceae. Ann. Plant Rev. Online 2020, 3, 523–562. [Google Scholar]
- Díaz, E.D.; Jorquera, P.S. Naturalized and introduced plants of the Magallanes Region Associated with Agricultural and forestry activity and Protected Areas: Life attributes, Distribution, and Invasion Status. Chloris Chil. 2021, 24, 21–47. [Google Scholar]
- Jauro, T.I.; Tesfamichael, S.G.; Rampedi, I.T. Tracking conservation effectiveness in the Vhembe Biosphere Reserve in South Africa using Landsat imagery. Environ. Monit. Assess. 2020, 192, 469. [Google Scholar] [CrossRef] [PubMed]
- Shayanowako, A.I.T.; Morrissey, O.; Tanzi, A.; Muchuweti, M.; Mendiondo, G.M.; Mayes, S.; Modi, A.T.; Mabhaudhi, T. African leafy vegetables for improved human nutrition and food system resilience in Southern Africa: A scoping review. Sustainability 2021, 13, 2896. [Google Scholar] [CrossRef]
- Constant, N.L.; Taylor, P.J. Restoring the forest revives our culture: Ecosystem services and values for ecological restoration across the rural-urban nexus in South Africa. Forest Policy Econ. 2020, 118, 102222. [Google Scholar] [CrossRef]
- Arabi, S.; Nahman, A. Impacts of marine plastic on ecosystem services and economy: State of South African research. S. Afr. J. Sci. 2020, 116, 1–7. [Google Scholar] [CrossRef]
- Radonjic, D.; Djordjevic, N.; Markovic, B.; Markovic, M.; Stesevic, D.; Dajic-Stevanovic, Z. Effect of phenological phase of dry grazing pasture on fatty acid composition of cows’ milk. Chil. J. Agri. Res. 2019, 79, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Bergstrom, D.M.; Smith, V.R. Alien vascular flora of Marion and Prince Edward Islands: New species, present distribution and status. Antarct. Sci. 1990, 2, 301–308. [Google Scholar] [CrossRef]
- Gremmen, N.J.; Smith, V.R. New records of alien vascular plants from Marion and Prince Edward Islands, sub-Antarctic. Polar Biol. 1999, 21, 401–409. [Google Scholar] [CrossRef]
- Van den Berg, J.; Rebe, M.; de Bruyn, J.; van Hamburg, H. Developing habitat management systems for gramineous stemborers in South Africa. Int. J. Tropical Insect Sci. 2001, 21, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Błońska, A.; Kompała-Bąba, A.; Sierka, E.; Bierza, W.; Magurno, F.; Besenyei, L.; Ryś, K.; Woźniak, G. Diversity of Vegetation Dominated by Selected Grass Species on Coal-Mine Spoil Heaps in Terms of Reclamation of Post-Industrial Areas. J. Ecol. Engine. 2019, 20, 209–217. [Google Scholar] [CrossRef]
- Tasset, E.; Boulanger, T.; Diquélou, S.; Laîné, P.; Lemauviel-Lavenant, S. Plant trait to fodder quality relationships at both species and community levels in wet grasslands. Ecol. Indic. 2019, 97, 389–397. [Google Scholar] [CrossRef]
- Burges, A.; Oustriere, N.; Galende, M.; Marchand, L.; Bes, C.M.; Paidjan, E.; Puschenreiter, M.; Becerril, J.M.; Mench, M. Phytomanagement with grassy species, compost and dolomitic limestone rehabilitates a meadow at a wood preservation site. Ecol. Engine. 2021, 160, 106132. [Google Scholar] [CrossRef]
- Vickery, J. Ecological Services of Weeds. 2020. Available online: https://www.researchgate.net/publication/345820849_Ecological_Services_of_Weeds (accessed on 2 September 2022).
