Impact of Urbanization on Total Factor Carbon Productivity in Central Asia
Abstract
:1. Introduction
2. Literature Review and Hypotheses
3. Methodology and Data
3.1. Models
3.1.1. Tobit Model
3.1.2. Quantile Regression Model
3.2. Variables and Data
4. Results
4.1. Tobit Regression Results
4.2. Quantile Regression Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Li, M.; Chen, L. Does the national audit affect the low-carbon development? Empirical research based on provincial panel data in China. J. Audit Econ. 2019, 34, 9–21. [Google Scholar]
- Liu, L.; Yang, S. Regional heterogeneity research on effects of China’s urbanization process on efficiency of total factor carbon emissions. Soc. Sci. Yunnan 2022, 42, 101–110. [Google Scholar]
- Northam, R.M. Urban Geography; John Wiley & Sons: New York, NY, USA, 1975; pp. 65–67. [Google Scholar]
- Zeng, F.; Li, L.; He, Z.; Wang, Z. Research on the dynamic relationship between basic public service level and new-type urbanization. China Soft Sci. 2019, 34, 150–160. [Google Scholar]
- Davis, J.C.; Henderson, J.V. Evidence on the political economy of the urbanization process. J. Urban Econ. 2003, 53, 98–125. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, W.; Song, X.; Zhang, S. Spatial pattern of interprovincial population migration from the comprehensive urbanization perspective. Sci. Geogr. Sin. 2017, 37, 1151–1158. [Google Scholar]
- Jian, X.; Huang, K. Empirical analysis and forecast of the level and speed of urbanization in China. Econ. Res. J. 2010, 45, 28–39. [Google Scholar]
- Ma, H.; Sun, Z. Comprehensive urbanization level and its dynamic factors of five Central Asian countries. Acta Geogr. Sin. 2021, 76, 367–382. [Google Scholar] [CrossRef]
- Alimujiang, K.; Tang, B.; Anwaer, M. Study on the urbanization development characteristics of Central Asia (1960–2009). J. Arid Land Res. Environ. 2013, 27, 21–26. [Google Scholar]
- Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Du, K.; Li, J. Towards a green world: How do green technology innovations affect total factor carbon productivity. Energy Policy 2019, 131, 240–250. [Google Scholar] [CrossRef]
- Sun, L.; Xia, Y.; Feng, C. Income gap and global carbon productivity inequality: A meta-frontier data envelopment analysis. Sustain. Prod. Consump. 2021, 26, 548–557. [Google Scholar] [CrossRef]
- Li, J.; Ma, J.; Wei, W. Study on regional differences of energy carbon emission efficiency in eight economic areas of China. J. Quant. Tech. Econ. 2020, 37, 109–129. [Google Scholar]
- Lv, C.; Ma, L.; Zhang, Y. Does opening up of FDI and OFDI in services improve carbon productivity in manufacturing? Asia-Pac. Econ. Rev. 2022, 39, 99–109. [Google Scholar]
- Yang, X.; Li, X.; Zhou, D. Study on the difference and convergence of carbon productivity in Chinese manufacturing. J. Quant. Tech. Econ. 2015, 32, 3–20. [Google Scholar]
- Zhao, G.; Gao, W. Comprehensive evaluation of generalized carbon-productivity index in China’s industrial sector based on frontier analysis methods. Chin. J. Manag. Sci. 2013, 21, 31–36. [Google Scholar]
- Zhou, L.; Tang, L. Environmental regulation and the growth of the total-factor carbon productivity of China’s industries: Evidence from the implementation of action plan of air pollution prevention and control. J. Environ. Manag. 2021, 296, 113078. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Hu, Z.; Jiang, X. Study on the difference and convergence of carbon productivity in China’s service industry. J. Quant. Tech. Econ. 2017, 34, 78–94. [Google Scholar]
