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Abstract: Excavation in rock induces the unloading of stress in excavation-disturbed zones and can
cause the structural plane to reach shear failure due to the unloading of normal stress. Unloading
normal stress tests of a regular sawtooth structural plane were conducted in this study to investigate
the influence of the unloading velocities (v) and asperity angles (θ) on mechanical properties and
the stability of the structural plane. The average value of normal displacement (Du1) and the shear
displacement of unloading (Dsu) gradually increases with an increase in θ and Du1 accounts for
59.70%, 31.81%, and 18.60% of the height of a single asperity under different θ. However, Du2, Ds,
and the unloading capacity (∆σn) gradually decreased. Moreover, Ds account for 24.52%, 11.61%, and
7.4% of the length of a single asperity, respectively. With an increase in θ and v, three-dimensional
(3D) morphology parameters and normal deformation energy (Un) decreased gradually, indicating
that the damage degree of the structural plane increases. The analysis of the evolution of the gap
width of the structural plane at the initial point, unloading point, and instability point indicates that
the greater the θ or the smaller the v, the lower would be the likelihood for the structural plane to be
damaged. Concurrently, its instability is more sudden and the impact tendency is stronger.

Keywords: unloading normal stress; asperity angles; unloading velocities; energy evolution; 3D
morphology parameters; gap width

1. Introduction

Excavation causes stress redistribution, which typically leads to the unloading of stress
in the excavation-disturbed area and results in engineering disasters, such as rock bursts,
thereby resulting in substantial casualties and economic losses [1–3]. Since the founding of
New China more than 60 years ago and the continuous development of resources, shallow
energy resources have been gradually exhausted. Thus, the demand for deep resources
is increasing. However, as the depth increases, the frequency and scale of rock bursts
gradually increase [4–6]. Therefore, it is particularly critical to study the instability and
failure mechanism of structural planes under unloading conditions.

Numerous confining pressure relief tests have been conducted under the condition
of a triaxial test and promising results have been obtained [7–9]. The results show that
specimen failure is primarily influenced by the loading path and unloading velocity [10–16].
The rock samples exhibit completely different mechanical properties during loading and
unloading [17]. During unloading instability and failure, the degree of damage is closely
related to the unloading velocity [18]; the tensile cracks and degree of failure of rock samples
increase with an increase in the unloading velocity [19]. Moreover, the failure strength of
rock under unloading conditions is lower than that under loading conditions [20]. Granite
is more prone to failure at a medium unloading velocity than at high or low unloading
velocities [21,22]. With an increase in the unloading velocity, the degree of rock failure
increases gradually, owing to an increase in the strain energy release capacity [23,24], and the
volume expansion becomes more significant [25]. Under the condition of triaxial unloading,
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the failure mode of the specimen becomes more complex than that of the conventional triaxial
test [26,27], and the failure strain at unloading is less than that at loading [28]. Under the
condition of an unloading test, the initial confining pressure is also the main factor affecting
the mechanical properties of rock. During loading, the rock samples exhibit clear brittle
ductile transition characteristics as the confining pressure increases [29]. An increase in
the confining pressure limits the radial deformation of rock samples [30]; therefore, more
cracks are produced before failure [31,32]. Moreover, the brittle failure characteristics of
rock samples become more apparent as the confining pressure increases [33–35]. The failure
characteristics of rock samples can be determined by the energy evolution law during loading
and unloading [36,37]. The evolution of energy is closely related to the fracture initiation,
development, and final failure of rock samples and it controls the failure mode of rock
samples [38,39]. Moreover, acoustic emission signal conclusion in the test process can be
used for verification [40].

However, the triaxial unloading test cannot directly and effectively model the shear
failure mechanism of rock that has suffered only from unloading normal stress [41]. Owing
to geological processes, there are several structural planes in rock mass. Therefore, by
considering the regular sawtooth structural plane as the object, this study adopted the
unloading normal stress test under the action of compression and shear load to explore
the influence mechanism of the unloading velocity and asperity angle on the deformation
and strength of the structural plane and the law of energy evolution. The results provide
a reference for the instability and failure of engineering fractured rock mass as well as
disaster prevention.

