Tilt Angle and Orientation Assessment of Photovoltaic Thermal (PVT) System for Sub-Saharan Tropical Regions: Case Study Douala, Cameroon
Abstract
:1. Introduction
1.1. Tilt Angle and Orientation
1.2. Net Exergy of the System
1.3. Mathematical Modelling of PVT System
- i.
- One-dimensional heat conduction is considered,
- ii.
- The system is in a quasi-steady state,
- iii.
- The glass cover and the photovoltaic module are at a uniform temperature,
- iv.
- Air properties are constant with time and temperature.
1.4. Temperature of PVT Components
1.5. Energy Output
1.5.1. Electrical energy
1.5.2. Thermal Energy
1.6. The Cost Per Unit of Electricity
1.7. Problem Identification
2. Methodology
- I.
- First, the availability of the solar intensity on the inclined surfaces of the PVT is determined using the Liu and Jordan formula given in Equation (5). The orientation of the PVT is either north or south and inclined at an angle of 0–60° from horizontal.
- II.
- The outlet air temperature of the air flowing at the back sheet of the PV module is calculated with Equation (15) replacing the x parameter with the length of the duct. Then the average temperature of the air flowing in the duct, the temperature of the back sheet of the PV module and the cell temperature of PV panels are calculated using, respectively, Equations (13) and (11).
- III.
- The electrical energy is calculated by substituting the solar cell efficiency given by Equation (17) in Equation (18) and the overall thermal output of the system is obtained using Equation (19) by replacing the thermal gain given by Equation (20).
- IV.
- The net exergy gain and its efficiency are obtained, respectively, from Equations (7) and (8).
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | Area, (m2) |
b | Length of PVT system, (m) |
C | Specific heat of air at constant pressure, (J/kg K) |
Cf | The conversion factor of the thermal power plant |
d | Width of PVT system, (m) |
E | Energy, (W) |
h | Convective heat transfer coefficient, (W/m2 K) |
I | Solar radiation, (W/m2) |
m | Air mass flow rate in duct, (kg/s) |
N | Sunshine hour |
n | Number of the day/Number of PV module |
Q | Thermal energy, (W) |
T | Temperature, (°C) |
U | Overall heat transfer coefficient, (W/m2 K) |
v | Air speed in the duck, (m/s) |
x | Horizontal axis, (m) |
Greek symbols | |
α | Absorptivity |
τ | Transmissivity |
γ | Azimuth angle, (°) |
β | Tilted angle, (°)/Packing factor |
ωs | Sunrise/Sunset hour angle, (°) |
ɸ | Latitude angle, (°) |
θi | Angle of incidence, (°) |
θz | Zenith angle, (°) |
δ | Daclination angle, (°) |
ρ | Reflection coefficient of the ground |
η | Efficiency |
λ | Thermal conductivity, (W/m2K) |
Subscripts | |
a | Ambient air |
air | Air flowing in the duct |
b | Beam |
bs | Back sheet of PV module |
c | Cell |
d | Diffuse |
el | Electrical |
ex | Exergy |
g | Glass |
p | Parallel |
r | Reflected |
ref | Reference |
PVT | Roof Integrated Photovoltaic System Thermal |
S | Series |
t | Total |
th | Thermal |
u | Net useful |
Appendix A
References
- Bakilana, A. 7 Facts about Population in Sub-Saharan Africa. Available online: https://blogs.worldbank.org/africacan/7-facts-about-population-in-sub-saharan-africa (accessed on 24 March 2021).
- Avila, N.; Carvallo, J.P.; Shaw, B.; Kammen, D.M. The Energy Challenge in Sub-Saharan Africa: A Guide for Advocates and Policy Makers. Part 1: Generating Energy for Sustainable and Equitable Development. 2017. Available online: https://www.oxfamamerica.org/static/media/files/oxfam-RAEL-energySSA-pt1.pdf (accessed on 1 September 2022).
