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Abstract: Together with geological survey data, satellite imagery provides useful information for
geological mapping. In this context, the aim of this study is to map geological units of the Saka region,
situated in the northeast part of Morocco based on Landsat Oli-8 and ASTER images. Specifically,
this study aims to: (1) map the lithological facies of the Saka volcanic zone, (2) discriminate the
different minerals using Landsat Oli-8 and ASTER imagery, and (3) validate the results with field
observations and geological maps. To do so, in this study we used different techniques to achieve the
above objectives including color composition (CC), band ratio (BR), minimum noise fraction (MNF),
principal component analysis (PCA), and spectral angle mapper (SAM) classification. The results
obtained show good discrimination between the different lithological facies, which is confirmed
by the supervised classification of the images and validated by field missions and the geological
map with a scale of 1/500,000. The classification results show that the study area is dominated by
Basaltic rocks, followed by Trachy andesites then Hawaites. These rocks are encased by quaternary
sedimentary rocks and an abundance of Quartz, Feldspar, Pyroxene, and Amphibole minerals.

Keywords: remote sensing; mapping; volcanoes rocks; minerals index; Landsat Oli-8; ASTER;
Saka area

1. Introduction

The mapping and differentiation of lithological units and geological features are essential
for the monitoring and investigation of mineral deposits. Despite the importance of conven-
tional ground-based mapping techniques in geological studies, they are labor-intensive and
costly approaches. Thus, alternative methods are needed to achieve this goal.

Remote sensing (RS) techniques combined with Geographic Information Systems
(GIS), are useful tools that can provide crucial contributions to different applications, in-
cluding, environment [1,2], health [3], land use planning [4], rational exploitation of natural
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resources, or prevention of natural disasters [5]. The application of space technologies
such as earth observation systems is conditioned on a sustained effort of information,
formation, capacity reinforcement, and adaptation to local conditions of utilization. In
this context, the constitution and consolidation of regional space research and cooperation
enable us to ensure the rational control and use of space technologies and in light of the
many applications, the sustained development of the region becomes a necessity.

Geological mapping is of great scientific importance for geologists, they need to
understand all methodologies and modern techniques of geological studies. RS-based data
and satellite imagery processing are becoming the fastest, most accurate, and most reliable
geological mapping tools available for geologists, especially when it comes to mapping
volcanic activity areas that are often inaccessible and require costly and time elaboration. It
is a very significant and powerful tool for geologists that can be used to improve the process
of geological mapping [6]. Many imagery data sources are used in RS to resolve many
problems, and the data are chosen based on the topics and scales of the study area. Landsat
and ASTER images are the most popular remote sensing data sources used in geology
and mining [7]. The challenges and constraints involved in geological field mapping and
mineral exploration might potentially be solved with the use of remote sensing satellite
photography [8,9]. Several studies have demonstrated the tremendous applications of
remote sensing data in geological studies, to cite the examples provided in [10–14].

The objectives of this study are to identify lithology and distinguish between minerals
by using a mineral index and mapping the volcanic surface of the Saka site located in
the Oriental region of Morocco. The modeling and mapping of surface land properties in
several sites in the area (particularly Guercif province) uses field-collected rocks to identify
targets in both Landsat OLI-8 and ASTER images using RS-based techniques and different
geospatial tools.