- Bai, C.; Du, K.; Yu, Y.; Feng, C. Understanding the trend of total factor carbon productivity in the world: Insights from convergence analysis. Energy Econ. 2019, 81, 698–708. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Cao, Z.; He, Y.; Dong, Z.; Wang, S. Can industrial intellectualization reduce carbon emissions? Empirical evidence from the perspective of carbon total factor productivity in China. Technol. Forecast. Soc. Chang. 2022, 184, 121969. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L.; Li, R. The asymmetric impact of renewable and non-renewable energy on total factor carbon productivity in 114 countries: Do urbanization and income inequality matter? Energy Strateg. Rev. 2022, 44, 100942. [Google Scholar] [CrossRef]
- Sadorsky, P. The effect of urbanization on CO2 emissions in emerging economies. Energy Econ. 2014, 41, 147–153. [Google Scholar] [CrossRef]
- Niu, H. Empirical test of carbon emission effect of urbanization in China. Stat. Decis. 2019, 35, 138–142. [Google Scholar]
- Feng, D.; Li, J. Impacts of urbanization on carbon dioxide emissions in the three urban agglomerations of China. Resour. Environ. Yangtze Basin 2018, 27, 2194–2200. [Google Scholar]
- Xue, G.; Chen, S.; Cai, L. Differences between urbanization and total factor productivity: The function of public expenditure policy. China Popul. Resour. Environ. 2015, 25, 50–55. [Google Scholar]
- Wu, X.; Ge, P.; Xu, Z. Urbanization and the promotion of agricultural total factor productivity: Heterogeneity and spatial effect. China Popul. Resour. Environ. 2019, 29, 149–156. [Google Scholar]
- Sun, Y.; Xia, Q.; Zhou, M. The economic growth effects of new urbanization development and industrial structure change. J. Quant. Tech. Econ. 2016, 33, 23–40. [Google Scholar]
- Wang, X. Urbanization path and city scale in China: An economic analysis. Econ. Res. J. 2010, 45, 20–32. [Google Scholar]
- Zuo, P.; Jiang, Q.; Chen, J. Internet development, urbanization and the upgrading of China’s industrial structure. J. Quant. Tech. Econ. 2020, 37, 71–91. [Google Scholar]
- Luo, Y.; Luo, X.; Wang, L. Rural infrastructure, labor productivity gap between industry and agriculture, and non-agricultural employment. Manag. World 2020, 36, 91–121. [Google Scholar]
- Yu, B.; Guo, D. Economic efficiency of spatial structure of urban agglomeration: Theory and empiric. Inq. Econ. Issues 2021, 42, 148–164. [Google Scholar]
- Yang, W.; Yao, C.; Su, M. The level of urbanization affects the regional differences and spatial dependence of innovation output: An empirical analysis based on non-spatial panel and spatial panel model. China Soft Sci. 2019, 34, 91–101. [Google Scholar]
- Zhang, T. From quantitative “demographic dividend” to qualitative “human capital dividend”—Additionally, on the power conversion mechanism of China’s economic growth. Econ. Sci. 2016, 38, 5–17. [Google Scholar]
- Lewis, W.A. Economic development with unlimited supplies of labor. Manch. Sch. 1954, 22, 139–191. [Google Scholar] [CrossRef]
- Ranis, G.; Fei, J.C. A theory of economic development. Am. Econ. Rev. 1961, 51, 533–565. [Google Scholar]
- Todaro, M.P. A model of labor migration and urban unemployment in less developed countries. Am. Econ. Rev. 1969, 59, 138–148. [Google Scholar]
