Study on Land Use Changes in Changsha–Zhuzhou–Xiangtan under the Background of Cultivated Land Protection Policy
Abstract
:1. Introduction
- (1)
- Study the path of land use change in the CZT region.
- (2)
- Study the quantity change, exchange change, and shift change in land use types.
- (3)
- Explore the intensity and area of land use change.
- (4)
- Investigate whether arable land tends to shift to (or avoid) this land use type.
- (5)
- Explain whether the goal of the “balance of occupation and compensation” policy for cultivated land has been achieved.
2. Study Area and Methodologies
2.1. Study Area
2.2. Data Source and Processing
2.3. Research Methods
2.3.1. Components of Difference
2.3.2. Land Use Intensity Analysis Model
3. Results
3.1. Spatial Distribution Characteristics
3.2. Analysis of the Components of Land
3.3. Analysis of Changes in Land Category
3.4. Analysis of Cultivated Land Transfer Intensity
4. Discussion
4.1. Land Policy and Suggestion
4.2. Comparison with Other Studies
4.3. Uncertainty and Future Research Direction
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, X.L.; Pang, Z.G.; Yu, X.F. Spatial Temporal Pattern Analysis of Land Use/Cover Change: Methods & Applications; Scientific and Technical Documentation Press: Beijing, China, 2014; pp. 1–3. [Google Scholar]
- Popp, A.; Humpenöder, F.; Weindl, I.; Bodirsky, B.L.; Bonsch, M.; Lotze-Campen, H.; Müller, C.; Biewald, A.; Rolinski, S.; Stevanovic, M.; et al. Land-use protection for climate change mitigation. Nat. Clim. Chang. 2014, 4, 1095–1098. [Google Scholar] [CrossRef]
- Van Minnen, J.G.; Klein Goldewijk, K.; Stehfest, E.; Eickhout, B.; van Drecht, G.; Leemans, R. The importance of three centuries of land-use change for the global and regional terrestrial carbon cycle. Clim. Chang. 2009, 97, 123–144. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Biancalani, R.; Condor, G.R.; Jacobs, H.; Flammini, A.; et al. The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990–2012. Glob. Chang. Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhou, C.; Zhou, Y.; Zikirya, B. Spatiotemporal relationship characteristic of climate comfort of urban human settlement environment and population density in China. Front. Ecol. Evol. 2022, 10, 695. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Ojima, D.S.; Galvin, K.A.; Turner, B.L. The Global Impact of Land-Use Change. Bioscience 1994, 44, 300–304. [Google Scholar] [CrossRef]
- Yang, J.; Liu, W.; Li, Y.; Li, X.; Ge, Q. Simulating Intraurban Land Use Dynamics under Multiple Scenarios Based on Fuzzy Cellular Automata: A Case Study of Jinzhou District, Dalian. Complexity 2018, 2018, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhou, C.; He, B. Spatial and temporal heterogeneity of urban land area and PM2.5 concentration in China. Urban Clim. 2022, 45, 101268. [Google Scholar] [CrossRef]
- Villarreal-Rosas, J.; Wells, J.A.; Sonter, L.J.; Possingham, H.P.; Rhodes, J.R. The impacts of land use change on flood protection services among multiple beneficiaries. Sci. Total Environ. 2022, 806, 150577. [Google Scholar] [CrossRef]
- Spiegal, S.; Williamson, J.C.; Flynn, K.C.; Buda, A.R.; Rotz, C.A.; Kleinman, P.J.A. Land use change and collaborative manureshed management in New Mexico. J. Environ. Qual. 2022, 51, 602–613. [Google Scholar] [CrossRef]
- Afonso De Oliveira Serrão, E.; Silva, M.T.; Ferreira, T.R.; Paiva De Ataide, L.C.; Assis Dos Santos, C.; Meiguins De Lima, A.M.; de Paulo Rodrigues Da Silva, V.; de Assis Salviano De Sousa, F.; Cardoso Gomes, D.J. Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model. Int. J. Sediment Res. 2022, 37, 54–69. [Google Scholar] [CrossRef]
- Zhu, X.; Yao, D.; Shi, H.; Qu, K.; Tang, Y.; Zhao, K. The Evolution Mode and Driving Mechanisms of the Relationship between Construction Land Use and Permanent Population in Urban and Rural Contexts: Evidence from China's Land Survey. Land 2022, 11, 1721. [Google Scholar] [CrossRef]