Geological mapping often makes use of indirect evidence that may be seen at the sur-
face to interpret aerial imagery [6]. To improve and understand the geology of this area on
a regional scale, remote sensing data have been analyzed. Using Landsat Oli-8 imagery so
significantly enhances the final outcomes when creating regional-scale geological maps. In
the last ten years, many research projects have employed Landsat Oli-8 data for geological
mapping and rock unit classification. In this study, we employed Landsat Oli-8 RS-based
data due to the particular properties of their bands combined with some other traditional
and advanced image processing approaches to extract geological information and litho-
logical units. In order to achieve the purpose of geological mapping and the identification
of the exposed rock units on the basis of satellite imagery of this region, several image
processing algorithms are used for Landsat Oli-8 and ASTER bands, including colored
composition (CC), band ratio (BR), minimum noise fraction (MNF), principal component
analysis (PCA), and spectral angle mapper (SAM). Due to the differences in colors based
on the values in the single channels, the color composite makes it easier to comprehend
multichannel image data [15]. Based on the chosen spectral properties, the false-color
composite image enables lithological identification and mineral discrimination [16]. Band
ratios are simple arithmetic combinations of diverse bands that allow the intensity and
distribution of emissions or absorption of electromagnetic rays in a target to be explored in
a semi-quantitative way [17]. A reliable mapping and estimation of the geological resources
of the Guercif Basin are essential for the monitoring and control of mineral deposits. The
classical method of achieving this objective depends on in-situ or field surveys, which
have a significant degree of limitations. For this reason, geospatial technology can play an
increased role in this context. It should be highlighted that there is no sufficient and detailed
geological map of the study area. Therefore, the novelty of this paper is to systematically
investigate the use of remote sensing and GIS to obtain a detailed map of the lithological
facies with a good resolution, as opposed to the existing geological map with a low spatial
resolution (1/500,000). Keeping in mind that the study area is heavily explored in terms
of geological rock and mineral deposits as it is characterized by many rock quarries and
mineral deposits. Due to the important roles of these geological rocks and mineral resources
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in many domains such as in industry, cosmetics, railways (Basalt), and ornamental rock
business. The approaches developed here are crucial in this area.

2. Materials and Methods
2.1. Study Area

The study area is situated in the Oriental part of Morocco and includes the Guercif
province (Figure 1). The Guercif was recently created in 2009 and is bordered by Boulemane
province from the south, Nador and Driouach provinces from the north, Taza province
from the west, and Taourirt province to the east [18]. It is composed of 10 communes
covering 7310 km2, and according to the 2014 general population and habitat census, the
province’s population was estimated at 216,717 [19]. The study area is characterized by an
alternation between two types of climate, a Mediterranean climate in the north where the
average rainfall is 400 mm, and a continental climate in the south with an annual average
rainfall of 100 mm [18]. From the hydrology point of view, the Guercif province is drained
by the Mellelou and Moulouya rivers. The main activity in the region is agriculture, in
which the most common sector of exploitation is olive farming. Barley, wheat farming,
cattle breeding, and vegetables accompany olive agriculture.
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2.2. Geological Context 

Figure 1. Location of the study area.

2.2. Geological Context

The city of Guercif is bounded by the Middle Atlas from the south and the Rif from
the north, the selected area is the Saka which is located in the north part of Guercif and
has some parts included in the Rifain domain [18]. The digitalized geological map of
Morocco (Figure 2) was downloaded free of charge from the website [20]. The Rif is a recent
mountain range that was formed in the Tertiary period and more specifically, it belongs to
the Rif-Tellian chain of North Africa, one of the Alpine chains formed by the collision of
Africa and Eurasia [21]. This chain is made up of allochthonous units carried on the margin
of the African plate. The Guercif basin is framed by a set of geological structures: (1) In
the north, the Rifain domain is represented by the Pre-Rif nappes and the South Rifain
Front in a north-east direction. (2) To the north and north-east, the Terni Masgout-Beni Bou
Yahya-Beni Snassene massif corresponds to the indigenous foreland: it is a set of raised
Jurassic plateaus that overhang the quaternary tertiary basins of north-eastern Morocco.
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(3) In the east, The Horsts chain is represented by the Jebel Zengal, it is a structure of Horsts
and Grabens with Jurassic limestone formations extending from the region of Taourirt to
the Mountains of Tlemcen in Algeria [22]. The structures correspond mainly to accidents of
direction (E-NE; W-SW) cutting the massif in Horsts and Grabens [22].
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The high plateaus are materialized by raised causses with carbonate formations from
the Jurassic it is the reliefs of the Gada of Debdou and the plateaus of Rekkame. This
limestone slab is slightly inclined towards the southwest, and it dominates the eastern
basin of Guercif named the plain of Tafrata or the plain of Maarouf.

The Northern Middle Atlas, this chain corresponds to a set of NE-SW oriented wrinkles
and Basins; the wrinkles often overlap with the NW. The Jurassic series has greater strengths
than those found in the eastern Meseta and the Saliferous Triassic frequently injects the
structures. In addition, well-preserved Ash and Basaltic flows in the Berkine area are
evidence of very recent volcanic activity.

The Neogene Basin of Guercif is typically characterized by sedimentation of Tertiary
and Quaternary age.