- Liao, W.; Liu, M. Land urbanization, population urbanization and improvement of urban ecological efficiency in the Yangtze river economic belt: An empirical analysis based on panel data of 108 cities at prefecture level and above. Urban Probl. 2020, 39, 57–68. [Google Scholar]
- Cheng, H.; Chen, C. A study on knowledge capital and total factor productivity under open economy: International evidence and implication for China. Econ. Res. J. 2017, 52, 21–36. [Google Scholar]
- Liu, Z.; Ling, Y. Structural transformation, TFP and high-quality development. Manag. World 2020, 36, 15–29. [Google Scholar]
- Zhang, J.; Chen, S.; Gary, H.J. Structural reform and industrial growth in China. Econ. Res. J. 2009, 44, 4–20. [Google Scholar]
- Qiu, Y. Technological innovation effects of urbanization: An empirical study based on 1990-2010 panel data of China’s regions. Chin. J. Popul. Sci. 2013, 27, 26–35+126. [Google Scholar]
- Feldman, M.P.; Audretsch, B. Innovation in cities: Science-based diversity, specialization and localized competition. Eur. Econ. Rev. 1999, 43, 409–429. [Google Scholar] [CrossRef]
- Gibbs, J.P.; Martin, W.T. Urbanization, technology, and the division of labor: International patterns. Am. Sociol. Rev. 1962, 27, 667–677. [Google Scholar] [CrossRef]
- Zhang, A.; Huang, J. An empirical study on the effects of urbanization on the efficiency of development of regional low-carbon economy. J. Shaanxi Norm. Univ. 2015, 44, 76–82. [Google Scholar]
- Henderson, V.; Shalizi, Z.; Venables, A. Geography and development. J. Econ. Geogr. 2001, 1, 81–105. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef]
- He, J.; Sun, L. Difference and convergence analysis for total factor productivity of 10 provinces in the silk road economic belt. Soft Sci. 2016, 30, 49–52. [Google Scholar]
- Tobin, T. Estimation of relationships for limited dependent variables. Econometrica 1958, 26, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Gong, D.; Zhao, T.; Ci, Z.; Yao, H. Evaluation of regional industrial fossil energy efficiency in China based on super-SBM and factors analysis. Acta Sci. Circumst. 2015, 35, 585–595. [Google Scholar]
- Koenker, R.; Basett, G.W. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q. Impact of the digital economy on the carbon emissions of China’s logistics industry. Sustainability 2022, 14, 8641. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q. Total factor productivity of logistics industry in the core area of silk road economic belt and its regional differences. Stat. Decis. 2019, 35, 112–116. [Google Scholar]
- Zheng, C.; Zhu, Y.; Cheng, F. Does urbanization improve green total factor productivity? An empirical test based on the Yangtze river economic belt. Mod. Econ. Res. 2018, 37, 110–115. [Google Scholar]
- Zheng, Q. The impact of urbanization on green total factor productivity: An analysis based on the threshold effect of public expenditure. Urban Probl. 2018, 37, 48–56. [Google Scholar]
- Shao, H.; Xia, H. The impact of urban sprawl on green total factor productivity in China. Resour. Sci. 2020, 42, 790–800. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Wang, Y.; Ali, M. Historical growth in total factor carbon productivity of the Chinese industry: A comprehensive analysis. J. Clean Prod. 2018, 170, 471–485. [Google Scholar] [CrossRef]
- Shan, H. Reestimating the capital stock of China: 1952~2006. J. Quant. Tech. Econ. 2008, 25, 17–31. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Fare, R.; Grosskopf, S.; Lindgren, B.; Roos, P. Productivity changes in Swedish pharamacies 1980–1989: A non-parametric Malmquist approach. J. Prod. Anal. 1992, 3, 85–101. [Google Scholar] [CrossRef]
