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Abstract: Solar chimneys are devices that use solar energy to generate a hot airflow that can be
used for power production, the drying of agricultural products, and/or water desalination. The
performance of a small-scale solar chimney is studied numerically. The computational domain
includes the solar chimney, the ground, and the atmosphere. The turbulent airflow is simulated using
the commercial CFD code Ansys Fluent. The only boundary conditions required for the simulation
are the wind speed, the ambient temperature, and the absorbed energy from the ground, determined
by an energy balance in the system. The system was simulated for one day in the summer in the
city of Belo Horizonte, Brazil. The ambient crosswind plays an important role in the velocity and
temperature. The velocity inside the solar chimney increased with the wind speed, increasing the
heat transfer and decreasing the airflow temperature. When the wind speed increased from 0 to
10 m/s, the outlet velocity increased from 1 to 4 m/s, and the outlet temperature decreased from 313
to 304 K.

Keywords: solar chimney; small-scale solar chimney; CFD; energy balance; ambient crosswind

1. Introduction

The depletion of conventional energy resources is a problem facing the world nowa-
days, leading to the search for renewable energy sources [1]. Solar energy arises as a
clean and abundant source with the potential to meet world energy requirements with
free emissions [2]. Solar chimneys use solar energy to generate a hot airflow, consisting of
three main parts: a solar collector, an absorber plate, and a chimney. For power generation
applications, they also comprise a wind turbine coupled with a generator. The operational
principle is very simple: the solar energy is converted into thermal energy in the collector,
and subsequently, into kinetic energy [3]. The kinetic energy can be converted into electrical
energy in the wind turbine in large structures.

According to [4], the power production scales with the product of the collector area
and chimney height, indicating that if two similar plants were compared, a cubic scaling is
obtained for the power. Therefore, large structures are required to generate electric power
at competitive prices [5]. Small-scale devices can be used to dry agricultural products [6],
for space heating [7], or for natural ventilation [8]. Maia et al. [6] evaluated the drying of
bananas inside a small-scale solar chimney, using an analysis based on the first and second
laws of thermodynamics, comparing the performance of the system with and without load.
Monghasemi and Vadiee [7] presented an overview of the integration of solar chimneys to
improve the level of thermal comfort in residential sectors. Maghrabie et al. [8] assessed
the potential design and operating parameters of solar chimneys for natural ventilation.

Solar chimneys, nevertheless, present very low efficiency [9], which can be improved
by combining power generation with other uses in hybrid plants. According to [10], PV
systems, industrial waste, or flue gases can be integrated into the plants, or the plants can
be combined with solar dryers, desalination plants, and cooling tower applications.
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The power generation and the overall efficiency of the plant depend on several factors.
The geometry plays an important role, with it being demonstrated that the most important
parameters are the tower dimensions as they cause the most significant variations in the
flow behavior [11]. The collector diameter is also a very important factor since it changes
the energy absorbed by the system. Besides the geometry, other important factors are the
heat transfer coefficients, the pressure potential, and the turbine pressure drop [10].

Several studies have been conducted to determine the influence of the factors on
the performance of the system and the airflow characteristics, divided into experimental,
analytical, and numerical studies. The first experimental study was the Manzanares plant,
with a peak output of 50 kW built in 1981/82 in Spain [12], used as a reference for the
majority of the works. The construction of the plant and its basic principles are described
by [13] and preliminary test results are presented by [14]. Since its construction, other
experimental studies were performed but mainly restricted to laboratory scale.

A prototype of a solar chimney, with a height of 12.3 m, was tested for nine months,
and the results of temperature, velocity, solar radiation, and humidity are presented by [15].
A prototype with a tower height of 3 m and a collector diameter of 3 m was constructed
in Iran [16]. The performance of the system was experimentally evaluated using different
materials and different dimensional parameters. Experimental data for the temperatures
and velocities of the airflow inside a solar chimney with a tower height of 12 m and a
collector diameter of 10 m are described by [17]. A detailed analysis of experimental data
on the temperature inside a solar chimney in China is given in [18]. The tower is 8 m tall,
made from PVC drainpipes, and the collector has a diameter of 8 m.