According to Hernandez [22], the volcanoes of Morocco’s eastern Rif are located in
Basins that date back to the Miocene epoch and are tangential to the Betic-Rifian orogen.
Two periods of activity can be distinguished: (1) Upper Tortonian age to terminal Messinian,
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represented by the volcanoes of Ras Tarf, Gourougou, Caps Three Forks, and Guilliz, and
are of Calco-alkaline or Shoshonitic nature. (2) Plio-quaternary, reduced in the north but
taking a crucial extension in the plain of Guilliz. The Middle Atlas and the Oujda plain
which are mostly Basaltic and Alkaline are connected to this volcanism.

2.3. Data and Methodology

The geological mapping was performed using two satellite imagery and Landsat
8 Oli ASTER images data (Table S1) [23–25]. Based on satellite bands, many methods and
processing were used in this research to identify lithological facies and to discriminate
minerals indices. Table 1 represents the details of the data used. The applied methodology
is shown in Figure 3.

Table 1. Landsat 8 Oli PCA correlation.

Correlation Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

PC 1 1 0.97 0.91 0.89 0.90 0.96
PC 2 0.97 1 0.94 0.95 0.96 0.87
PC 3 0.91 0.94 1 0.95 0.93 0.81
PC 4 0.89 0.95 0.95 1 0.99 0.75
PC 5 0.90 0.96 0.93 0.99 1 0.77
PC 6 0.96 0.87 0.81 0.75 0.77 1Sustainability 2022, 14, x FOR PEER REVIEW 6 of 18 
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2.4. Satellite Images Preprocessing
2.4.1. Pre-Processing

(a) Geometric correction

Geometric correction aims to correct the inconsistency between the actual coordinates
of the location on the ground or on the base image and the coordinates of the location of
the raw image data. It is characterized by several types of corrections: Field data, system,
and accuracy. It is used to remove geometric distortions and to pre-process remote sensing
data [26]. This correction is used to extract accurate information on the area of polygons,
distance, and direction [27].

(b) Radiometric correction

The radiometric correction is based on the conversion of digital data values into
physical units, such as reflectance, for analysis. Indeed, the data from the sensors of satellite
images are influenced by several factors, such as differences in the manufacture of sensors,
electrical noise, scattering and atmospheric absorption, and differences in the gain and
linear response of each detector [28].

(c) Atmospheric correction

The atmospheric correction, performed using the FLAASH (Fast Line-of-sight Atmo-
spheric Analysis of Spectral Hypercube) algorithm, is necessary for the pre-processing
of satellite images. It is applied to Landsat-8 images with atmospheric and tropospheric
aerosol models of mid-latitudes [29]. It is considered as an imaging spectrometer rescaled
in reflectance units for raw radiance data from atmospheric correction [30] and used to
isolate the characteristics of the observation, which are intrinsic to the surface, from those
caused by the atmosphere [31].

(d) Pan-sharpening technique

The process of combining the spatial elements of a high-resolution panchromatic
(pan) image with the spectral data of a low-resolution multispectral (MS) image to create a
high-resolution MS image is known as pan-sharpening [32].

2.4.2. Image Processing Algorithms

Satellite image processing is performed using many methods to extract the spectral
properties of minerals discrimination and rock units. Five major processing methods have
been applied to the Landsat-8 OLI and ASTER images including (1) color composite (CC)
which allowed us to produce color images using a combination of three bands (R: red,
G: green, and B: bleu), for more details about the most CC used in geology see (Table S2).
(2) The ratio or band ratio (BR) is a method used to show the area of alteration, mineral
index, and lithological mapping (Table S3) [33]. (3) The principal component analysis
(PCA), (4) Minimum Noise Fraction (MNF) transformation is an effective technique to
reduce a large multiband data set into a reduced number of components that contain
the majority of the information (spectral variance) in the data set [34]. It is based on a
noise covariance matrix, decorrelates and rescales the noise in the data. PCA is similar to
MNF transformation and is a standard method of obtaining noise-reduced data [35] and
(5) Spectral Angle Mapper (SAM), is a classification method that evolves the similarity of
spectra to remove the influence of shading to emphasize the reflectance of the target [36,37].