- Liu, B.; Cheng, K.; Ma, Z. Research on the impacts of urbanization on logistics carbon emission changes. Chin. J. Popul. Sci. 2016, 26, 54–60. [Google Scholar]
- Wang, Q.; Lu, F. Economic effects of high-speed rail: Emission reduction and efficiency enhancement. Stat. Res. 2021, 38, 29–44. [Google Scholar]
- Zhong, X.; Long, S. Rethinking the environmental impact of the IPAT model. Chin. J. Popul. Sci. 2016, 26, 61–68. [Google Scholar]
- Lin, B.; Tan, R. Economic agglomeration and green economy efficiency in China. Econ. Res. J. 2019, 54, 119–132. [Google Scholar]
- Xuan, Y.; Zhang, W. Smart city, economic agglomeration and green total factor productivity. Mod. Econ. Res. 2021, 40, 12–25. [Google Scholar]
- Nie, L.; Ren, J.; Liu, X.; Xue, Y. Financial deepening, government intervention and green total factor production: Empirical evidence from 10 urban agglomerations in China. Soft Sci. 2021, 35, 50–55. [Google Scholar]
- Wang, K.; Pang, S.; Zhang, F.; Miao, Z.; Sun, H. The impact assessment of smart city policy on urban green total-factor productivity: Evidence from China. Environ. Impact Assess. Rev. 2022, 94, 106756. [Google Scholar] [CrossRef]
- Yin, C.; Jiang, Q. Research on the green development of western regions under the framework of green total factor productivity analysis. Inq. Econ. Issues 2017, 38, 155–161. [Google Scholar]
- Sun, Z.; Liu, L. Does informatization improve the TFP of Chinese economy? Evidence from China’s 1979–2014 sectorial panel data. Econ. Theory Bus. Manag. 2018, 38, 5–18. [Google Scholar]
- Li, B.; Zhang, W.; Yu, J. Development of service industry, level of informationization and growth of total factor carbon productivity: An empirical study based on threshold effect. Geogr. Res. 2016, 35, 953–965. [Google Scholar]
- Qi, S.; Xu, J. Influence of trade openness on green TFP of countries along the “Belt and Road”. China Popul. Resour. Environ. 2018, 28, 134–144. [Google Scholar]
- Pan, X.; Li, M.; Wang, M.; Chu, J.; Bo, H. The effects of outward foreign direct investment and reverse technology spillover on China’s carbon productivity. Energy Policy 2020, 145, 111730. [Google Scholar] [CrossRef]
- Guo, W.; Sun, H. Research on impact of environmental regulation and technical innovation on total factor carbon productivity: Based on Chinese provinces spatial panel data analysis. Sci. Technol. Manag. Res. 2020, 40, 239–247. [Google Scholar]
First-Level Indicators | Second-Level Indicators | Third-Level Indicators | Measurement Indicators |
---|---|---|---|
Total factor carbon productivity | Input indicators | Labor input | Labor force (10,000 people) |
Capital investment | Physical capital stock (USD billion) | ||
Energy input | Total energy consumption (10,000 tons of petroleum equivalent) | ||
Output indicators | Expected output | GDP (USD billion) | |
Undesired output | Carbon dioxide emissions (10,000 tons) |
First-Level Indicators | Second-Level Indicators | Measurement Indicators |
---|---|---|
Urbanization | Population urbanization | Urban population (% of total population) |
Urban population growth (annual %) | ||
Proportion of nonagricultural employment (%) | ||
Economic urbanization | GDP per capita (USD at present) | |
Proportion of nonagricultural output value (%) | ||
Per capita household-consumption expenditure (USD at present) | ||