2. Test Method
2.1. Specimen Preparation

The surface of a natural rock structure has irregular three-dimensional morphology
and its measurement incurs the disadvantage of artificial subjectivity [42,43]. Moreover,
the structural plane is damaged after a test and cannot be reused. Therefore, this method
used regular sawtooth structural planes poured with cement mortar as the test objects.
Most existing structural plane pouring molds can only be formed individually [44]; the
mechanical properties of the structural plane are affected by the pouring batch, mixing
uniformity and curing time. Only the mold of the upper structural plane is taken as an
example, as shown in Figure 1. The mold primarily comprises a concave—convex base,
long and short diaphragms, and clamping and fixing devices. A total of 10 structural
planes with asperity angles of θ = 15◦, 30◦, and 45◦ can be formed simultaneously with
corresponding single asperity heights of 0.67 mm, 1.44 mm, and 2.5 mm; the length of the
bottom edge is 5 mm.
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The steps to manufacture a regular sawtooth structural plane are as follows:

� The sand is dried in an oven at 105 ◦C for 24 h and then screened with a 120-mesh
screen to ensure the uniformity of the sand particles. Cement with a strength of 32.5 R
is also screened to ensure the uniformity of the material particles.

� Cement, sand, and water are evenly mixed according to the proportions of 3:2:1.5.
Subsequently, tap water is added, and the materials are fully mixed. The mixture is
then placed on a shaking table and the vibration drives out any bubbles.

� The evenly stirred materials are poured into the mold while being stirred with a
vibrating rod to further discharge the bubbles.

� After pouring, the mixture is left to stand at a temperature of 20 ◦C for 3 d. The
structural plane is demolded after complete solidification and cured for 28 d. The
manufacturing process of the structural plane is shown in Figure 2. Additionally,
mechanical parameters are shown in Table 1. According to Table 1, there are nine
test conditions in total, in which each test condition is repeated three times, and
27 samples are required.
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Table 1. Mechanical parameters of cement mortar.

σn/MPa µ E/GPa c/MPa ϕb /◦

15 0.27 3.39 2.84 28
where σn is the uniaxial compressive strength; µ is Poisson’s ratio; E is elastic modulus, c is cohesion; and ϕb is the
internal friction angle.

The test is conducted on the self-developed “coal rock shear–seepage coupling” test
system [45]. The system is primarily composed of a servo control loading system, fluid
source loading system, shear box and sealing system, and control and data acquisition
system. It can be used to conduct coal and rock shear tests under different loading modes
(constant normal stress, constant normal displacement, and constant normal stiffness). The
maximum test force in both the axial and shear directions is 300 kN and the displacement
rate control range is 0–100 mm/min, as shown in Figure 3a. Before and after shearing, an
OKIO-B non-contact optical 3D scanner is used to scan the structural plane, as shown in
Figure 3b.
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Figure 3. Schematic of test system (a) coal rock shear–seepage coupling” test system; (b) 3D morphol-
ogy scanner of structural plane.

2.2. Experimental Scheme

The steps followed for the unloading normal stress test are as follows:
First step: Normal stress at a set value of σn0 is applied. The force loading mode is

adopted, and the rate of loading is 0.1 kN/s.
Second step: The value of σn0 is unchanged and the shear stress is then applied to

a target value of τ0. The force control mode is also adopted for loading and the rate of
loading is 0.02 kN/s.

Third step: The value of τ0 remains unchanged and the normal stress is unloaded
until the structural plane experiences instability failure. The force control mode is adopted
and the unloading velocities (v) are 0.05 kN/s, 0.1 kN/s, and 0.15 kN/s.