3. Results and Discussion
3.1. Color Composition(CC)

Multispectral images are generated from monochromatic bands by the application of a
layer-stacking process [38–41]. CC allows the production of color images using the spectral
signature of the targets [42]. They are commonly deployed to highlight different surface
types in multispectral images or to make evident some crucial environmental phenomena,
such as sandstorms, forest fires, and sea ice The CC simplifies it to describe and understand
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a multiband image by using different colors as indicators of the values of single-channel [43].
The primary advantage of true color images is that it is easy to recognize units in areas
where the geologic composition is known and they increase the interpreter’s capacity to
identify rock units where a geologic section is unknown [44]. Figure 4 shows the different
CC used in geology to identify the targets dominated in the area ((1) Basalt, (2) sedimentary
rocks, (3) Trachy-andesite, (4) water, and (5) vegetation) (Figure S1).
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3.2. Band Ratio Method (BR)

Band ratio is a method widely used in geological facies and mineralogical map-
ping [45]. Multispectral transformative processing methods include band ratios as a means
of transforming the brightness data collected by a satellite’s sensor into geologically relevant
metrics. This method is used to optimize spectral deviations between bands and reduce the
effect of shading caused by topography. It is based on the concept of reflectance and consists
of dividing the digital number in a band by the digital number of the corresponding pixel
in another band.

From the previous studies, there are many band ratios utilized in Landsat 8 Oli and
ASTER imagery for geology mapping, especially for lithological identification and mineral
discrimination. These bands are determined and used based on laboratory spectra mineral
discrimination [43]. The different band ratios used in this study are shown in Figures
S2 and S3. Band ratio 7/6 allows the identification of the muscovite mineral, which is
constituted of Trachy-andesite and Basalt rocks, which dominate in this study area. Band
ratio 2/3 is used to observe lithium discrimination that is present in the rock.

3.3. Principal Component Analysis (PCA)

PCA is the transformation of image data into a set of uncorrelated variables using
statistical methods. The result of PCA is a set of images in which each band is uncorrelated
with the other bands and presents unique information. Since multispectral data from
different sensor channels often contain similar information, image transformations are used
to reduce this data redundancy. The resulting “neo” bands are called components and
allow us to reduce the information from five or six channels into only three components
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while keeping more than 90% of the original information. This is an efficient technique for
enhancing a multispectral image for geological interpretation. Figure S4a,c shows the PCA
results of 3-2-1 in CC for Landsat 8 Oli and ASTER, respectively. The statistical results of
PCA for both data images are given in the following Tables 1 and 2.

Table 2. ASTER PCA correlation.

Correlation Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PC1 1 0.99 0.98 0.93 0.94 0.94 0.92 0.92 0.91
PC2 0.99 1 0.99 0.95 0.96 0.96 0.94 0.94 0.94
PC3 0.98 0.99 1 0.96 0.97 0.97 0.94 0.95 0.95
PC4 0.93 0.95 0.96 1 0.99 0.99 0.98 0.98 0.99
PC5 0.94 0.96 0.97 0.99 1 0.99 0.97 0.98 0.98
PC6 0.94 0.96 0.97 0.99 0.99 1 0.97 0.97 0.98
PC7 0.92 0.94 0.94 0.98 0.97 0.97 1 0.99 0.98
PC8 0.92 0.94 0.95 0.98 0.98 0.97 0.99 1 0.99
PC9 0.91 0.94 0.95 0.99 0.98 0.98 0.98 0.99 1

3.3.1. Correlation Analysis

Given that the correlation factor is applied as a preliminary evaluation of the presented
band source of the image we can make suggestions on possible reflectance processes that
may control the origin of the lithological facies. Tables 1 and 2 show the PCA correlation
of Landsat and ASTER bands, respectively. All bands have a strong positive correlation
which is higher than 0.85.

3.3.2. PCA Statistics

PCA is a statistical technique multivariate employed to reduce data redundancy
of information by transforming the original data onto new principal component axes,
producing an uncorrelated image with much higher contrast than the original bands [46].
Tables 3 and 4 illustrate the Standard deviation, Eigenvectors matrix, and Eigenvalues of
PCA for all data used. Most of the data variability (maximum information) is represented
in the PC1 and its values for Landsat and ASTER images are 94.62 % (Table 3) and 97.33
(Table 4), respectively. PC2 and PC3 contain the second and the third highest variability.
Therefore, it is more convenient to use the first three PC bands as RGB for lithological
mapping (Figure S4).