Mathematical models represent the thermal analysis of the components of the system,
including energy and exergy balances [19–21]. An exergetic analysis of a solar chimney
was first presented by [21]. The author described a simplified mathematical model of a
solar chimney to demonstrate the feasibility of the application of exergetic analysis in this
system. The results were presented based on several assumptions, not on experimental
data. A thermodynamic analysis based on experimental data inside a small-scale solar
chimney prototype was performed in [20]. The energy and exergy rates inside the sys-
tem were estimated. The prototype was designed to dry agricultural products. Later, a
thermodynamic analysis for the system with and without load was developed in [6], for
the drying of bananas. A 3D numerical analysis of a solar chimney was performed using
the geometry of the Manzanares prototype and Tehran climate data [19]. The energy and
exergy efficiencies varied from 3.5 to 93.3% and 2.0 to 29.0%, respectively.

Computational fluid dynamics (CFD) models describe the behavior of the airflow
inside the solar chimney and represent a suitable method to evaluate the influence of the
geometry and boundary conditions on the system performance.

A CFD analysis of a small-scale solar chimney was performed by Yapici [22], consider-
ing steady-state conditions and a constant solar radiation heat flux on the collector roof and
absorber. The results were compared to experimental data from the literature, and, after
validation, the authors evaluated different configurations for the system aiming to find the
maximum power production. Fallah and Valipour [23] assessed velocity and temperature
fields inside a small-scale sloped solar chimney using a 3D simulation. Prescribed values of
solar radiation and correlations from literature to the heat transfer coefficients were used.
The simulation was validated by experimental data from the literature.

Cuce et al. [24] evaluated the influence of the chimney height on the maximum velocity
reached by the airflow, the pressure difference around the turbine, temperature rise in
the collector, power output, and plant efficiency. The influence of solar radiation on the
maximum velocity was also evaluated. The analysis was performed considering steady-
state conditions, neglecting changes in climatic conditions. A constant value for solar
radiation was also assumed. The dimensions of the plant were defined as the ones from
the Manzanares plant. Torabi et al. [25] studied the influence of geometric parameters,
such as collector radius and divergent angle, and thermal boundary conditions on the
performance of a solar chimney. Prescribed values for the heat flux and convective heat
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transfer coefficient were assumed. The Manzanares plant dimensions were selected, and
the results were compared to numerical results from the literature.

Numerous studies can be found regarding numerical simulations of solar chimneys.
Pradhan et al. [26] present a literature review of the studies concerning the design and
performance of solar chimney power plants, focusing mainly on maximum power and
efficiency. Kasaeian et al. [27] and Das and Chandramohan [10], present a comprehen-
sive review of the solar chimney technology, including thermodynamic analyses, and
experimental and numerical works, discussing the challenges and opportunities of the
plants. Regarding CFD analyses, the authors concluded that most of the studies performed
simulations without considering the effect of the turbine on the airflow. Moreover, further
focus should be on the development of models to predict the power potential of the solar
chimney by changing its dimensions.

Another gap in the literature is the use of boundary conditions. Most works from the
literature adopt fixed values for the incident solar radiation and convective heat transfer
coefficients, developing steady-state conditions analyses. Some works use fixed values
for the inlet velocity or mass flowrate when it is well-known that the airflow is generated
by buoyancy forces; therefore, the velocity depends on the incident solar radiation. In
general, the solution domain comprises only the solar chimney and sometimes the ground
under the solar collector. A few works were found using a computational box to represent
the atmosphere outside the device when the influence of crosswind on solar chimneys
is evaluated. The first analysis was developed by [28,29], evaluating the effect of the
crosswind on the pressure, temperature, and velocity distribution, and the output power of
a solar chimney with the dimensions of the Manzanares prototype. The boundary condition
used on the ground surface is a radiation flux depending on the intensity of the incident
solar radiation. The velocity at the inlet was assumed as fitting the logarithmic law of the
atmospheric boundary layer proposed by Prandtl in 1932, depending on the ground surface
shear stress and the aerodynamic roughness length of the ground. Later, the same boundary
condition for the velocity was adopted by [30] to simulate large-scale solar chimneys, using
constant values for the heat flux on the ground surface. The assessment of the influence
of strong wind speeds was performed by [31], using prescribed values for the incident
solar radiation.

