Effects of Air Anions on Growth and Economic Feasibility of Lettuce: A Plant Factory Experiment Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Culture Conditions
2.2. Application of Air Anions
2.3. Plant Growth
2.4. Economic Efficiency Evaluation
2.5. Statistical Analysis
3. Results
3.1. Growth of Lettuce
3.2. Chlorophyll Content in the Leaves
3.3. Economic Efficiency of Applying Air Anions
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ellis, H.W.; Turner, E.R. The effect of electricity on plant growth. Sci. Prog. Oxf. 1978, 65, 395–407. [Google Scholar]
- Chalmers, J.A. Atmospheric Electricity; Pergamon: New York, NY, USA, 1967. [Google Scholar]
- Murr, L.E. Plant growth response in a simulated electric field-environment. Nature 1963, 200, 490–491. [Google Scholar] [CrossRef]
- Burr, H.S.; Northrop, F.S.C. Evidence for the existence of an electro-dynamic field in living organisms. Proc. Natl. Acad. Sci. USA 1939, 25, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blinks, L.R. The source of the bioelectric potentials in large plant cells. Proc. Natl. Acad. Sci. USA 1949, 35, 566–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schonland, B.F.J. The interchange of electricity between thunderclouds and the Earth. Proc. Roy. Soc. A 1928, 118, 252–262. [Google Scholar]
- Chalmers, J.A.; Ette, A. Some measurements of point-discharge currents between negative point and positive plane. J. Atmos. Terr. Phys. 1966, 28, 111–112. [Google Scholar] [CrossRef]
- Lemstrom, S. Electricity in Agriculture and Horticulture; David van Nostrand: London, UK, 1904. [Google Scholar]
- Jorgensen, I.; Stiles, W. The electroculture of crops. Sci. Prog. 1918, 12, 609–621. [Google Scholar] [CrossRef]
- Blackman, V.H. Field experiments in electro-culture. J. Agric. Sci. 1924, 14, 240–267. [Google Scholar] [CrossRef]
- Cholodny, N.G.; Sankewitsch, E.C. Influence of weak electric currents upon the growth of the coleoptile. Plant Physiol. 1937, 12, 385–408. [Google Scholar] [CrossRef] [Green Version]
- Murr, L.E. Mechanism of plant-cell damage in an electrostatic field. Nature 1964, 201, 1305–1306. [Google Scholar] [CrossRef]
- Murr, L.E. Biophysics of plant growth in an electrostatic field. Nature 1965, 206, 467–470. [Google Scholar] [CrossRef]
- Murr, L.E. Plant growth response in an electrokinetic field. Nature 1965, 207, 1177–1178. [Google Scholar] [CrossRef]
- Pohl, H.A.; Todd, G.W. Electroculture for crop enhancement by air anions. Int. J. Biometeorol. 1981, 25, 309–321. [Google Scholar] [CrossRef]
- Yamaguchi, F.M.; Krueger, A.P. Electroculture of tomato plants in a commercial hydroponics greenhouse. J. Biol. Phys 1983, 11, 5–10. [Google Scholar] [CrossRef]
- Cramariuc, R.; Donescu, V.; Popa, M.; Cramariuc, B. The biological effect of the electrical field treatment on the potato seed: Agronomic evaluation. J. Electrost. 2005, 63, 837–846. [Google Scholar] [CrossRef]
- Dannehl, D. Effects of electricity on plant responses. Sci. Hortic. 2018, 234, 382–392. [Google Scholar] [CrossRef]
- Sugawara, K.; Kanno, S.; Ito, T.; Kato, S.; Kojima, T.; Suzuki, S. Elucidation of eucalyptus root growth mechanism by application of electric field-effect of electric field application time and plant hormones. J. Arid. Land Stud. 2018, 28, 97–100. [Google Scholar]
- Lee, S.R.; Oh, M.M. Electric stimulation promotes growth, mineral uptake, and antioxidant accumulation in kale (Brassica oleracea var. acephala). Bioelectrochemistry 2021, 138, 107727. [Google Scholar] [CrossRef]
- Kotaka, S.; Krueger, A.P.; Nishizawa, K.; Ohuchi, T.; Takenobu, M.; Kogure, Y.; Andriese, P.C. Air ion effects on the oxygen consumption of barley seedlings. Nature 1965, 208, 1112–1113. [Google Scholar] [CrossRef]
- Krueger, A.P.; Kotaka, S.; Andriese, P.C. Some observations on the physiological effects of gaseous ions. Int. J. Biometeorol. 1962, 6, 33–48. [Google Scholar] [CrossRef]