- Dostatny, D.F.; Żurek, G.; Kapler, A.; Podyma, W. The Ex-Situ Conservation and Potential Usage of Crop Wild Relatives in Poland on the Example of Grasses. Agronomy 2021, 11, 94. [Google Scholar] [CrossRef]
- Biró, M.; Molnár, Z.; Öllerer, K.; Lengyel, A.; Ulicsni, V.; Szabados, K.; Kiš, A.; Perić, R.; Demeter, L.; Babai, D. Conservation and herding co-benefit from traditional extensive wetland grazing. Agric. Ecosyst. Environ. 2020, 300, 106983. [Google Scholar] [CrossRef]
- Liu, H.; Kong, F.; Yin, H.; Middel, A.; Zheng, X.; Huang, J.; Xu, H.; Wang, D.; Wen, Z. Impacts of green roofs on water, temperature, and air quality: A bibliometric review. Building Environ. 2021, 196, 107794. [Google Scholar] [CrossRef]
- Hertling, U.M.; Lubke, R.A. Use of Ammophila arenaria for dune stabilization in South Africa and its current distribution—Perceptions and problems. Environ. Manag. 1999, 24, 467–482. [Google Scholar] [CrossRef]
- Hertling, U.M.; Lubke, R.A. Assessing the potential for biological invasion—The case of Ammophila arenaria in South Africa. S. Afr. J. Sci. 2000, 96, 520–527. [Google Scholar]
- Milton, S.J. Grasses as invasive alien plants in South Africa: Working for water. S. Afr. J. Sci. 2004, 100, 69–75. [Google Scholar]
- Gadgil, R.L. Marram grass (Ammophila arenaria) and coastal sand stability in New Zealand. N. Z. J. Forest. Sci. 2002, 32, 165–180. [Google Scholar]
- Knevel, I.C.; Lans, T.; Menting, F.B.; Hertling, U.M.; van der Putten, W.H. Release from native root herbivores and biotic resistance by soil pathogens in a new habitat both affect the alien Ammophila arenaria in South Africa. Oecologia 2004, 141, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Van der Putten, W.H.; Yeates, G.W.; Duyts, H.; Reis, C.S.; Karssen, G. Invasive plants and their escape from root herbivory: A worldwide comparison of the root-feeding nematode communities of the dune grass Ammophila arenaria in natural and introduced ranges. Biol. Invasions 2005, 7, 733–746. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.; Kirkpatrick, J.B. Influence of Ammophila arenaria on half a century of vegetation change in eastern Tasmanian sand dune systems. Aust. J. Bot. 2012, 60, 450–460. [Google Scholar] [CrossRef]
- Canavan, K.; Paterson, I.D.; Hill, M.P. Exploring the origin and genetic diversity of the giant reed, Arundo donax in South Africa. Invasive Plant Sci. Manag. 2017, 10, 53–60. [Google Scholar] [CrossRef]
- Lambert, A.M.; Dudley, T.L.; Robbins, J. Nutrient enrichment and soil conditions drive productivity in the large-statured invasive grass Arundo donax. Aquatic Bot. 2014, 112, 16–22. [Google Scholar] [CrossRef]
- Lambert, A.M.; Dudley, T.L.; Saltonstall, K. Ecology and impacts of the large-statured invasive grasses Arundo donax and Phragmites australis in North America. Invasive Plant Sci. Manag. 2010, 3, 489–494. [Google Scholar] [CrossRef]
- Goolsby, J.A.; Hathcock, C.R.; Vacek, A.T.; Kariyat, R.R.; Moran, P.J.; Martinez Jimenez, M. No evidence of non-target use of native or economic grasses and broadleaf plants by Arundo donax biological control agents. Biocontrol Sci. Tech. 2020, 30, 795–805. [Google Scholar] [CrossRef]
- Da Costa, R.M.; Winters, A.; Hauck, B.; Martín, D.; Bosch, M.; Simister, R.; Gomez, L.D.; Batista de Carvalho, L.A.; Canhoto, J.M. Biorefining potential of wild-grown Arundo donax, Cortaderia selloana and Phragmites australis and the feasibility of white-rot fungi-mediated pretreatments. Front. Plant Sci. 2021, 12, 679966. [Google Scholar] [CrossRef]
- Mbambala, S.G.; Tshisikhawe, M.P.; Masevhe, N.A. Invasive alien plants used in the treatment of HIV/AIDS-related symptoms by traditional healers of Vhembe municipality, Limpopo Province, South Africa. Afr. J. Tradit. Complement. Alt. Med. 2017, 14, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Okada, M.; Lyle, M.; Jasieniuk, M. Inferring the introduction history of the invasive apomictic grass Cortaderia jubata using microsatellite markers. Div. Distrib. 2009, 15, 148–157. [Google Scholar] [CrossRef]
- Sorensen, D.G. The Invasion Risk in the Pacific Northwest of Two Closely Related Grass Species in the Genus Cortaderia. Master’s Thesis, University of Washington, Washington, DC, USA, 2016. [Google Scholar]
- Houliston, G.J.; Goeke, D.F. Cortaderia spp. in New Zealand: Patterns of genetic variation in two widespread invasive species. N. Z. J. Ecol. 2017, 41, 107–112. [Google Scholar]
- Almeida, M.R.; Marchante, E.; Marchante, H. Public Perceptions about the Invasive Plant Pampas Grass, Cortaderia selloana. Research Square. 2022. Available online: https://assets.researchsquare.com/files/rs-1343268/v1/cc4cf774-820e-480e-b049-0e06f340826f.pdf?c=1646671684 (accessed on 24 June 2022).