The following parameters are chosen as an example to illustrate the test steps, as
shown in Figure 4 (σn0 = 2.25 MPa, θ = 15◦, v = 0.1 kN/s and τ0 = 5.384 MPa).

The general principle of setting test parameters is as follows: (1) It is important to
ensure that the structural plane will not be damaged before τ0 is applied; therefore, σn0 is
less than the uniaxial compressive strength (σn) of the structural plane. (2) To determine
the selection range of τ0 under different σn0, it is necessary to conduct a direct shear test on
the structural plane. The value of τ0 is between 0 MPa and the peak shear strength under
the corresponding normal stress. Within this range, the specimen would not experience
macro shear failure before the unloading normal stress and it would be damaged when
the unloading σn0 goes to zero. Using the uniaxial test on similar materials, σn = 15 MPa
is obtained. According to the general principle, σn0 = 15%σn. Based on the peak shear
strength obtained from the direct shear test under CNL conditions, τ0 is set as 5.384 MPa.
The test scheme is shown in Table 2.
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Table 2. Test scheme.

θ (◦) σn0 (MPa) τ0 (MPa) v (kN/s)

0.05
15 2.25 5.384 0.10

0.15

0.05
30 2.25 5.384 0.10

0.15

0.05
45 2.25 5.384 0.10

0.15

3. Test Results and Analysis
3.1. Deformation
3.1.1. Displacement Histories

The displacement vs. time curves are shown in Figure 5.
In the first step, when the applied normal stress reaches σn0, the uniaxial test on

the rock shows that the axial stress and axial displacement have a nonlinear relationship.
Similarly, from the normal loading and unloading tests of the structural plane, it can also
be observed that the normal stress and normal displacement are nonlinear in the loading
stage. Therefore, the normal displacement increases nonlinearly and the rate of increase
decreases gradually.

In the second step, the structural plane is subjected to both normal and shear stresses.
Therefore, when applying the shear load, the shear displacement increases linearly with an
increase rate of 0.001 mm/s. Meanwhile, the normal displacement increases slightly and
the increase is between 0–0.098 mm. The direct shear test results of the structural plane
indicate that the structural plane is compressed first. In other words, when the shear stress
is applied to the structural plane to overcome the evident sliding of static friction, the crack
between the upper and lower structural planes is gradually compressed.
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In the third step, with a decrease in the normal stress, the normal displacement
decreases nonlinearly and the reduction rate increases gradually. However, the shear
displacement increases nonlinearly until the structural plane produces instability and slip
and the rate increases gradually. This occurs because from the beginning of unloading to
the instability of the structural plane, the normal elastic deformation energy is released
owing to the reduction in normal stress. The structural plane rises along the asperities,
resulting in shear expansion. The two stresses combine to gradually reduce the normal
displacement of the structural plane. As the normal stress decreases, the static friction
between the structural planes gradually decreases; thus, the structural plane moves forward
and the corresponding shear displacement increases. When the normal stress is reduced to
the critical point of instability, with a continuous reduction in the normal stress, there is
clear shear slip on the structural plane. If the structural plane is slip damaged, the shear
displacement increases rapidly in a very short time.

3.1.2. Characteristic Displacement

Using the values θ = 15◦ and v = 0.05 kN/s as an example, the displacement—normal
stress curve is shown in Figure 6.
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In Figure 6, O is the starting point of the experiment and the same numbered points
(such as A and A1) represent the normal displacement and shear displacement at the same
time point. A is the normal loading completion point, B is the unloading normal stress
point, and C is the normal displacement value corresponding to the normal unloading
instability. The corresponding A1, B1, and C1 are three stages corresponding to the shear
displacement. The characteristic points are labeled on the curve and the characteristic
displacement is defined according to the characteristic points. The displacement is defined
under loading normal stress Du1 (average value of normal displacement of OA). While
applying shear stress to τ0, the change in normal displacement is Du2 (the average value
of the displacement difference between points B and A). We define the variation in shear
displacement (the average difference between the displacement of points B1 and A1), the
shear displacement of unloading Dsu (difference between displacements at points C1 and
B1), and the normal displacement of unloading Dnu (displacement difference between
points B and C). The normal stress at failure is σnf and the normal unloading capacity is
∆σn; the relationship is shown in Equation (1) and the values of all defined characteristic
points are shown in Table 3.