- Siegel, K.; Farah Perez, A.; Kinnebrew, E.; Mills Novoa, M.; Ochoa, J.; Shoffner, E. Integration of qualitative and quantitative methods for land-use-change modeling in a deforestation frontier. Conserv. Biol. 2022, 2022, e13924. [Google Scholar] [CrossRef]
- Namara, I.; Hartono, D.; Latief, Y.; Moersidik, S. Policy Development of River Water Quality Governance Toward Land Use Dynamics Through a Risk Management Approach. J. Ecol. Eng. 2022, 23, 25–33. [Google Scholar] [CrossRef]
- Colman, C.B.; Guerra, A.; Roque, F.D.O.; Rosa, I.M.D.; Oliveira, P.T.S.D. Identifying priority regions and territorial planning strategies for conserving native vegetation in the Cerrado (Brazil) under different scenarios of land use changes. Sci. Total Environ. 2022, 807, 150998. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, M.; Zou, Y.; Wu, C. Mapping trade-offs among urban fringe land use functions to accurately support spatial planning. Sci. Total Environ. 2022, 802, 149915. [Google Scholar] [CrossRef]
- Baldini, C.; Marasas, M.E.; Tittonell, P.; Drozd, A.A. Urban, periurban and horticultural landscapes—Conflict and sustainable planning in La Plata district, Argentina. Land Use Policy 2022, 117, 106120. [Google Scholar] [CrossRef]
- Zhong, H.Y. Research on Land Use Change and Its Ecological and Environmental Effects in Poyang Lake Area. Doctoral Dissertation, Nanjing Agricultural University, Nanjing, China, 2011. [Google Scholar]
- Wang, L.; Qian, L.X. Analysis of land use/land cover change modeling methods. J. Xinyang Norm. Coll. 2004, 3, 302–307. [Google Scholar]
- Aldwaik, S.Z.; Pontius, R.G. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban. Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Huang, J.; Pontius, R.G.; Li, Q.; Zhang, Y. Use of intensity analysis to link patterns with processes of land change from 1986 to 2007 in a coastal watershed of southeast China. Appl. Geogr. 2012, 34, 371–384. [Google Scholar] [CrossRef]
- Pontius, R.; Gao, Y.; Giner, N.; Kohyama, T.; Osaki, M.; Hirose, K. Design and Interpretation of Intensity Analysis Illustrated by Land Change in Central Kalimantan, Indonesia. Land 2013, 2, 351–369. [Google Scholar] [CrossRef]
- Xie, Z.; Pontius Jr, R.G.; Huang, J.; Nitivattananon, V. Enhanced Intensity Analysis to Quantify Categorical Change and to Identify Suspicious Land Transitions: A Case Study of Nanchang, China. Remote Sens. 2020, 12, 3323. [Google Scholar] [CrossRef]
- Quan, B. Intensity Analysis to communicate land change during three time intervals in two regions of Quanzhou City, China. GiSci. Remote Sens. 2020, 57, 21–36. [Google Scholar] [CrossRef]
- Quan, B.; Ren, H.; Pontius, R.G.; Liu, P. Quantifying spatiotemporal patterns concerning land change in Chang-sha, China. Landsc. Ecol. Eng. 2018, 14, 257–267. [Google Scholar] [CrossRef]
- Deng, Z.; Quan, B. Intensity Characteristics and Multi-Scenario Projection of Land Use and Land Cover Change in Hengyang, China. Int. J. Environ. Res. Public Health 2022, 19, 8491. [Google Scholar] [CrossRef]
- Pontius, R.G. Component intensities to relate difference by category with difference overall. Int. J. Appl Earth Obs. 2019, 77, 94–99. [Google Scholar] [CrossRef]
- Sun, X.; Yu, C.; Wang, J.; Wang, M. The Intensity Analysis of Production Living Ecological Land in Shandong Province, China. Sustainability 2020, 12, 8326. [Google Scholar] [CrossRef]
- Zhang, Y.M. Analysis of the intensity of land cover change based on topographic slope—An example from the Iloilo River basin. Resour. Dev. Mark. 2021, 37, 1316–1322. [Google Scholar]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Liu, Y.S.; Wang, J.Y.; Long, H.L. Analysis of arable land loss and its impact on rural sustainability in Southern Jiangsu Province of China. J. Environ. Manag. 2010, 91, 646–653. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, D.; Chang, X.; Lin, Z. A new grading system for evaluating China's cultivated land quality. Land Degrad Dev. 2020, 31, 1482–1501. [Google Scholar] [CrossRef]