- Marais, D.; Rethman, N.; Annandale, J. Dry matter yield and water use efficiency of five perennial subtropical grasses at four levels of water availability. Afr. J. Range Forage Sci. 2006, 23, 165–169. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Chemical constituents and pharmacological importance of Agropyron repens—A review. Res. J. Pharmacol. Toxicol. 2015, 1, 37–41. [Google Scholar]
- Gupta, A.; Ranjan, R. December. Grasses as an Immense Source of Pharmacologically Active Medicinal Properties: An Overview. In. Proc. Indian Nat. Sci. Acad. 2020, 86, 1323–1329. [Google Scholar] [CrossRef]
- Kotanen, P.M.; Abraham, K.F. Geese and grazing lawns: Responses of the grass Festuca rubra to defoliation in a subarctic coastal marsh. Canadian. J. Bot. 2007, 84, 1732–1739. [Google Scholar]
- Stewart, G.H.; Ignatieva, M.E.; Meurk, C.D.; Buckley, H.; Horne, B.; Braddick, T. URban Biotopes of Aotearoa New Zealand (URBANZ)(I): Composition and diversity of temperate urban lawns in Christchurch. Urban Eco. 2009, 12, 233–248. [Google Scholar] [CrossRef]
- De, L.C. Lawn grasses-a review. Int. J. Hortic. 2017, 7, 82–94. [Google Scholar] [CrossRef]
- Mugwedi, L.F. Invasion Ecology of Glyceria maxima in KZN Rivers and Wetlands. Master’s Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2012. [Google Scholar]
- Mugwedi, L.F.; Goodall, J.M.; Witkowski, E.T.F.; Byrne, M.J. Effect of temperature on seed production in the invasive grass Glyceria maxima (Hartm.) Holmb. (Poaceae) in South Africa. Afr. J. Aquatic Sci. 2018, 43, 79–84. [Google Scholar] [CrossRef]
- Mugwedi, L.F.; Goodall, J.M.; Witkowski, E.T.F.; Byrne, M.J. Post-fire vegetative recruitment of the alien grass Glyceria maxima at a KwaZulu-Natal Midlands dam, South Africa. Afr. J. Aquatic Sci. 2015, 40, 443–445. [Google Scholar] [CrossRef]
- Gilson, E. Biogas Production Potential and Cost-Benefit Analysis of Harvesting Wetland Plants (Phragmites australis and Glyceria maxima). Master’s Thesis, Halmstad University, Halmstad, Sweden, 2017. [Google Scholar]
- Roj-Rojewski, S.; Wysocka-Czubaszek, A.; Czubaszek, R.; Kamocki, A.; Banaszuk, P. Anaerobic digestion of wetland biomass from conservation management for biogas production. Biomass Bioenergy 2019, 122, 126–132. [Google Scholar] [CrossRef]
- Liu, D.; Zou, C.; Xu, M. Environmental, ecological, and economic benefits of biofuel production using a constructed wetland: A case study in China. Int. J. Environ. Res. Public Health 2019, 16, 827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomaskin, J.; Tomaskinova, J. evaluation of assortment of ornamental grasses and their environmental importance in the urban landscape. J. Environ. Protect. Ecol. 2020, 21, 1673–1682. [Google Scholar]
- Banaszuk, P.; Kamocki, A.K.; Wysocka-Czubaszek, A.; Czubaszek, R.; Roj-Rojewski, S. Closing the loop-Recovery of nutrients and energy from wetland biomass. Ecol. Engine. 2020, 143, 105643. [Google Scholar] [CrossRef]
- Biro, A.S.; Ivaşcu, C.; Ciobotă, A.; Arsene, G. Assessment of ecosystem services through habitat diversity within a Peri-Urban River Area-Bega River in the eastern part of Timișoara. Res. J. Agric. Sci. 2021, 53, 21–36. [Google Scholar]