∆σn = σn0 − σn f (1)
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Table 3. All defined characteristic points.

θ
(◦)

σn0
(MPa)

τ0
(MPa)

v
(kN/s)

Du1
(mm)

Du2
(mm)

Dsu
(mm)

Ds
(mm)

Dnu1
(mm)

σnf
(MPa)

∆σn
(MPa)

15 2.25 5.384
0.05 0.488 0.132 0.363 2.339 0.044 1.093 1.157
0.10 0.420 0.108 0.115 0.458 0.020 1.148 1.102
0.15 0.432 0.064 0.009 0.881 0.048 2.050 0.200

30 2.25 5.384
0.05 0.344 0.024 0.035 0.173 0.022 0.652 1.598
0.10 0.532 0.056 0.028 0.213 0.052 0.889 1.361
0.15 0.488 0.044 0.018 1.356 0.018 1.618 0.632

45 2.25 5.384
0.05 0.530 0.066 0.251 0.357 0.096 0.440 1.810
0.10 0.348 0.078 0.209 0.441 0.014 0.606 1.644
0.15 0.498 0.066 0.038 0.312 0.050 0.777 1.473

The evolution of characteristic displacements Du1, Du2, and Ds are shown in Figure 7.
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Figure 7. Evolution of Du1, Du2, and Ds.

As shown in Figure 7, with an increase in θ, Du1 gradually increases, whereas Du2 and
Ds gradually decrease. The increase in Du1 under each θ is less than the height of a single
asperity on the structural plane; specifically, the value of Du1 accounts for 59.70%, 31.81%,
and 18.60% of the height of a single asperity under different θ. Therefore, with an increase
in θ, the proportion of the increase in normal displacement gradually decreases. This shows
that under the above-mentioned condition, the structural plane primarily undergoes elastic
deformation. Therefore, the crack between the structural planes is compressed and the
sawtooth tip is not damaged. In the second step, Du2 is greater than 0 mm, which indicates
that the structural plane is further compressed. Meanwhile Du2 < Du1 indicates that the
normal compression in the first step accounts for most of the compression. The structural
plane is not damaged when the shear stress is applied to τ0; therefore, it is no sliding with
large displacement. With an increase in the θ, Ds gradually decreases, which corresponds to
the length of a single asperity on the structural plane, i.e., 24.52%, 11.61%, and 7.4% of the
length of a single asperity. Therefore, an increase in Ds corresponds to less than 1/4 of the
length of a single asperity. Thus, with an increase in the θ, the height of the corresponding
single asperity increases, the “interlocking effect” of the upper and lower structural planes
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is stronger, and it is more difficult to overcome the sliding of the asperity frictions; thus, the
shear deformation gradually decreases.

The evolution of Dsu is shown in Figure 8. Evidently, with an increase in v, Dsu
gradually decreases. Therefore, the greater the value of v, the smaller would be the shear
displacement before instability. Therefore, as v increases, the structural plane instability
becomes more sudden, which is difficult to monitor. However, when v is small, the
contingency of the structural plane instability is reduced; therefore, it has strong early
warning and can be monitored.
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Figure 8. Evolution of Dsu: (a) θ = 15◦, (b) θ = 30◦, (c) θ = 45◦.