More recently, a tilted solar chimney was studied in [32], using the same boundary
conditions of Shen et al. An experimental and numerical analysis of a small solar chimney
was carried out [33], considering as boundary conditions for the numerical analysis of the
logarithmic profile for the inlet velocity, an empirical correlation for the convective heat
transfer between the cover and the ambient, and assuming the ground surface as adiabatic.
An experimental analysis of a small solar chimney was performed by [32] to establish
dimensional parameters to predict the output of large-scale dimensions. The effect of the
wind speed on the exit updraft velocity was experimentally evaluated in [34]. In view
of the shortcomings of the above research, this paper puts forward a numerical analysis
of the influence of the crosswind on a small-scale solar chimney, with simple boundary
conditions. The only parameters needed are the wind speed, the ambient temperature,
and the incident solar radiation, not requiring temperatures and heat transfer rates on the
collector or the ground. In this work, a numerical analysis of the airflow inside a small-scale
solar chimney is developed. The incident solar radiation was estimated for the city of Belo
Horizonte, Brazil, and, based on the predicted value, the heat absorbed by the ground was
determined by an energy balance considering the optical properties of the materials, such
as ground absorptance and collector transmittance. The computational domain includes
the solar chimney, the ground, and the atmosphere, allowing the prediction of the system
characteristics having as input data only the ambient temperature, the wind speed, and
the absorbed heat from the ground. It was not necessary to provide a value for the inlet
velocity, determined by the analysis. It was also possible to evaluate the influence of the
crosswind on the velocity distribution inside the system, for wind speeds from 0 to 10 m/s.
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2. Materials and Methods

The mathematical model is divided into the governing equations used in the CFD
analysis, and the energy balance for the system.

2.1. Governing Equations

The governing equations for mass, momentum, and energy are given by [35]

∇ (ρ·→v ) = 0, (1)

∇ (ρ·→v · →v ) = −∇p +∇
(

µ

[(
∇→v +∇→v

T
)
− 2

3
∇·→v I

])
+ ρ

→
g , (2)
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]
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))
, (3)

In Equations (1)–(3), ρ stands for density, µ for dynamic viscosity, ke f f for the eddy

thermal diffusivity,
→
v for velocity, p for pressure, E for energy, and

→
g for gravity.

To take into account the turbulent effects, the k-ε turbulence model was used, in which
the turbulent viscosity is given by

µt = ρCµ
k2

ε
. (4)

Cµ, k and ε represent an empirical constant, the turbulent kinetic energy, and the rate
of dissipation of the turbulent kinetic energy, respectively. The main equations for the
turbulence model are given by [35].

The k-ε turbulence model is the most used model for the study of solar chimneys [11,36,37].
Additionally, in an evaluation of the effect of the turbulence model on the simulation of
solar chimneys, this model showed the best agreement with experimental results among
the evaluated models [38].

The airflow inside the solar chimney is induced by natural convection. The Rayleigh
number Ra is the dimensionless parameter that measures the intensity of the flow. It is
defined by:

Ra =
gβ∆TL3

αν
. (5)

∆T is the maximum temperature increase within the system. α is the thermal dif-
fusivity, ν is the kinematic viscosity, β is the thermal expansion coefficient, and L is the
collector height.