- le Roux, P.C.; Ramaswiela, T.; Kalwij, J.M.; Shaw, J.D.; Ryan, P.G.; Treasure, A.M.; McClelland, G.T.; McGeoch, M.A.; Chown, S.L. Human activities, propagule pressure and alien plants in the sub-Antarctic: Tests of generalities and evidence in support of management. Biol. Conserv. 2013, 161, 18–27. [Google Scholar] [CrossRef]
- Belonovskaya, E.; Gracheva, R.; Shorkunov, I.; Vinogradova, V. Grasslands of intermontane basins of Central Caucasus: Land use legacies and present-day state. Hacquetia 2016, 15, 37–47. [Google Scholar] [CrossRef]
- Drake, P.; Grimshaw-Surette, H.; Heim, A.; Lundholm, J. Mosses inhibit germination of vascular plants on an extensive green roof. Ecol. Engine. 2018, 117, 111–114. [Google Scholar] [CrossRef]
- Dubljević, R.; Marković, B.; Radonjić, D.; Stešević, D.; Marković, M. Influence of changes in botanical diversity and quality of wet grasslands through phenological phases on cow milk fatty acid composition. Sustainability 2020, 12, 6320. [Google Scholar] [CrossRef]
- Momose, T.; Lundholm, J. Use of a thermo-module as a soil heat flux sensor: Applications in the evaluation of extensive green roof thermal performance. Energy Build. 2021, 231, 110562. [Google Scholar] [CrossRef]
- Mkhize, N.L.F. Biology, Seasonal Abundance and Host Range of Capitulum-Feeding Insects Associated with the Invasive Weed Senecio madagascariensis (Asteraceae) in Its Native Range in KwaZulu-Natal, South Africa. Masters’ Thesis, University of KwaZulu Natal, Durban, South Africa, 2021. [Google Scholar]
- Sosa, L.L.; Jozami, E.; Oakley, L.J.; Montero, G.A.; Ferreras, L.A.; Venturi, G.; Feldman, S.R. Using C4 perennial rangeland grasses for bioenergy. Biomass Bioenergy 2019, 128, 105299. [Google Scholar] [CrossRef]
- Gandini, M.L.; Lara, B.D.; Moreno, L.B.; Cañibano, M.A.; Gandini, P.A. Trends in fragmentation and connectivity of Paspalum quadrifarium grasslands in the Buenos Aires province, Argentina. PeerJ 2019, 7, e6450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, F.; Gallego, F.; Paruelo, J.M.; Rodríguez, C. Damping and lag effects of precipitation variability across trophic levels in Uruguayan rangelands. Agri. Syst. 2020, 185, 102956. [Google Scholar] [CrossRef]
- Rayment, J.; French, K.; Bedward, M. Understanding patterns and pathways of exotic perennial grass invasion in South-eastern Australian grassy communities. Div. Distrib. 2022, 28, 1136–1150. [Google Scholar] [CrossRef]
- Hlophe, S.N.; Moyo, N.A.G. A comparative study on the use of Pennisetum clandestinum and Moringa oleifera as protein sources in the diet of the herbivorous Tilapia rendalli. Aquac. Int. 2014, 22, 1245–1262. [Google Scholar] [CrossRef]
- Seeman, O.D.; Loch, D.S.; Knihinicki, D.K.; McMaugh, P.E. A new species of Steneotarsonemus (Acari: Tarsonemidae) from kikuyu grass, Pennisetum clandestinum (Poaceae), in Australia. System. Appl. Acarol. 2016, 21, 889–906. [Google Scholar] [CrossRef]
- Vurayai, R.; Nkoane, B.; Moseki, B.; Chaturvedi, P. Phytoremediation potential of Jatropha curcas and Pennisetum clandestinum grown in polluted soil with and without coal fly ash: Selibe-Phikwe, Botswana. J. Biodiv. Environ. Sci. 2017, 10, 193–206. [Google Scholar]
- Romero-Perdomo, F.; Ocampo-Gallego, J.; Camelo-Rusinque, M.; Bonilla, R. Plant growth promoting rhizobacteria and their potential as bioinoculants on Pennisetum clandestinum (Poaceae). Rev. Biol. Tropic. 2019, 67, 825–832. [Google Scholar] [CrossRef]