- Yu, B. Ecological effects of new-type urbanization in China. Renew. Sustain. Energy Rev. 2021, 135, 110239. [Google Scholar] [CrossRef]
- Çoruhlu, Y.E.; Çelik, M.Ö. Protected area geographical management model from design to implementation for specially protected environment area. Land Use Policy 2022, 122, 106357. [Google Scholar] [CrossRef]
- Yìldiz, O.; Coruhlu, Y.E.; Biyik, C. Registration of agricultural areas towards the development of a future Turkish cadastral system. Land Use Policy 2018, 78, 207–218. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, D.; Liu, S.; Li, H. Stability of Land-use/Land-cover in National Nature Reserves of Jilin Province, China. Chin. Geogr. Sci. 2022, 32, 324–339. [Google Scholar] [CrossRef]
- Li, L.; Tang, H.; Lei, J.; Song, X. Spatial autocorrelation in land use type and ecosystem service value in Hainan Tropical Rain Forest National Park. Ecol. Indic. 2022, 137, 108727. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Y. Exploration of practice and optimization of strategies for conservation of cultivated land resources in contemporary China’s rural areas—Centering on black soil conservation and others. Nat. Resour. Conserv. Res. 2022, 5, 86–99. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, M.; Zhao, Q.; Chen, Z.; Jiang, P.; Li, M.; Chen, D. Delineation of a basic farmland protection zone based on spatial connectivity and comprehensive quality evaluation: A case study of Changsha City, China. Land Use Policy 2021, 101, 105145. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook—2021; China Statistics Press: Beijing, China, 2022.
- Liu, Y.; Zhou, Y. Reflections on China's food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Deng, S. Exploring the relationship between new-type urbanization and sustainable urban land use: Evidence from prefecture-level cities in China. Sustain. Comput. Inform. Syst. 2021, 30, 100446. [Google Scholar] [CrossRef]
- Liu, Y.; Song, W.; Deng, X. Understanding the spatiotemporal variation of urban land expansion in oasis cities by integrating remote sensing and multi-dimensional DPSIR-based indicators. Ecol. Indic. 2019, 96, 23–37. [Google Scholar] [CrossRef]
- Liu, M.; Liu, S.; Ning, Y.; Zhu, Y.; Valbuena, R.; Guo, R.; Li, Y.; Tang, W.; Mo, D.; Rosa, I.M.D.; et al. Co-Evolution of Emerging Multi-Cities: Rates, Patterns and Driving Policies Revealed by Continuous Change Detection and Classification of Landsat Data. Remote Sens. 2020, 12, 2905. [Google Scholar] [CrossRef]
- Quan, B.; Xiao, Z.; Römkens, M.J.M.; Bai, Y.; Lei, S. Spatiotemporal Urban Land Use Changes in the Changzhutan Region of Hunan Province in China. J. Geogr. Inf. Syst. 2013, 05, 136–147. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Chen, Y.; Peng, F.; Li, J.; Yan, X. Analog simulation of urban construction land supply and demand in Chang-Zhu-Tan Urban Agglomeration based on land intensive use. J. Geogr. Sci. 2019, 29, 1346–1362. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Liu, X. Carbon conduction effect and temporal-spatial difference caused by land type transfer in Chang-Zhu-Tan urban agglomeration from 1995 to 2018. Acta Ecol. Sin. 2022, 42, 338–347. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.; Wang, W.; Lei, X.; Deng, Y. Exploring spatial-temporal change and gravity center movement of construction land in the Chang-Zhu-Tan urban agglomeration. J. Geogr. Sci. 2019, 29, 1363–1380. [Google Scholar] [CrossRef] [Green Version]
- Changsha City Bureau of Statistics. National Bureau of Statistics Changsha Survey Team; 2021 Changsha Statistical Yearbook; China Statistics Press: Beijing, China, 2022.