2.2. Energy Balance

Solar energy reaches the collector, and part of this energy reaches the ground and is
transferred to the airflow. Considering an isotropic sky model, the absorbed energy by
the ground S is the sum of the beam (Ib), diffuse (Id) and ground-reflected components, as
given by [39]

S = IbRb(τα)b + IdRd

(
1 + cos β

2

)
+ ρg I(τα)g

(
1− cos β

2

)
, (6)

(τα) represents the transmittance–absorptance for the beam (subscript b), diffuse
(subscript d) and ground reflected (subscript g) components. β is the tilt angle of the
collector (in this work, β = 0◦). ρg is the ground reflectance, and Rb represents the ratio
between the solar radiation on a tilted surface and on a horizontal surface.

The absorbed energy from the ground is determined based on an energy balance in
the system, as indicated in Figure 1.
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Figure 1. Energy balance.

The convective heat transfer from the airflow (q′′ conv,3) and the radiative heat transfer
from the ground surface (q′′ rad,1) to the collector surface are lost to the environment by
convection (q′′ conv,2) and radiation (q′′ rad,2). The energy transferred by the ground surface
to the deeper layers by conduction (q′′ cond,0) is given by the difference between the absorbed
portion (S) of the incident solar energy, the convection heat transfer to the airflow (q′′ conv,1),
and the radiative heat transfers to the collector (q′′ rad,1) and to the environment (q′′ rad,3).

S− q′′ conv,1 − q′′ rad,1 − q′′ rad,3 = q′′ cond,0. (7)

A complete description of the model is presented in [5]. Radiative heat transfers were
modeled following classic models from the literature, as suggested by [39]. Convective heat
transfer coefficients were adopted according to the literature on solar chimneys [40,41].

2.3. Computational Analysis

In this study, ANSYS Fluent software was used for simulation. The dimensions and
properties of the prototype were defined as the ones of a small-scale prototype built in Belo
Horizonte, Brazil [5]. The height and diameter of the tower are, respectively, 2.5 m and
0.2 m, and the height and diameter of the collector are, respectively, 0.1 m and 5 m. The
tower walls are thermally insulated.

The computational domain used includes three different domains: the solar chimney,
the ground, and the atmosphere, as indicated in Figure 2.

It was performed a mesh test to reach a mesh-independent solution. Three mesh
configurations were used, and the most refined one, which was used for obtaining the
results, had 117,137 nodes and 525,792 elements. This mesh was able to ensure grid
independency. The mesh consisted of tetrahedral elements inside the geometry and prism
elements on the walls, as suggested by [42].

The atmosphere around the solar chimney was modeled as a parallelepiped 10 m in
width and 5 m in height, with air as an ideal gas, atmospheric pressure of 91.5 kPa (for the
city of Belo Horizonte, Brazil), and prescribed ambient temperature. The upper and lower
surface of the atmosphere were considered adiabatic. In the lateral surfaces, an opening
condition was assumed, allowing the air to enter or leave the system. In one of the lateral
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faces, a prescribed value was assumed for the wind speed (Figure 3), varying from 0 to
10 m/s.
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Since the airflow is generated by buoyance forces, the velocity in the radial direction
is unknown [11], depending on the ambient conditions. The use of a computational box
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representing the atmosphere, as presented by [32], avoids the prescription of the velocity at
the collector inlet. The velocity is obtained by the solution of the governing equations.

The ground was modeled as a continuous solid of brick, with 0.5 m of depth. At
the beginning of the simulation, it was assumed a homogeneous temperature, equal to
the ambient temperature. On the bottom surface, a no-slip condition and a fixed value
for the temperature were considered. In the lateral surface, it was assumed a no-slip
adiabatic condition.

Finally, the air inside the solar chimney was modeled as real gas. The tower wall was
assumed adiabatic. The inlet and outlet of the solar chimney were modeled as opening
conditions, which allow the air either to enter or leave the system, depending on the
conditions. The collector surface and the ground surface were modeled as an interface
without mass flow, allowing only energy transfers. At the ground surface, a prescribed
value for the heat flux was adopted, corresponding to the absorbed energy from the ground,
determined by Equation (6). The model for the absorbed energy from the ground takes into
account the beam and diffuse components of the solar radiation and considers an isotropic
sky model. A complete description of the model is given in [39]. The boundary conditions
are summarized in Table 1.