Table 3. Standard deviation, Eigenvectors Matrix, and Eigenvalues for Landsat 8 PCA results.

Eigenvector Visible NIR SWIR-1 SWIR-2
Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Eigen Value %

StdDev 1532.94 2055.77 2412.67 3108.76 2672.43 1266.22
PC 1 0.27 0.37 0.43 0.57 0.49 0.20 94.62
PC 2 −0.48 −0.24 −0.10 0.44 0.29 −0.65 3.45
PC 3 −0.17 −0.22 0.87 −0.08 −0.36 −0.15 1.45
PC 4 0.05 −0.78 −0.06 0.35 0.01 0.51 0.34
PC 5 −0.20 −0.20 0.18 −0.59 0.73 0.13 0.11
PC 6 −0.79 0.32 −0.03 0.11 −0.12 0.49 0.03

Regarding the Eigenvector Matrix, For Landsat 8 selected bands (1, 2, 3), the PC3 has a
strong positive contribution of band 4 (0.87) which corresponds to the absorption band and
the PC2 has a strong negative contribution of band 7 (−0.65) (Table 3) which represents
the reflection band. For the ASTER image, the Eigenvector Matrix results show a strong
positive contribution in band 7 for the PC3 (0.53) and a strong negative contribution in
band 3 for the PC2 (−0.49) (Table 4).
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Table 4. Standard deviation, Eigenvectors Matrix, and Eigenvalues for ASTER PCA result.

Eigenvector VNIR (Visible and Near Infrared) SWIR (Short-Wave Infrared)
Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9 Eigen Value %

StdDev 0.11 0.15 0.18 0.20 0.20 0.20 0.19 0.17 0.16
PC 1 −0.21 −0.28 −0.34 −0.39 −0.38 −0.38 −0.36 −0.32 −0.31 97.33
PC 2 −0.45 −0.48 −0.49 0.17 0.07 −0.02 0.35 0.29 0.29 1.59
PC 3 0.21 0.18 0.12 −0.26 −0.44 −0.48 0.53 0.34 0.07 0.50
PC 4 0.10 0.06 −0.29 −0.55 0.23 0.45 0.38 0.04 −0.45 0.18
PC 5 0.53 0.14 −0.56 0.33 0.32 −0.38 −0.03 −0.01 −0.15 0.14
PC 6 −0.27 −0.06 0.24 0.47 −0.01 −0.15 0.40 −0.25 −0.63 0.11
PC 7 −0.26 −0.01 0.28 −0.34 0.70 −0.48 −0.07 0.13 −0.01 0.07
PC 8 0.13 −0.11 0.02 −0.13 0.12 −0.07 0.39 −0.78 0.43 0.04
PC 9 0.50 −0.79 0.30 −0.02 0.04 0.03 −0.02 0.13 −0.12 0.04

3.4. Minimum Noise Fraction (MNF)

The MNF shows the variation within bands in an image and highlights the location of
spectral anomalies; this analysis is very significant in mining exploration because spectral
anomalies are generally indicative of alterations. The MNF transformation is used to
determine the image’s inherent dimensionality and isolate noise and reduce computational
requirements for further processing [43]. This approach, which is comparable to PCA, is
used to transform the principal components into a predetermined number of spectral bands.
This way the first MNF bands carry signals, but the remaining bands include only noise.

Displaying PC3 inverted, PC2, and PC1 in RGB (Figure S4a) for the Landsat image
illustrates an outcrop of the Basalt rocks in light green (1), blue enhances the signature of
sedimentary rocks (2), and orange and pink colors correspond to Trachy-andesite rocks
(3). Water is marked as chartreuse green (4) and the vegetation is displayed as a yellow
color (5). On the other hand, the lithological facies for the ASTER image are expressed with
yellow and green colors for the basalt rocks (1), cobalt blue and red colors correspond to the
sedimentary rocks, pink color represents the Trachy-andesite rocks (3), water is displayed
as marine blue (4), and vegetation is displayed as a blue-green color (5).

The results of the MNF composition performed on the two Landsat images (Figure S4b)
and ASTER (Figure S4d) show several colors. For the Landsat image, the light blue color (1)
corresponds to Basalt rocks, the dark blue color (2) corresponds to sedimentary rocks, and
the light pink color (3) corresponds to Trachy-andesite. Water appears as a dark green color
(4) and vegetation as a red color (5). For the ASTER image, the Basalt rocks are displayed
as light blue color (1), the sedimentary rocks as blue and light red colors (2), and the dark
red color (3) corresponds to Trachy-andesite; water is displayed as dark blue color (4) and
the vegetation as pink and purple colors (5). Figure 4 shows the dominant igneous rocks in
the study area.