- Aghajani-Shahrivar, A.; Hagare, D.; Maheshwari, B.; Muhitur Rahman, M. The effect of irrigation using recycled waters obtained from MBR and IDAL wastewater treatment systems on soil pH and EC under kikuyu grass (Pennisetum clandestinum) production. Water Supply 2020, 20, 1313–1320. [Google Scholar] [CrossRef]
- Fokom, W.D.; Tendonkeng, F.; Azangue, G.J.; Miégoué, E.; Djoumessi, F.G.T.; Kwayep, N.C.; Mouchili, M. Effects of Different Levels of Fertilization with Hen Droppings on the Production and Chemical Composition of Pennisetum clandestinum (Poaceae). Open J. Animal Sci. 2021, 11, 543–558. [Google Scholar] [CrossRef]
- Chen, X.F.; Huang, C.; Xiong, L.; Wang, B.; Qi, G.X.; Lin, X.Q.; Wang, C.; Chen, X.D. Use of elephant grass (Pennisetum purpureum) acid hydrolysate for microbial oil production by Trichosporon cutaneum. Preparative Biochem. Biotech. 2016, 46, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Negawo, A.T.; Teshome, A.; Kumar, A.; Hanson, J.; Jones, C.S. Opportunities for Napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy 2017, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Negawo, A.T.; Jorge, A.; Hanson, J.; Teshome, A.; Muktar, M.S.; Azevedo, A.L.S.; Ledo, F.J.; Machado, J.C.; Jones, C.H.R.I.S. Molecular markers as a tool for germplasm acquisition to enhance the genetic diversity of a Napier grass (Cenchruspurpureus syn. Pennisetum purpureum) collection. Tropic. Grasslands-Forrajes Tropic. 2018, 6, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Danquah, J.A.; Roberts, C.O.; Appiah, M. Elephant grass (Pennisetum purpureum): A potential source of biomass for power generation in Ghana. Curr. J. Appl. Sci. Tech. 2018, 30, 1–12. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, Y.; Hu, L.; He, L.; Xu, B.; Huang, Z.; Wang, G.; Chen, Y. Potential use of king grass (Pennisetum purpureum Schumach, Pennisetum glaucum (L.) R. Br.) for phytoextraction of cadmium from fields. Environ. Sci. Pollution Res. 2020, 27, 35249–35260. [Google Scholar] [CrossRef] [PubMed]
- Antunes, F.A.F.; Machado, P.E.M.; Rocha, T.M.; Melo, Y.C.S.; Santos, J.C.; da Silva, S.S. Column reactors in fluidized bed configuration as intensification system for xylitol and ethanol production from napier grass (Pennisetum Purpureum). Chem. Engine. Process. Int. 2021, 164, 108399. [Google Scholar] [CrossRef]
- Badalamenti, E.; Militello, M.; La Mantia, T.; Gugliuzza, G. Seedling growth of a native (Ampelodesmos mauritanicus) and an exotic (Pennisetum setaceum) grass. Acta Oecol. 2016, 77, 37–42. [Google Scholar] [CrossRef]
- Rodríguez-Caballero, G.; Caravaca, F.; Alguacil, M.M.; Fernández-López, M.; Fernández-González, A.J.; Roldán, A. Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment. Soil Biol. Biochem. 2017, 109, 176–187. [Google Scholar] [CrossRef]
- Da Re, D.; Tordoni, E.; de Pascalis, F.; Negrín-Pérez, Z.; Fernández-Palacios, J.M.; Arévalo, J.R.; Rocchini, D.; Medina, F.M.; Otto, R.; Arlé, E.; et al. Invasive fountain grass (Pennisetum setaceum (Forssk.) Chiov.) increases its potential area of distribution in Tenerife Island under future climatic scenarios. Plant Ecol. 2020, 221, 867–882. [Google Scholar] [CrossRef]
- Badagliacco, D.; Sanfilippo, C.; Megna, B.; La Mantia, T.; Valenza, A. Mechanical and Thermal Properties of Insulating Sustainable Mortars with Ampelodesmos mauritanicus and Pennisetum setaceum Plants as Aggregates. Appl. Sci. 2021, 11, 5910. [Google Scholar] [CrossRef]