Table 1. Boundary conditions.

Region Boundary Condition

Atmosphere–upper and bottom regions No slip, adiabatic
Atmosphere–lateral Opening, one face with prescribed velocity

Ground–bottom region No slip, prescribed temperature

Ground–upper region Interface without mass flow, prescribed heat
flux

Ground–lateral No slip, adiabatic
Solar collector–lateral Opening, prescribed ambient temperature

Solar collector–upper surface Interface without mass flow
Tower wall No slip, adiabatic

Tower outlet Opening

Therefore, it is worth noting that the only values required as input data are ambient
temperature, wind speed, and the energy absorbed by the ground, which makes the
developed model global and easy to simulate for different locations.

3. Results

The results are presented for the 8th of February, at noon, corresponding to the middle
of summer in the Southern Hemisphere. The input data are only the ambient temperature
of 30.3 ◦C, corresponding to results from experimental data, and 565 W/m2 of energy
absorbed by the ground, determined by Equation (6). The wind speed was prescribed. The
first results were obtained with a wind speed initially defined as zero, but the influence of
the wind speed was also assessed, by varying it from 0 to 10 m/s.

The distribution of the temperature inside the entire computational domain (atmo-
sphere, solar chimney, and ground) is shown in Figure 4. Inside the solar chimney, it can be
seen an increase in the air temperature towards the tower, caused by the heat transfer from
the ground surface. The atmosphere temperature is nearly constant, except for the region
close to the tower outlet. The air leaves the solar chimney at a temperature higher than the
ambient temperature, and the heat is dissipated to the surroundings. On the ground, the
temperature variation is only significant close to the ground surface.
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Figure 4. Temperature distribution in the computational domain.

In the tower, small variations in temperature were found, due to the thermal insulation
assumption. Figures 5 and 6 present the temperature distribution in the tower, in more
detail. Figure 5 presents the temperature in a cross-section of the tower (variation with the
x-axis), at a height corresponding to the beginning of the tower. The temperature profile is
symmetric and approximately constant, except for the region close to the walls.
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Figure 6. Temperature distribution in the tower.

Figure 6 presents the temperature variation in the tower height, on the symmetry axis.
The position y = 0 corresponds to the ground surface, where the temperature was higher
due to the solar radiation absorption. The temperature decreased for higher heights. When
the airflow reached the tower, the temperature remained approximately constant due to
the thermal insulation condition.

The ground temperature decreased from the surface to the deeper layers, and it can be
seen that at a small distance from the surface, the temperature reached ambient temperature.
Figure 7 shows the temperature distribution along the ground. The temperature distribution
is nearly exponential, consistent with the semi-infinite solid assumption for the ground.
The ambient temperature was reached at a distance of 0.2 m.
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The velocity field inside the solar chimney is shown in Figure 8. Under the collector,
due to the higher cross-section area, the velocities were lower, increasing towards the tower,
when the airflow was changed from radial to axial. Unlike the temperature, the velocity
varied with height. For lower heights, the velocity at the center was higher, decreasing
with the boundary layer development. At the top of the tower, the airflow exhibited the
behavior of an almost fully developed flow. It is worth noting that the average velocity was
constant, once the cross-sectional area did not vary in the tower. The airflow in the tower
was turbulent, with a Reynolds number (based on the tower diameter) of approximately
1× 105.
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Figure 9 presents the streamlines of the airflow. It is possible to see vortices inside the
solar collector and random flow structures close to the tower.
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The velocity profile at a height corresponding to the beginning of the tower is shown
in Figure 10. Although turbulent, the profile is not the expected profile: flat in the center,
dropping off sharply to zero at the wall, because the airflow is not yet fully developed. The
development of the velocity in the tower, on the symmetry axis, is shown in Figure 11.
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Figure 11. Velocity distribution in the tower.