- Detollenaere, A.; Masson, G.; Liesen, A.; Wedepohl, D. Africa Market Report; German Solar Association (BSW-Solar): Berlin, Germany; Becquerel Institute: Brussels, Belgium, 2020. [Google Scholar]
- Mukisa, N.; Zamora, R. Optimal tilt angle for solar photovoltaic modules on pitched rooftops: A case of low latitude equatorial region. Sustain. Energy Technol. Assess. 2022, 50, 101821. [Google Scholar] [CrossRef]
- Hartner, M.; Ortner, A.; Hiesl, A.; Haas, R. East to west—The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective. Appl. Energy 2015, 160, 94–107. [Google Scholar] [CrossRef]
- Zheng, H.; Outline, C. Solar Energy Desalination Technology, 1st ed.; Elsevier Ltd: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Corrada, P.; Bell, J.; Guan, L.; Motta, N. Optimizing Solar Collector Tilt Angle to Improve Energy Harvesting in a Solar Cooling System. Energy Procedia 2014, 48, 806–812. [Google Scholar] [CrossRef]
- Haghdadi, N.; Copper, J.; Bruce, A.; MacGill, I. A method to estimate the location and orientation of distributed photovoltaic systems from their generation output data. Renew. Energy 2017, 108, 390–400. [Google Scholar] [CrossRef]
- Agrawal, B.; Tiwari, G.N. Building Integrated Photovoltaic Thermal Systems for Sustainable Developments, 1st ed.; The Royal Society of Chemistry: London, UK, 2011. [Google Scholar]
- Elhassan, Z.A.M.; Zain, M.F.M.; Sopian, K.; Awadalla, A. Output Energy of Photovoltaic Module Directed at Optimum Slope Angle in Kuala Lumpur, Malaysia. Res. J. Appl. Sci. 2011, 6, 104–109. [Google Scholar] [CrossRef]
- Bojić, M.; Bigot, D.; Miranville, F.; Parvedy-Patou, A.; Radulović, J. Optimizing performances of photovoltaics in Reunion Island-tilt angle. Prog. Photovolt. Res. Appl. 2012, 20, 923–935. [Google Scholar] [CrossRef]
- Siraki, A.G.; Pillay, P. Study of optimum tilt angles for solar panels in different latitudes for urban applications. Sol. Energy 2012, 86, 1920–1928. [Google Scholar] [CrossRef]
- Lehloka, M.C.; Swart, A.J.; Hertzog, P.E. Validating the optimum tilt angle for PV modules in the Highveld of South Africa for the Summer season, 3C Tecnología. Glosas de innovación aplicadas a la pyme. Edición Espec. 2020, 137–157. [Google Scholar] [CrossRef]
- Kokouvi, E.N. Effect of orientation and tilt angles of solar collectors on their performance: Analysis of the relevance of general recommendations in the West and Central African context. Sci. Afr. 2022, 15, 2276–2468. [Google Scholar] [CrossRef]
- Ashetehe, A.A.; Gessesse, B.B.; Shewarega, F. Development of Optimal Tilt Angle Models of a Photovoltaic Module for Maximum Power Production: Ethiopia. Int. J. Photoenergy 2022, 2022, 8729570. [Google Scholar] [CrossRef]
- Obiwulu, A.U.; Erusiafe, N.; Olopade, M.A.; Nwokolo, S.C. Modeling and estimation of the optimal tilt angle, maximum incident solar radiation, and global radiation index of the photovoltaic system. Heliyon 2022, 8, e09598. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Mulcué-Nieto, L.F.; Mora-López, L. Methodology to establish the permitted maximum losses due to shading and orientation in photovoltaic applications in buildings. Appl. Energy 2015, 137, 37–45. [Google Scholar] [CrossRef]
- Jakhrani, A.Q.; Othman, A.; Rigit, A.R.H.; Samo, S.R.; Ahmed, S. Estimation of Incident Solar Radiation on Tilted Surface by Different Empirical Models. Int. J. Sci. Res. Publ. 2012, 2, 15–20. [Google Scholar]
- Lubitz, W.D. Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels. Appl. Energy 2011, 88, 1710–1719. [Google Scholar] [CrossRef]