- Charai, M.; Salhi, M.; Horma, O.; Mezrhab, A.; Karkri, M.; Amraqui, S. Thermal and mechanical characterization of adobes bio-sourced with Pennisetum setaceum fibers and an application for modern buildings. Cons. Build. Mater. 2022, 326, 126809. [Google Scholar] [CrossRef]
- Liu, L.; Teng, K.; Fan, X.; Han, C.; Zhang, H.; Wu, J.; Chang, Z. Combination analysis of single-molecule long-read and Illumina sequencing provides insights into the anthocyanin accumulation mechanism in an ornamental grass, Pennisetum setaceum cv. Rubrum. Plant Mol. Biol. 2022, 109, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, X.; Teng, W.; Chen, C.; Wu, J. Identification and phylogenetic classification of Pennisetum (Poaceae) ornamental grasses based on ssr locus polymorphisms. Plant Mol. Biol. Report. 2016, 34, 1181–1192. [Google Scholar] [CrossRef]
- Gupta, N.; Biswas, N.; Sudhakar, V.J. Amazing world of grasses. Rai J. Tech. Res. Inn. 2016, 4, 5–11. [Google Scholar]
- Mobamed-Saleem, M.A.; Woldu, Z. 23 Land Use and Biodiversity in the Upland Pastures in Ethiopia. Mountain biodiversity: Global Assess. 2019, 7, 277. [Google Scholar]
- Abdi, S.; Dwivedi, A.; Kumar, S.; Bhat, V. Development of EST-SSR markers in Tomaskin, J. and Tomaskinova and their applicability in studying the genetic diversity and cross-species transferability. J. Gen. 2019, 98, 1–16. [Google Scholar] [CrossRef]
- Wang, Q. The plastid genome of an ornamental grass Pennisetum villosum (Poaceae: Paniceae). Mitochondrial DNA Part B 2020, 5, 1586–1587. [Google Scholar] [CrossRef] [Green Version]
- Salas-Luevano, M.A.; Puente-Cuevas, R.; Vega-Carrillo, H.R. Concentrations of heavy metals and measurement of 40K in mine tailings in Zacatecas, Mexico. Environ. Earth Sci. 2021, 80, 186. [Google Scholar] [CrossRef]
- Kim, J. The Current State and Characteristics of Ornamental Grasses in South Korea. J. Korean Ins. Landsc. Arch. 2021, 49, 151–162. [Google Scholar] [CrossRef]
- Nirala, P.D.; Jain, S.C.; Kumari, P. Distribution of different bamboo species in different areas of North Chota Nagpur division of Jharkhand. Biosci. Disc. 2016, 7, 21–24. [Google Scholar]
- Stephan, J.G.; Pourazari, F.; Tattersdill, K.; Kobayashi, T.; Nishizawa, K.; de Long, J.R. Long-term deer exclosure alters soil properties, plant traits, understory plant community and insect herbivory, but not the functional relationships among them. Oecologia 2017, 184, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.C.; Mack, R.N. Apparent tolerance of low water availability in temperate Asian bamboos. J. Environ. Hortic. 2018, 36, 7–13. [Google Scholar] [CrossRef]
- Akaji, Y.; Fujiyoshi, K.; Wu, C.; Hattori, I.; Hirobe, M.; Sakamoto, K. Survival and recruitment of Sasa kurilensis culms in response to local light conditions in a cool temperate forest. J. Forest Res. 2019, 24, 365–370. [Google Scholar] [CrossRef]
- Reinhardt, C. Thread of herbicide-resistant weeds in soya beans: Prognosis for South Africa in light of global trends: Chemicals and fertiliser. Oilseeds Focus 2016, 2, 11–13. [Google Scholar]