In the connection between the collector and the tower, the geometry imposes a sud-
den contraction on the airflow, forcing it to contract through a minimum diameter, and
increasing the velocity [43], as shown in Figure 11. The transition between the collector and
the tower is a region in which the airflow may detach from the wall [4]. This behavior is
observed in Figure 12, with null shear stress in this region.



Sustainability 2022, 14, 15208 12 of 18

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 18 
 

 

relation between the Strouhal number and the natural frequency. For the geometry used 

in this paper, the critical velocity, determined as suggested by [44], was 13.5 m/s. For this 

reason, wind speeds ranged up to a limit below the critical velocity. 

 

Figure 12. Shear stress distribution in the tower wall. 

Figures 13 and 14 show the air velocity and temperature inside and outside the solar 

chimney, for wind speeds from 0 to 10 m/s. The velocity of the airflow at the outlet of the 

solar chimney was significantly affected by the crosswind. For still air (0 m/s), the airflow 

left the solar chimney vertically. When the wind speed increased, the airflow was carried 

by the wind to the left, decreasing the velocity of the airflow at the outlet. It is worth noting 

that the airflow inside the solar chimney reached velocities higher than the wind speed, 

as can be seen in Figure 13. 

Figure 15 shows the velocity at the symmetry axis, for different wind speeds. y stands 

for the distance from the ground surface. At y = 0, the velocity was zero. For a given wind 

speed, in the connection between the collector and the tower, there was a sudden contrac-

tion of the airflow through a minimum diameter [43] and possible detachment from the 

walls, increasing significantly the velocity, as observed in Figures 11 and 12. When the 

airflow entered the tower, it was rearranged and the velocity reached an average value. 

The velocity changed only slightly in the tower. At the system outlet, the airflow velocity 

decreased, due to the vortexes imposed by the wind, as observed by [45]. The velocity of 

the air inside the solar chimney increased with the wind speed, as can also be seen in 

Figure 16, which shows the outlet velocity and the mass flow rate as a function of the wind 

speed. For lower wind speeds (below 2 m/s), a slight decrease in the outlet velocity and 

an increase in the mass flow rate were observed. As can be seen in Figure 15, for lower 

wind speeds, the outlet airflow temperature decreased significantly, increasing the air-

flow density. Therefore, even with the slight decrease observed in the velocity, the mass 

flowrate increased. 

Figure 12. Shear stress distribution in the tower wall.

Figures 4–12 were obtained considering that the air adjacent to the system is still.
Crosswind significantly affects the behavior of the airflow inside the solar chimney, con-
sidering the heat losses from the collector and the drag forces at the inlet and outlet of
the system. It is important to evaluate the influence of the wind load since it represents
the most important natural hazard in the tower design. The weight of the tower must be
enough to avoid buckling instabilities. Additionally, the dynamic wind response affects
the dynamic deformation capability of the structure, described by its natural vibration
modes [44]. For small-scale solar chimneys, the critical velocity is obtained through the
relation between the Strouhal number and the natural frequency. For the geometry used
in this paper, the critical velocity, determined as suggested by [44], was 13.5 m/s. For this
reason, wind speeds ranged up to a limit below the critical velocity.