Social urbanization | Life expectancy at birth (years) | |
Mobile cellular subscriptions (per 100 people) | ||
Government expenditure on education, total (% of GDP) |
Variable Types | Variable Names | Measurement Indicators | Symbols | Data Sources |
---|---|---|---|---|
Explained variable | Total factor carbon productivity | Total factor carbon productivity | TFCP | Measurement results |
Technical efficiency | Technical efficiency | EC | Measurement results | |
Technological progress | Technological progress | TC | Measurement results | |
Explanatory variables | Urbanization | Urbanization | URB | Measurement results |
Square term of urbanization | Square term of urbanization | URB2 | Calculation results | |
Control variables | Economic development | GDP per capita (USD 100) | PGDP | World Bank database |
Economic agglomeration | GDP/land area (10,000 USD/square kilometers) | ECON | World Bank database | |
Government macro-control | Government general consumption expenditure/GDP | GOV | World Bank database and the Statistical Yearbook of Central Asian Countries | |
Industrialization | Industrial added value/GDP | INDU | Asian Development Bank database | |
Informatization | Mobile cellular subscriptions (per 100 people) | INFOR | World Bank database and the Statistical Yearbook of Central Asian Countries | |
Opening up to the outside world | Trade volume/GDP | OPEN | World Bank database and the Statistical Yearbook of Central Asian Countries |
Variables | Mean | SD | Max | Min |
---|---|---|---|---|
TFCP | 1.827 | 1.214 | 5.435 | 0.426 |
EC | 1.196 | 0.466 | 2.760 | 0.617 |
TC | 1.699 | 1.294 | 5.563 | 0.333 |
URB | 0.311 | 0.210 | 0.974 | 0.050 |
URB2 | 0.141 | 0.195 | 0.949 | 0.003 |
PGDP | 22.068 | 29.902 | 138.906 | 1.384 |
ECON | 3.765 | 3.743 | 18.232 | 0.487 |
GOV | 15.329 | 6.529 | 49.247 | 5.941 |
INDU | 31.943 | 11.406 | 66.580 | 5.782 |
INFOR | 47.569 | 57.106 | 185.706 | 0.000 |
OPEN | 84.604 | 35.604 | 181.590 | 10.103 |
Variables | (1) Tobit Regression TFCP | (2) Tobit Regression EC | (3) Tobit Regression TC | (4) Robustness Test TFCP | (5) Robustness Test EC | (6) Robustness Test TC |
---|---|---|---|---|---|---|
URB | 0.977 *** (0.210) | −0.316 (0.299) | 1.197 *** (0.219) | 1.843 *** (0.319) | 0.203 (1.504) | 1.421 *** (0.315) |
URB2 | −1.182 *** (0.257) | 0.400 (0.356) | −1.611 *** (0.257) | −1.768 *** (0.329) | −0.648 *** (1.487) | −1.401 *** (0.325) |
PGDP | 0.685 *** (0.155) | −0.112 (0.200) | 1.147 *** (0.146) | 0.384 *** (0.091) | 0.062 (0.103) | 0.569 *** (0.090) |
ECON | −0.020 (0.077) | 0.963 *** (0.103) | −0.363 *** (0.075) | 0.036 (0.069) | 1.052 *** (0.110) | −0.249 *** (0.068) |
GOV | −0.113 (0.073) | 0.123 (0.093) | −0.208 *** (0.067) | −0.256 *** (0.077) | 0.110 (0.100) | −0.284 *** (0.076) |
INDU | 0.026 (0.066) | −0.063 ** (0.082) | 0.072 (0.060) | 0.007 (0.057) | −0.082 (0.082) | 0.269 *** (0.057) |
INFOR | 0.371 *** (0.056) | −0.411 *** (0.071) | 0.322 *** (0.052) | 0.488 *** (0.057) | −0.454 *** (0.070) | 0.416 *** (0.057) |
OPEN | 0.117 ** (0.051) | −0.059 (0.064) | 0.023 (0.047) | 0.190 *** (0.054) | −0.056 ** (0.066) | 0.049 (0.053) |
_cons | −0.056 (0.049) | 0.271 *** (0.093) | −0.025 (0.051) | −0.056 (0.041) | 0.422 *** (0.150) | −0.042 (0.041) |
Prob | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
URB | 0.614 *** (0.109) | 0.595 *** (0.179) | 0.933 *** (0.246) | 0.922 *** (0.338) | 1.440 *** (0.501) |
URB2 | −0.748 ** (0.312) | −0.566 (0.347) | −1.029 *** (0.201) | −1.098 *** (0.386) | −1.778 *** (0.660) |