- Sezen, U.U.; Barney, J.N.; Atwater, D.Z.; Pederson, G.A.; Pederson, J.F.; Chandler, J.M.; Cox, T.S.; Cox, S.; Dotray, P.; Kopec, D.; et al. Multi-phase US spread and habitat switching of a post-Columbian invasive, Sorghum halepense. PLoS ONE 2016, 11, e0164584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.C.; Lin, S.; Shen, A.; Chen, H.; Wang, F.; Huai, H.Y. Traditional knowledge on “Luchai” [Phragmites australis (Cav.) Trin. ex Steud. and Arundo donax L.] and their dynamics through urbanization in Yangzhou area, East China. Indian J. Tradit. Knowl. 2016, 15, 580–586. [Google Scholar]
- Watts, D.A.; Moore, G.W. Water-use dynamics of an invasive reed, Arundo donax, from leaf to stand. Wetlands 2011, 31, 725–734. [Google Scholar] [CrossRef]
- Mararakanye, N.; Magoro, M.N.; Matshaya, N.N.; Rabothata, M.C.; Ncobeni, S.R. Railway side mapping of alien plant distributions in Mpumalanga, South Africa. Bothalia-Afr. Biodiv Conserv. 2017, 47, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cronin, K.; Kaplan, H.; Gaertner, M.; Irlich, U.M.; Timm Hoffman, M. Aliens in the nursery: Assessing the attitudes of nursery managers to invasive species regulations. Biol. Invasions 2017, 19, 925–937. [Google Scholar] [CrossRef]
- Moshobane, M.C.; Nnzeru, L.R.; Nelukalo, K.; Mothapo, N.P. Patterns of permit requests and issuance for regulated alien and invasive species in South Africa for the period 2015–2018. Afr. J. Ecol. 2020, 58, 514–528. [Google Scholar] [CrossRef] [Green Version]
- Moshobane, M.C.; Olowoyo, J.O.; Middleton, L. Alien plant species of Haenertsburg Village, Limpopo Province, South Africa. BioInvasions Rec. 2022, 11, 23–39. [Google Scholar] [CrossRef]
- Jiménez-Ruiz, J.; Hardion, L.; Del Monte, J.P.; Vila, B.; Santín-Montanyá, M.I. Monographs on invasive plants in Europe N° 4: Arundo donax L. Bot. Lett. 2021, 168, 131–151. [Google Scholar] [CrossRef]
- Racelis, A.; Wagle, P.; Escamilla, J.; Goolsby, J.; Gowda, P. Interannual Variability and Seasonal Dynamics of Evapotranspiration of Arundo donax L. and Populations of its Biological Control Agent (Tetramesa romana). Ecohydrol. Hydrobiol. 2022, 22, 178–187. [Google Scholar] [CrossRef]
Family Name | Botanical Name | Common Name | NEMBA/CARA Categories | Invasion Status | Provision of Ecosystem Service | Geographic Origin | Citations (A = Local Uses Records; B = Use Records Elsewhere) |
---|---|---|---|---|---|---|---|
Poaceae | Agrostis castellana Boiss. & Reut. | Bent grass | 1a | Pt | Used as lawns and pasture | Europe, North Africa, and Asia | A: [38,43]; B: [44,80] |
Poaceae | Agrostis gigantea Roth | Black bent grass, Redtop | 1a | T | Used as pasture, lawns, for mine dump stabilization, and erosion control | Europe and Asia | A: [38,48,81,82,83]; B: [44,84,85,86,87,88] |
Poaceae | Agrostis stolonifera L. | Creeping bent grass | 1a | T | Used as pasture, lawns, and erosion control | Europe and Asia | A: [34,36,38,48,82]; B: [44,89,90] |
Poaceae | Ammophila arenaria (L.) Link | Marram grass | 2 | S | Used for erosion control | Europe, North Africa, and Western Asia. | A: [34,38,91,92,93]; B: [94,95,96,97] |
Poaceae | Arundo donax L. | Giant reed | 1b | T | Used for ornamental purposes, construction, flood attenuation, mine damp stabilization and musical flutes | Asia (Middle East) | A: [27,34,36,37,38,93,98]; B: [41,42,44,99,100,101,102] |
Poaceae | Cortaderia jubata (Lemoine) Stapf | Pampas grass, Purple pampas | 1b | T | Used for ornamental purposes, mine dump stabilization, medicine | South America | A: [34,36,38,93,103]; B: [44,104,105,106] |