- Lu, H.W. System Dynamics-Based Optimization of Landscape Pattern in ChangZhuTan City Cluster. Master's Thesis, Central South University of Forestry Science and Technology, Changsha, China, 2020. [Google Scholar]
- Tang, C.C.; Li, Y.P. Geological information mapping of land use/cover change in a polycentric urban agglomeration: A case study of Changsha-Zhuzhou-Xiangtan urban agglomeration. Geogr. Res. 2020, 39, 2626–2641. [Google Scholar]
- People's Government of Hunan Province. 2021 Hunan Provincial Government Work Report. 2021. Available online: http://www.hunan.gov.cn/hnszf/szf/zfgzbg/202102/t20210205_14403031.html (accessed on 10 August 2022).
- 1:1 Million Public Version of Geographic Information Data. In 2021. Available online: https://www.webmap.cn/commres.do?method=result100W (accessed on 10 August 2022).
- Resource and Environment Science and Data Center. Spatial Distribution Data of Remote Sensing Monitoring of National Land Use Types. In 2020. Available online: http://www.resdc.cn/Datalist1.aspx?FieldTyepID=1,3 (accessed on 10 August 2022).
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Basic characteristics and spatial patterns of land use change in China since the late 1980s. Acta Geogr. Sin. 2014, 69, 3–14. [Google Scholar]
- Quan, B.; Fan, X.J.; Liu, P.L.; Guo, T.; Hu, Z.; Du, G.Q.; Sun, S.; Deng, Z.W.; Wang, Z.S. ArcGIS 10.8 Geographical Information System Software and Application; China Environment Publishing Group: Beijing, China, 2021; pp. 158–163. [Google Scholar]
- Demir, O.; Çoruhlu, Y.E. Determining the property ownership on cadastral works in Turkey. Land Use Policy 2009, 26, 112–120. [Google Scholar] [CrossRef]
- Pontius, R.G.; Santacruz, A. Quantity, exchange, and shift components of difference in a square contingency table. Int. J. Remote Sens. 2014, 35, 7543–7554. [Google Scholar] [CrossRef]
- Pontius, R.G. Metrics That Make a Difference; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–130. [Google Scholar]
- Zhou, C.; Zhang, D.; Cao, Y.; Wang, Y.; Zhang, G. Spatio–temporal evolution and factors of climate comfort for urban human settlements in the Guangdong–Hong Kong–Macau Greater Bay Area. Front. Environ. Sci. 2022, 10, 1001064. [Google Scholar] [CrossRef]
- Deng, Z.; Zhao, Q.; Bao, H.X.H. The Impact of Urbanization on Farmland Productivity: Implications for China’s Requisition–Compensation Balance of Farmland Policy. Land 2020, 9, 311. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Gong, J.; Wang, L.; Hu, Y. Quantifying the amount, heterogeneity, and pattern of farmland: Implications for China’s requisition-compensation balance of farmland policy. Land Use Policy 2019, 81, 256–266. [Google Scholar] [CrossRef]
- Coruhlu, Y.E.; Uzun, B.; Yildiz, O. Zoning plan-based legal confiscation without expropriation in Turkey in light of ECHR decisions. Land Use Policy 2020, 95, 104598. [Google Scholar] [CrossRef]