3.2. Failure Normal Stress

The evolutions of σnf and ∆σn are shown in Figure 9. Evidently, with an increase
in θ, σnf gradually decreases, which indicates that it is more difficult for the structural
plane to become unstable and damaged in the process of unloading normal stress. With
an increase in v, σnf gradually increases, which indicates that the structural plane is more
prone to instability. Therefore, θ and v have the opposite effect on the instability of the
structural plane. From Equation (1), it is evident that σnf and ∆σn exhibit the opposite
trend with changes in θ and v. Correspondingly, with an increase in θ, ∆σn gradually
increases, but with an increase in v, ∆σn gradually decreases. It is also verified that θ and
v have the opposite effect on the stability of the structural plane. The action mechanism
of θ is primarily reflected in the “interlocking effect” of the upper and lower asperities on
the structural plane. When θ is small, the heights of the asperities on the corresponding
structural plane are 0.67 mm; thus, it does not fit well. Moreover, the corresponding
internal friction angle is small; the structural plane easily overcomes friction and slip failure.
However, when θ is large, the heights of the asperities increase, the “interlocking effect”
between the asperities increases, the corresponding internal friction angle is larger, and the
sliding failure of the structural plane is relatively difficult to achieve. Therefore, ∆σn is an
important safety factor that can be used to characterize the excavation stability; this is of
great potential significance to the evaluation of the rock excavation.
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3.3. Energy Evolution Analysis
3.3.1. Energy Calculation Method

In the compression shear test of a structural plane, the total work performed by external
force is the sum of the work performed by normal force and shear force. The calculation
method of work performed by external force is shown in Figure 10. Consequently, the
energy can be calculated using the following formula:

U = Un + Us (2)

Un =

Dn∫
0

FndDn (3)

Un =

Dn∫
0

FndDn (4)

where, Un and Un are the total work done by the normal force and shear force, respectively.
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3.3.2. Evolution of Energy

The energy evolution is shown in Figure 11. Evidently, in the first step, when the
normal stress is applied, the structural plane is in the compression stage; the normal force
performs positive work. The shear force is not applied; Us = 0 J, and U in this stage equals
Un. The evolution curve of U essentially coincides with the curve of Un. In the second
step, the normal stress is unchanged when the shear force is applied. Because the shear
deformation direction is consistent with the direction of the shear force, the shear force
performs positive work, and Us exhibits a non-linear increasing trend. The shear force is
applied while keeping the normal force unchanged; therefore, the structural plane is further
compressed, and the normal force performs positive work. Owing to the small degree of
compression, the increase in Un is small. Us and U increase nonlinearly and the growth
rate between them is similar. In the third step, the direction of the normal displacement is
opposite to that of the normal force; therefore, the normal force performs negative work
and Un decreases sharply. Moreover, the decreasing speed is equal to the normal stress. At
this stage, the reduction in the normal force transforms the structural plane “from stability
to instability”. The shear displacement has an increasing trend. As the Us further increases,
the increase in speed of Us in the third step is considerably higher than that in the second
step and there is a clear inflection point between the two stages.
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Figure 11. Energy time history evolution curve.

The values of Un, Us, and U at the instability point are shown in Table 4.

Table 4. Values of Un, Us, and U.

θ (◦) σn0 (MPa) τ0 (MPa) v/(kN/s) Un (J) Us (J) U (J)

15 2.25 5.384
0.05 1.876 3.613 5.489
0.10 2.055 2.834 4.889
0.15 2.605 2.490 5.095

30 2.25 5.384
0.05 0.535 4.098 1.633
0.10 1.392 3.042 4.434
0.15 1.497 2.966 4.463

45 2.25 5.384
0.05 1.565 4.576 6.141
0.10 1.653 3.413 5.066
0.15 1.727 3.217 4.944

The evolutions of Un and Us are shown in Figure 12. As shown in Figure 12a, Un
increases gradually with an increase in v. Therefore, Un released under the same θ decreases
gradually; this also verifies that the structural plane is more prone to instability at a higher
v. As observed in Figure 12b, at the unloading point, Us gradually increases with an
increase in θ. However, Us gradually decreases with an increase in v. Therefore, we can
conclude that with an increase in v, the shear displacement generated when the structural
plane is unstable is small; thus, the “impact tendency” is stronger and there is no clear
transition period. Before reaching the instability point, the structural plane exhibits no
obvious sliding and when it reaches the instability point, it exhibits “instantaneous” sliding.
With an increase in θ, Us at the unloading point gradually increases. When the structural
plane is unstable, it is accompanied by the release of deformation energy stored between
the structural planes. Therefore, with an increase in θ, the structural plane instability occurs
with a higher energy release.
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Figure 12. Energy evolution. (a) Un; (b) Us.