3.5. Spectral Angle Mapper (SAM)

The SAM is a classification method used for spectral analysis [47] that allows us to
evolve the similarity of the spectra in order to remove the influence of shading to accentuate
the reflectance characteristics of the target [37]. It is based on physics that uses an angle to
make pixels out of the reference spectral [36]. The SAM’s classification goal is to compare
the angle between the spectral vector of the final member and each pixel vector [48]. In
this study, the available geological map and the sampled rocks were used to validate the
classified map elaborated by the Spectral Angle Mapper from Landsat 8 Oli and ASTER
data (Figure 5). After the processing, we found that the SAM map of the ASTER image
gave more details and good accuracy (Table S4), so we recommend using the SAM method
as a support for satellite image classification.
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3.6. Minerals Index Calculation

Several indices are used to discriminate between rock minerals, including Quartz Index
(QI2), Silicate Index (SI2), Carbonate Index (CI), Mafic Index (MI), corrected Mafic Index, and
Ultramafic Index (UMI). Comparing the reference spectral signature rocks in ENVI software
with the spectral signature of rocks in the study area, we noted many similarities.

The Quartz Index shows the Quartz mineral in the rocks.

QI2 =

(
B11

B10 + B12

)
∗
(

B13
B12

)
(1)

Silica’s number gives an idea of the acidity of the rock. Therefore, the rocks that
contain a higher amount of Silicate are acidic in nature. The SI is calculated using the
following equations:

I1 =

(
B13
B12

)
(2)

SI2 =

(
B14
B12

)
(3)

The Carbonate Index allows us to make sure that the rocks are rich in Carbonates and Calcium.

CI =
(

B13
B14

)
(4)

The corrected Mafic Index is calculated by the following equation:

MIc =
MI
CI3 =

(
B12
B13

)
/
(

B13
B14

)3
(5)

The Mafic Index is used to estimate the distribution of SiO2 that exists in mafic and
ultramafic rocks by using the following ratio:

MI =
(

B12
B13

)
(6)

According to Figure 6B, the red circle corresponds to the mafic minerals and the green
square indicates the existence of felsic minerals (Figure 6B).
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The ultramafic index is estimated using the following ratio:

UMI =
(

B12 + B14/B132
)

(7)

Figure 6C shows the Basalt and Hawaiite rocks rich in mafic minerals (dark color) that
are identified by the red circles.

From Figure 6D–F, it is remarked that the CC allows for the distinction between the
mafic and felsic minerals. The mafic minerals (purple color) are more concentrated in the
Basalt rock which is identified by the red circle color and the other color corresponds to the
Felsic minerals.

3.7. Supervised Classification

Supervised classification is directed and not automatic classification. This type of
classification is based on the identification of the different lithological facies by choosing
the classification training option to direct the software. The applied classification method
in this part is successful in all likelihood, thanks to its positive results which are close to the
geological map of study and the best map is one elaborated from ASTER data (Figure 7b).
The supervised classification results carried out on the ASTER and Landsat 8 Oli images
show several colors (Figure 7). The quaternary facies are identified by a whitish color,
quaternary Basalt is represented as a blue color, the yellowish color corresponds to the
volcanism of the upper Miocene, the Jurassic to the light blue color and the light pink color
corresponds to the Trach-andesite.
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The previous studies and research objectives will allow us to select the most crucial
CC. BR, rations, PCA, MNF, and classification methods allowed for the realization of
a lithological and mineralogical mapping. The PCA and MNF maps (Figure S4) have
more characteristics and provide better results than rationing bands (Figures S2 and S3).
Therefore, the MNF map (Figure S4d) was selected to obtain a better-supervised classi-
fication. Thus, a minerals discrimination map (Figure 6), showing potential exploration
mineral deposits in the study area, was obtained. The validity of the models was tested
by comparing the field data (Figure 8) and the geological map (1/500,000) of the studied
field. The processing of satellite images allows for the individualization of the different
minerals located on the surface. According to El Atilla [49], the ASTER image plays a
crucial role in lithological discrimination. The Landsat-8 image was used to detect and
map the hydrothermal alteration areas. As a result, the study area is dominated by Basaltic
rocks, followed by Trachy andesites then Hawaites which are confirmed by elaborated
maps, especially those that were generated using ASTER data. These rocks are encased
by quaternary sedimentary rocks and an abundance of Quartz, Feldspar, Pyroxene, and
Amphibole minerals. The analysis of the digitalized map (Figure 9) and elaborated map
(Figure 8) shows a strong similarity in terms of geological facies. In addition, according
to the study by El Kati et al. [50], the Gurecif basin is characterized by Miocene-Pliocene
volcanic activity, which resulted from two activity periods during the Tortonian and upper
Messinian age, and another during the Plio-quaternary age [51,52]. Although, there are
some rocks, which do not display in the geological map and in elaborated satellite images
due to their lower spatial distribution. For this reason, it is recommended that collected
rocks from the field should be added to complete this study. (Figure 8).
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4. Conclusions