Figures 13 and 14 show the air velocity and temperature inside and outside the solar
chimney, for wind speeds from 0 to 10 m/s. The velocity of the airflow at the outlet of the
solar chimney was significantly affected by the crosswind. For still air (0 m/s), the airflow
left the solar chimney vertically. When the wind speed increased, the airflow was carried
by the wind to the left, decreasing the velocity of the airflow at the outlet. It is worth noting
that the airflow inside the solar chimney reached velocities higher than the wind speed, as
can be seen in Figure 13.
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Figure 15 shows the velocity at the symmetry axis, for different wind speeds. y stands
for the distance from the ground surface. At y = 0, the velocity was zero. For a given
wind speed, in the connection between the collector and the tower, there was a sudden
contraction of the airflow through a minimum diameter [43] and possible detachment from
the walls, increasing significantly the velocity, as observed in Figures 11 and 12. When the
airflow entered the tower, it was rearranged and the velocity reached an average value.
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The velocity changed only slightly in the tower. At the system outlet, the airflow velocity
decreased, due to the vortexes imposed by the wind, as observed by [45]. The velocity
of the air inside the solar chimney increased with the wind speed, as can also be seen in
Figure 16, which shows the outlet velocity and the mass flow rate as a function of the
wind speed. For lower wind speeds (below 2 m/s), a slight decrease in the outlet velocity
and an increase in the mass flow rate were observed. As can be seen in Figure 15, for
lower wind speeds, the outlet airflow temperature decreased significantly, increasing the
airflow density. Therefore, even with the slight decrease observed in the velocity, the mass
flowrate increased.
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The wind speed also affected the airflow temperatures, as can be seen in Figure 17.
With the increase in the wind speed, the airflow velocity under the collector and the convec-
tive heat transfer between the airflow and the ground surface increased. A decrease in the
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ground surface temperature with the wind speed was noticed, decreasing the airflow tem-
perature. When comparing the temperatures for wind speeds of 0 and 10 m/s, the ground
surface temperature dropped 12.0 K and the outlet airflow temperature dropped 8.7 K. For
the range of wind speeds evaluated, Rayleigh and Grashof numbers of, respectively, 1012
and 1013, were found. These values are characteristic of natural convection flows.
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It is important to highlight that the results presented in this paper are based on
numerical simulations. Experimental results for a prototype are available for similar
conditions [5]. In this paper, a mathematical model was developed to predict the unsteady
characteristics of the airflow inside a small-scale solar chimney, with the same dimensions
used in the present paper. The results were obtained for a whole year, on an hourly basis.
The results were compared to experimental data obtained in a prototype. Experimental
measurements of total and diffuse components of solar radiation, wind speed, humidity,
ambient and airflow temperatures were performed, and are presented for one day in
October. During the day, the maximum incident solar radiation was 710 W/m2, the
ambient temperature ranged from 19.6 to 33.5 ◦C, and the ground surface temperature
ranged from 24.8 to 60.6 ◦C. In the present paper, results were obtained for an absorbed
solar radiation of 565 W/m2, based on an incident solar radiation of 650 W/m2, when
the ambient temperature was 30.3 ◦C and the wind speed was 3.6 m/s. For incident solar
radiation ranging from 620 to 710 W/m2 and ambient temperature ranging from 31.5 to
32.0 ◦C, the experimental ground surface temperature varied from 54.0 to 60.0 ◦C, the outlet
average temperature varied from 45.0 to 50.0 ◦C, and the mass flowrate varied from 0.030
to 0.040 kg/s. Since the incident solar radiation, the ambient temperature, and the wind
speed affect the airflow parameters, the absolute values were not expected to be the same,
but it can be seen that the numerical results are in accordance with experimental data.

4. Conclusions

In this paper, the fluid dynamic performance of a small-scale solar chimney was
studied using CFD. A computational model including the solar chimney, the ground, and
the atmosphere was simulated, using as boundary conditions only the ambient temperature,
the wind speed, and the absorbed energy by the ground. The energy absorbed by the
ground was estimated based on the solar radiation incident on the collector. The velocity
and the temperature were evaluated inside the computational domain, for different wind
speeds. The following points can be deduced from this study:
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• The atmosphere was disturbed by the air leaving the tower;
• The ground temperature decreased with the depth, and ambient temperature was

reached at a distance of 0.2 m;
• The airflow detached from the wall in the connection between the collector and

the tower;
• The crosswind significantly affected the airflow at the outlet of the solar chimney. The

airflow was carried by the wind, reducing the velocity at the outlet;
• The airflow velocity inside the solar chimney increased with the wind speed, decreas-

ing the temperature inside the solar chimney.

The results of this study are presented for steady-state conditions. Future research
is recommended to expand the analysis for transient conditions to evaluate the effect of
the wind speed combined with the effect of different ambient conditions. It would be also
valuable to validate the numerical simulations using experimental data.
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