The total energy difference ∆U between the unloading and instability points is shown
in Figure 13. Evidently, ∆U gradually decreases with an increase in v. When v = 0.15 kN/s,
∆U decreases almost to 0 J; this shows that when the unloading starts to cause instability,
the total energy contained in the structural plane is almost completely released, and the
instability and failure degree of the rock mass increase gradually. With an increase in θ, ∆U
increases gradually, which indicates that the total energy loss decreases gradually in the
unloading process. When θ is small, the structural plane is prone to instability. With an
increase in θ, the total energy consumed in the process from unloading to instability is large;
thus, instability in the structural plane becomes difficult. However, from the beginning
of the unloading to the instability of the structural plane, the impact tendency during
instability is lower, owing to the excessive total energy consumption. This indicates that θ
is inversely proportional to the impact tendency of the instability.
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Figure 13. Total energy difference between unloading point and instability point.

3.4. Failure Pattern

Owing to length limitations, θ = 30◦ is considered as an example to analyze the failure
mode of the structural plane, as shown in Figure 14.
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Figure 14. Failure patterns of structure plane under θ = 30◦: (a) v = 0.05 kN/s, (b) v = 0.10 kN/s,
(c) v = 0.15 kN/s.

The extent of damage can be directly observed from the visual diagram and 3D
scanning diagram of the structural plane. We can directly see the damage degree of the
structural plane under different v. When v = 0.05 kN/s (Figure 14a), the wear degree of the
upper and lower structural planes is low and only the half in front of the upper structure
plane is filled with debris. Owing to stress concentration, some rock walls at the front of
the lower structure plane are cut off in a small range. Tensile cracks are generated on the
rock wall of the upper structural plane, the angle α between the upper structural plane
and the horizontal plane is an acute angle, and the wear degree of the asperities are lower.
When v = 0.10 kN/s (Figure 14b), the damage of the structural plane increases significantly
and a tension crack is formed at the front end of the rock wall of the upper and lower
structural planes. At this time, the crack is not limited to the rock wall and a through crack
is also formed on the structural plane. The sawtooth cutting effect occurs in the middle of
the upper structural plane. When v = 0.15 kN/s (Figure 14c), the structural plane is most
damaged. This is primarily reflected in the front end of the upper and lower structural
planes, which is completely cut off, and tension cracks are formed on the rock wall of the
lower structural plane. Similarly, this can be seen from the 3D morphology scanning.

The type and mechanism of rock burst can be predicted by the damage degree of
the structural plane. The tensile cracks form on the surface wall of the structural plane
and form an acute angle with the shear direction, that is, toward the free surface. Because
the structural plane in engineering rock mass is not limited by the shear box, when the
structural plane produces instantaneous failure, a large number of rock masses within the
range from the tensile fracture surface to the free surface are washed away, thus forming
large-scale explosion pits. With the increase in v, the damage degree of the structural plane
increases; therefore, the grade of rock burst also increases gradually. It can be concluded
that v is an important factor affecting the rock burst degree. Therefore, comprehensively
understanding the geology and geomorphology and formulating perfect and accurate
construction schedule are of great significance to the stability of engineering rock mass,
which can ensure the safety of personnel and property to the greatest extent.
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After 3D reconstruction, each structural plane is divided into five equal parts and
four 2D profile lines are obtained, which is far in line with the three quantitative standards
recommended by ISRM. The position of the profile line is at 10, 20, 30, and 40 mm in the Y
direction and the sampling interval is 0.125 mm. The positive direction of X is the shear
direction, as shown in Figure 15. According to the above definition, 2D section lines of the
structural plane are obtained under different v, as shown in Figure 16.
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It can be seen from Figure 16 that the shape of the 2D section line of the structural plane
changes after shearing. When v = 0.05 kN/s, there are still a large number of undamaged
regular sawteeth on the structural plane at different Y positions. When v = 0.10 kN/s, most
of the sawteeth on the structural plane are cut and they are filled between the structural
planes, as can be seen from the increase in average height. When v = 0.15 kN/s, the
sawtooth on the same structural plane is cut off, however, compared with v = 0.10 kN/s,
there is no filler between the structural planes, indicating that the impact tendency of the
structural plane is stronger. Therefore, with the increase in v, the damage degree of the
structural plane increases and the “impact tendency” is stronger.