- Wang, Z. Land Spatial Development Based on Carrying Capacity, Land Development Potential, and Efficiency of Urban Agglomerations in China. Sustainability 2018, 10, 4701. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.Y.; Kuang, B.; Lu, X.H. Green development effect of heavy metal polluted arable land management in ChangZhuTan area. Yangtze River Basin Resour. Environ. 2021, 30, 2277–2286. [Google Scholar]
- Chen, X.; Lin, C.; Hou, X.; Wu, Z.; Yan, G.; Zhu, C. The impact of land consolidation on arable land productivity: A differentiated view of soil and vegetation productivity. Agric. Ecosyst. Environ. 2022, 326, 107781. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Wang, R.; Zheng, P. Modeling and evaluating land-useland-cover change for urban planning and sustainability A case study of Dongying city, China. J. Clean Prod. 2017. [Google Scholar]
- Shen, X.; Wang, L.; Wu, C.; Lv, T.; Lu, Z.; Luo, W.; Li, G. Local interests or centralized targets? How China's local government implements the farmland policy of Requisition–Compensation Balance. Land Use Policy 2017, 67, 716–724. [Google Scholar] [CrossRef]
- Lu, X.; Shi, Y.; Chen, C.; Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province. Land Use Policy 2017, 69, 25–40. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, X.; Zhang, X.Y. Study on the spatial and temporal changes of various types of urban construction land in ChangZhuTan urban agglomeration metropolitan area. Hum. Geogr. 2021, 36, 145–154. [Google Scholar]
- Lichtenberg, E.; Ding, C. Assessing farmland protection policy in China. Land Use Policy 2008, 25, 59–68. [Google Scholar] [CrossRef]
First-Class Land Name | Figure | ID | Second-Class Land Name | ID |
---|---|---|---|---|
Cultivated | 1 | Paddy field | 11 | |
Dryland | 12 | |||
Forest | 2 | Forest land | 21 | |
Shrubland | 22 | |||
Open forest land | 23 | |||
Another forest land | 24 | |||
Grass | 3 | High-coverage grass | 31 | |
Medium-coverage grassland | 32 | |||
Low-coverage grassland | 33 | |||
Water | 4 | River and canal | 41 | |
Lakes | 42 | |||
Reservoirs or Ponds | 43 | |||
Bottomland | 46 | |||
Built | 5 | Urban and Townland | 51 | |
Rural Settlements | 52 | |||
Another construction land | 53 | |||
Unused | 6 | Marshland | 64 | |
Bare land | 65 | |||
Bare rock | 66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Quan, B.; Deng, Z.; Liu, J. Study on Land Use Changes in Changsha–Zhuzhou–Xiangtan under the Background of Cultivated Land Protection Policy. Sustainability 2022, 14, 15162. https://doi.org/10.3390/su142215162
Fan X, Quan B, Deng Z, Liu J. Study on Land Use Changes in Changsha–Zhuzhou–Xiangtan under the Background of Cultivated Land Protection Policy. Sustainability. 2022; 14(22):15162. https://doi.org/10.3390/su142215162
Chicago/Turabian StyleFan, Xuejiao, Bin Quan, Zhiwei Deng, and Jianxiong Liu. 2022. "Study on Land Use Changes in Changsha–Zhuzhou–Xiangtan under the Background of Cultivated Land Protection Policy" Sustainability 14, no. 22: 15162. https://doi.org/10.3390/su142215162
APA StyleFan, X., Quan, B., Deng, Z., & Liu, J. (2022). Study on Land Use Changes in Changsha–Zhuzhou–Xiangtan under the Background of Cultivated Land Protection Policy. Sustainability, 14(22), 15162. https://doi.org/10.3390/su142215162