Poaceae | Cortaderia selloana (Schult. & Schult.f.) Asch. & Graebn. | Silwergras | 1b | Pt | Used for ornamental, and mine dump stabilization | South America | A: [34,36,38,93]; B: [102,105,106,107] |
Poaceae | Elymus repens (L.) Gould | Twitch, Quick Grass, Quitch | 1a | Pt | Used for ornaments, erosion control and medicine | Europe, North Africa, and Asia | A: [34,36,37]; B: [44,108,109,110] |
Poaceae | Festuca rubra L. | Red fescue, Creeping red fescue | 1a | Pt | Used as lawns and for erosion control | Europe, North Africa, Asia, and North America | A: [34,38,48]; B: [44,111,112,113] |
Poaceae | Glyceria maxima (Hartm.) Holmb. | Reed meadow grass, Reed sweet grass | 2 | T | Used as pasture | Europe, and Asia | A: [34,36,38,114,115,116]; B: [90,117,118,119,120,121,122] |
Juncaceae | Luzula multiflora (Ehrh.) Lej. | Woodrush | 1a | Pt | Used as pasture | Europe, North Africa, Asia, and North America | A: [38,123]; B: [124,125,126,127] |
Poaceae | Paspalum quadrifarium Lam. | Tussock paspalum | 1a | Pt | Used for ornaments | Brazil and Argentina | A: [34,36,38,128]; B: [128,129,130,131,132] |
Poaceae | Pennisetum clandestinum Hochst. ex Chiov. | Kikuyu grass | 1b | T | Used as pasture, lawns, and for erosion control | Tropical Africa | A: [34,38,133]; B: [44,134,135,136,137,138] |
Poaceae | Pennisetum purpureum Schumach. | Elephant or Napier grass | 2 | Pt | Used as pasture and for ornamental purposes | Tropical Africa | A: [34,38]; B: [44,139,140,141,142,143,144] |
Poaceae | Pennisetum setaceum (Forssk.) Chiov. | Fountain grass | 1b | T | Used for ornamental and erosion control purposes | North and North-East Africa, and South-West Asia | A: [34,36,38]; B: [145,146,147,148,149,150] |
Poaceae | Pennisetum villosum R. Br. ex Fresen. | Feathertop | 1b | R | Used for ornaments | Ethiopia | A: [34,36,38]; B: [151,152,153,154,155,156,157] |
Poaceae | Poa pratensis L. | Kentucky bluegrass | 1a | T | Used as pasture, erosion control and as lawns | Europe, North Africa, Asia, North America | A: [34,36,38]; B: [44] |
Poaceae | Sasa palmata (hort. ex Burb.) E.G. Camus | Dwarf yellow-striped bamboo | 3 | Pt | Used for ornamental and erosion control purposes | East Asia | A: [38]; B: [158,159,160,161] |
Poaceae | Sorghum halepense (L.) Pers. | Johnson grass, Aleppo grass | 2 | T | Used as pasture | Mediterranean | A: [34,36,38,162,163]; B: [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramarumo, L.J. Harnessing Ecosystem Services from Invasive Alien Grass and Rush Species to Suppress their Aggressive Expansion in South Africa. Sustainability 2022, 14, 15032. https://doi.org/10.3390/su142215032
Ramarumo LJ. Harnessing Ecosystem Services from Invasive Alien Grass and Rush Species to Suppress their Aggressive Expansion in South Africa. Sustainability. 2022; 14(22):15032. https://doi.org/10.3390/su142215032
Chicago/Turabian StyleRamarumo, Luambo Jeffrey. 2022. "Harnessing Ecosystem Services from Invasive Alien Grass and Rush Species to Suppress their Aggressive Expansion in South Africa" Sustainability 14, no. 22: 15032. https://doi.org/10.3390/su142215032
APA StyleRamarumo, L. J. (2022). Harnessing Ecosystem Services from Invasive Alien Grass and Rush Species to Suppress their Aggressive Expansion in South Africa. Sustainability, 14(22), 15032. https://doi.org/10.3390/su142215032