Remote sensing is used to study diverse earth science applications, especially geologic
problems such as lithological and structural mapping. Remote sensing has a great interest
in reducing the cost of field mapping, accessing the difficulty of reaching certain areas,
and identifying areas of intense mineralization and alteration. The data collected by the
classical method are based on in-situ measurement and field surveys and have a significant
degree of limitations affecting the objectives of this study. On the other hand, RS provides
an interesting opportunity to reduce the cost of field mapping and resolve access field
difficulties. Satellite image processing and field data allowed us to map the lithological
facies and mineralization deposits of the study area. Indeed, the PCA, MNF, band ratios,
and minerals index showed relevant results in the discrimination of geological features.
In this project, the advantages of RS allowed us to compare and test the effectiveness
between different spatial data sets, such as the Landsat 8-OLIand ASTER images applied
in this study. Results from RS techniques such as the color compositions, band ratios
(B12/B13) (B11/B12) (B14/B13), PCA (PC3-PC2-PC3), MNF (MNF 3, MNF2, MNF1), and
comparing the geological map with the satellite images allowed for better observation
and interpretation of the lithological units; allowing us to observe the distribution of the
alteration area and zone with high mineral potential in the region. For geology, the bands
(R-G-B) used in the color combination on Landsat 8 Oli include 6-5-7; 10-11-7, and 5-7-3
for iron oxides and clay minerals, and silicate detection and hydrothermally altered rocks,
respectively. For the ASTER image, the bands (R-G-B), used in the color combination
to determine the gossan areas, alteration zones, and host rocks, enhance hydrothermal
Gossans, and identify and enhance geological structures 6-2-1; 6-3-1 and 7-4-2, respectively.
This combination of bands is particularly valuable in recognizing lithological features,
geological formations, and faults. A better combination of the colors composite was created
using PC1, PC2, and PC3, which showed a better result for the mapping of the geological
units in the study area. In addition, the best maps were elaborated using supervised
classification created by the spectral angle mapper (SAM) method and MNF results (MNF3,
MNF2, MNF1/RGB) for the ASTER data. Based on the field missions where sample rocks
collected are used as a reference, the overall classification accuracy of ASTER and Landsat
8-oli images are 0.83 and 0.72, respectively.

Ultimately, lithology mapping and mineral discrimination using satellite imaging
provide a high degree of accuracy (high spatial resolution) compared to the region’s current
geological map, which is scaled at 1/500,000. (Low spatial resolution). Despite all the
advantages that were mentioned above, RS methods are not able to detect smaller objects,
which is why they need to be enhanced.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su142215349/s1, Figure S1: False color composite (a. Landsat
oli-8 and b. ASTER); Figure S2: Landsat 8 Oli bands ration used in geology; Figure S3: ASTER bands
ration used in geology; Figure S4: PCA Composite bands 3, 2, 1 (a. Landsat 8 Oli and c. ASTER)
and MNF Composite bands 3, 2, 1 (b. Landsat 8 Oli and d. ASTER); Table S1: Summary of selected
satellite sensors; Table S2: Details of the most color composite used in geology; Table S3: Details band
ratios usefulness in geological studies; Table S4: Accuracy assessment for SAM for SAM classification
of ASTER image. Refs [23–26,39–43] are citied in supplementary materials.
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