- Krueger, A.P.; Kotaka, S.; Andriese, P.C. Studies on the effects of gaseous ions on plant growth. J. Gen. Physiol. 1962, 45, 879–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.G.; Choi, C.S.; Jang, Y.A.; Jang, S.W.; Lee, S.G.; Um, Y.C. Effects of air temperature and air flow rate control on the tipburn occurrence of leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol. 2013, 54, 303–310. [Google Scholar] [CrossRef]
- Tsukaya, H. Leaf shape: Genetic controls and environmental factors. J. Dev. Biol. 2005, 49, 547–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wechsler, D.J. Electro-Horticulture; Leanpub: Victoria, BC, Canada, 2015. [Google Scholar]
- Blackman, V.H.; Legg, A.T.; Gregory, F.G. The effect of a direct electric current of very low intensity on the rate of growth of the coleoptile of barley. Proc. Roy. Soc. B 1923, 95, 214–228. [Google Scholar]
- Maw, M.G. Periodicities in the influences of air ions on the growth of garden cress, Lepidium sativum. Can. J. Plant Sci. 1967, 47, 499–505. [Google Scholar] [CrossRef]
- Lee, S.R.; Kang, T.H.; Han, C.S.; Oh, M.M. Air anions improve growth and mineral content of kale in plant factories. Hortic. Environ. Biotechnol. 2015, 56, 462–471. [Google Scholar] [CrossRef]
- Song, M.J.; Kang, T.H.; Han, C.S.; Oh, M.M. Air anions enhance lettuce growth in a plant factory. Hortic. Environ. Biotechnol. 2014, 55, 293–298. [Google Scholar] [CrossRef]
- An, J.I.; Lee, S.R.; Oh, M.M. Air anions promote the growth and mineral accumulation of spinach (Spinacia oleracea) cultivated in greenhouses. Hortic. Sci. Technol. 2021, 39, 332–342. [Google Scholar]
- Smith, R.F.; Fuller, W.H. Identification and mode of action of a component of positively-ionized air causing enhanced growth in plants. Plant Physiol. 1961, 36, 747–751. [Google Scholar] [CrossRef] [Green Version]
- Goldsworthy, A.; Rathore, K.S. The electrical control of growth in plant tissue 7. J. Exp. Bot. 1985, 36, 1134–1141. [Google Scholar] [CrossRef]
- Friml, J. Auxin transport–shaping the plant. Curr. Opin. Plant Biol. 2003, 6, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Elkiey, T.M.; Bhartendu, S.; Barthakur, N. Air ion effect on respiration and photosynthesis of barley and Antirrhinum majus. Int. J. Biometeorol. 1985, 29, 285–292. [Google Scholar] [CrossRef]
- Sidaway, G.H.; Asprey, G.F. Influence of electrostatic fields on plant respiration. Int. J. Biometeorol. 1968, 12, 321–329. [Google Scholar] [CrossRef]
- Black, J.D.; Forsyth, F.R.; Fensom, D.S.; Ross, R.B. Electrical stimulation and its effects on growth and ion accumulation in tomato plants. Can. J. Bot. 1971, 49, 1809–1815. [Google Scholar] [CrossRef]
- Robinson, K.R. The responses of cells to electrical fields: A review. J. Cell Biol. 1985, 101, 2023–2027. [Google Scholar] [CrossRef]
Type of Lettuce | Treatment | |
---|---|---|
Control | Air Anion | |
Red leaf | ||
Expenses (USD) | - | 26.3 |
Yield (kg) | 14.5 | 21.3 |
Revenue (USD) | - | 108.8 |
Lollo bionda | ||
Expenses (USD) | - | 26.3 |
Yield (kg) | 14.2 | 21.6 |
Revenue (USD) | - | 125.8 |
Type of Lettuce | Net Profit for Unit Area (15 m2) | Net Profit for 1500 m2 |
---|---|---|
Red leaf | USD 577.5 | USD 57,750 |
Lollo bionda | USD 696.5 | USD 69,650 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Song, M.-J.; Oh, M.-M. Effects of Air Anions on Growth and Economic Feasibility of Lettuce: A Plant Factory Experiment Approach. Sustainability 2022, 14, 15468. https://doi.org/10.3390/su142215468
Lee S, Song M-J, Oh M-M. Effects of Air Anions on Growth and Economic Feasibility of Lettuce: A Plant Factory Experiment Approach. Sustainability. 2022; 14(22):15468. https://doi.org/10.3390/su142215468
Chicago/Turabian StyleLee, Sora, Min-Jeong Song, and Myung-Min Oh. 2022. "Effects of Air Anions on Growth and Economic Feasibility of Lettuce: A Plant Factory Experiment Approach" Sustainability 14, no. 22: 15468. https://doi.org/10.3390/su142215468
APA StyleLee, S., Song, M. -J., & Oh, M. -M. (2022). Effects of Air Anions on Growth and Economic Feasibility of Lettuce: A Plant Factory Experiment Approach. Sustainability, 14(22), 15468. https://doi.org/10.3390/su142215468