- Grubbström, R.W. An attempt to introduce dynamics into generalised exergy considerations. Appl. Energy 2007, 84, 701–718. [Google Scholar] [CrossRef]
- Vats, K.; Tiwari, G. Performance evaluation of a building integrated semitransparent photovoltaic thermal system for roof and façade. Energy Build. 2012, 45, 211–218. [Google Scholar] [CrossRef]
- Vats, K.; Tiwari, G. Energy and exergy analysis of a building integrated semitransparent photovoltaic thermal (BISPVT) system. Appl. Energy 2012, 96, 409–416. [Google Scholar] [CrossRef]
- Yildiz, A.; Güngör, A. Energy and exergy analyses of space heating in buildings. Appl. Energy 2009, 86, 1939–1948. [Google Scholar] [CrossRef]
- Razmara, M.; Maasoumy, M.; Shahbakhti, M.; Robinett, R. Optimal exergy control of building HVAC system. Appl. Energy 2015, 156, 555–565. [Google Scholar] [CrossRef]
- Gholampour, M.; Ameri, M. Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study. Appl. Energy 2016, 164, 837–856. [Google Scholar] [CrossRef]
- Friesenhan, C.; Agirre, I.; Eltrop, L.; Arias, P.L. Streamlined life cycle analysis for assessing energy and exergy performance as well as impact on the climate for landfill gas utilization technologies. Appl. Energy 2017, 185, 805–813. [Google Scholar] [CrossRef]
- Agrawal, B.; Tiwari, G. Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions. Appl. Energy 2010, 87, 417–426. [Google Scholar] [CrossRef]
- Akata, A.M.; Njomo, D.; Agrawal, B. Assessment of Building Integrated Photovoltaic (BIPV) for sustainable energy performance in tropical regions of Cameroon. Renew. Sustain. Energy Rev. 2017, 80, 1138–1152. [Google Scholar] [CrossRef]
- Solar Radiation Service, Solar Energy Services for Professionals. 2017. Available online: http://www.soda-pro.com/ (accessed on 13 May 2020).
- Lu, H.; Lu, L.; Wang, Y. Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building. Appl. Energy 2016, 180, 27–36. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
αc | 0.7 | B | 2 m |
αT | 0.7 | Cair | 1005 J/kgK |
βc | 0.9 | Cf | 0.38 |
ηc | 0.16 | ebs | 0.003 m |
ηref | 0.12 | eg | 0.0032 m |
ɸref | 0.0045 | λbs | 0.38 W/m2K |
ρg | 0.4 | λg | 0.8 W/m2K |
τg | 0.85 | mair | 1 kg/s |
D | 4 m | vair | 4 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekoe A Akata, A.M.; Njomo, D.; Agrawal, B.; Mackpayen, A.; Ali, A.-H.M. Tilt Angle and Orientation Assessment of Photovoltaic Thermal (PVT) System for Sub-Saharan Tropical Regions: Case Study Douala, Cameroon. Sustainability 2022, 14, 15591. https://doi.org/10.3390/su142315591
Ekoe A Akata AM, Njomo D, Agrawal B, Mackpayen A, Ali A-HM. Tilt Angle and Orientation Assessment of Photovoltaic Thermal (PVT) System for Sub-Saharan Tropical Regions: Case Study Douala, Cameroon. Sustainability. 2022; 14(23):15591. https://doi.org/10.3390/su142315591
Chicago/Turabian StyleEkoe A Akata, Aloys Martial, Donatien Njomo, Basant Agrawal, Auguste Mackpayen, and Abdel-Hamid Mahamat Ali. 2022. "Tilt Angle and Orientation Assessment of Photovoltaic Thermal (PVT) System for Sub-Saharan Tropical Regions: Case Study Douala, Cameroon" Sustainability 14, no. 23: 15591. https://doi.org/10.3390/su142315591
APA StyleEkoe A Akata, A. M., Njomo, D., Agrawal, B., Mackpayen, A., & Ali, A. -H. M. (2022). Tilt Angle and Orientation Assessment of Photovoltaic Thermal (PVT) System for Sub-Saharan Tropical Regions: Case Study Douala, Cameroon. Sustainability, 14(23), 15591. https://doi.org/10.3390/su142315591