PGDP | 0.661 ** (0.333) | 0.501 (0.324) | 0.401 * (0.237) | 0.403 (0.263) | 0.668 (0.415) |
ECON | −0.068 (0.093) | 0.036 (0.109) | −0.066 (0.097) | −0.040 (0.063) | −0.007 (0.104) |
GOV | −0.171 ** (0.077) | −0.165 * (0.084) | −0.057 (0.063) | −0.003 (0.085) | 0.005 (0.105) |
INDU | −0.098 ** (0.048) | −0.023 (0.059) | −0.009 (0.088) | −0.023 (0.142) | −0.085 (0.324) |
INFOR | 0.274 *** (0.085) | 0.246 ** (0.115) | 0.539 *** (0.135) | 0.606 *** (0.145) | 0.501 *** (0.119) |
OPEN | 0.047 (0.037) | 0.045 (0.069) | 0.084 (0.127) | 0.067 (0.124) | 0.141 (0.122) |
_cons | 0.012 (0.027) | −0.002 (0.047) | −0.042 (0.077) | 0.002 (0.064) | 0.014 (0.207) |
Variables | (1) EC | (2) EC | (3) EC | (4) EC | (5) EC | (6) TC | (7) TC | (8) TC | (9) TC | (10) TC |
---|---|---|---|---|---|---|---|---|---|---|
URB | −0.492 (0.352) | 0.336 * (0.199) | 0.481 *** (0.128) | 0.304 (0.246) | 1.027 * (0.570) | 0.207 (0.168) | 0.451 ** (0.222) | 0.778 *** (0.143) | 1.251 *** (0.196) | 1.411 *** (0.311) |
URB2 | 0.771 * (0.439) | −0.171 (0.365) | −0.327 (0.204) | −0.410 (0.299) | −1.571 ** (0.756) | −0.638 ** (0.256) | −0.558 (0.658) | −1.308 ** (0.595) | −1.749 *** (0.400) | −1.800 *** (0.645) |
PGDP | −0.352 * (0.183) | −0.120 (0.250) | −0.144 (0.193) | −0.042 (0.380) | 0.445 (0.672) | 0.940 *** (0.241) | 0.556 (0.544) | 1.145 * (0.600) | 1.189 *** (0.381) | 1.086 * (0.629) |
ECON | 0.553 *** (0.190) | 0.375 ** (0.167) | 0.599 *** (0.207) | 0.804 *** (0.084) | 0.734 *** (0.230) | −0.201 * (0.107) | −0.257 *** (0.075) | −0.150 (0.144) | −0.153 (0.154) | −0.176 (0.229) |
GOV | −0.012 (0.090) | 0.034 (0.094) | 0.163 * (0.091) | 0.276 (0.258) | 0.998 * (0.563) | −0.143 ** (0.070) | −0.200 * (0.103) | −0.122 (0.128) | −0.030 (0.124) | −0.031 (0.153) |
INDU | −0.068 (0.135) | −0.352 *** (0.119) | −0.457 *** (0.108) | −0.586 *** (0.196) | −1.091 *** (0.267) | 0.112(0.074) | 0.095 (0.082) | 0.058 (0.091) | 0.121 (0.094) | 0.215 (0.131) |
INFOR | −0.096 (0.096) | −0.097 (0.106) | −0.192 *** (0.067) | −0.220 (0.176) | −0.298 * (0.177) | 0.261 *** (0.069) | 0.371 *** (0.043) | 0.354 *** (0.064) | 0.291 *** (0.068) | 0.233 *** (0.071) |
OPEN | 0.138 *** (0.049) | 0.143 ** (0.057) | 0.131 ** (0.065) | 0.029 (0.073) | 0.159 (0.156) | −0.019 (0.028) | 0.027 (0.042) | 0.093 ** (0.043) | 0.170 * (0.087) | 0.135 (0.124) |
_cons | 0.075 (0.046) | 0.159 *** (0.034) | 0.214 *** (0.065) | 0.403 *** (0.095) | 0.521 *** (0.092) | 0.011 (0.023) | 0.001 (0.041) | −0.052 (0.055) | −0.113 (0.075) | −0.097 (0.118) |
Prob | −0.492 (0.352) | 0.336 * (0.199) | 0.481 *** (0.128) | 0.304 (0.246) | 1.027 * (0.570) | 0.207 (0.168) | 0.451 ** (0.222) | 0.778 *** (0.143) | 1.251 *** (0.196) | 1.411 *** (0.311) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, A. Impact of Urbanization on Total Factor Carbon Productivity in Central Asia. Sustainability 2022, 14, 15379. https://doi.org/10.3390/su142215379
Li J, Liu A. Impact of Urbanization on Total Factor Carbon Productivity in Central Asia. Sustainability. 2022; 14(22):15379. https://doi.org/10.3390/su142215379
Chicago/Turabian StyleLi, Juan, and Aifeng Liu. 2022. "Impact of Urbanization on Total Factor Carbon Productivity in Central Asia" Sustainability 14, no. 22: 15379. https://doi.org/10.3390/su142215379
APA StyleLi, J., & Liu, A. (2022). Impact of Urbanization on Total Factor Carbon Productivity in Central Asia. Sustainability, 14(22), 15379. https://doi.org/10.3390/su142215379