By analyzing the 2D section lines of the structural plane at different Y, the 2D mor-
phological changes in the structural plane are obtained. Next, the damage degree of the
structural plane is analyzed according to the evolution of the 3D morphological parameters.
The 3D morphological parameters to be analyzed are defined as follows:

(1) Average height z3: the average height of each point on the structural plane;
(2) Maximum height difference of surface Sh: vertical distance from the highest point to

the lowest point of the structural plane;
(3) Maximum peak height of surface Sp: the distance from the highest point of the

structural plane to the datum plane;
(4) Contour area ratio SA: the ratio of the surface expanded area of the structural plane to

the vertical projected area; the calculation equation is:

SA =
St

Sn
(5)

where St is the unfolded area of the surface and Sn is the area of the surface vertically
projected to the bottom along the normal direction;
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(5) Volume V: the volume of the space enclosed by the structural plane and the bot-
tom plane;

(6) Surface area St: the expanded area of the surface of the structural plane.

The evolution of the 3D morphology parameters of the structural plane is shown in
Figure 17. In the figure, v = 0 kN/s represents the 3D morphology parameter value before
shearing. It is evident from Figure 17 that the 3D morphological parameters after shearing
are lower than those before shearing. Additionally, it decreases with the increase in v. It
shows that the roughness of the structural plane decreases after shearing, therefore the
damage degree gradually increases with the increase in v.
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Figure 17. Evolution of 3D morphology parameters of structural plane.

4. Discussion
4.1. Gap Width Calculation Method

According to the research results obtained by the research team [46,47], the gap width
during shearing can be characterized using point cloud data and normal deformation.
The gap width refers to the spatial distribution of the spacing between the upper and
lower structural planes, which is numerically equal to the difference between the z-axis
coordinates of each point i (x,y) on the upper and lower structural planes:

∆i = ziu − zid (6)
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where, ∆i is the gap width at point i, and ziu and zid are the heights of the upper and lower
structural planes at point i (x, y), respectively.

The spatial position of each identification point on the upper and lower structural
planes at different shear displacement is calculated through the point cloud data of the
structural plane in Figure 14 and the shear displacement and normal displacement values of
the structural plane at the starting point, unloading point, and instability point. Consequently,
the distribution and evolution of the gap width of the structural plane in the shear process
are analyzed. In the initial state (shear displacement u = 0 mm), the 3D optical scanning
technology can accurately obtain the space coordinate points iou(x, y, z) and iod(x, y, z) of the
upper and lower structural planes. When u = 0 mm, ziou and ziod are ziu and zid, so ziou and ziod
can be substituted into Equation (6) for direct calculation. For the gap width distribution with
shear displacement, u 6= 0 mm; its coordinates translate along the shear direction, therefore,
it is necessary to calculate the coordinates of the upper and lower structural planes with any
u through coordinate transformation. When the shear displacement is u, the gap width at
each point on the structural plane can be deduced as follows:{

∆i = ziou − ziod, u = 0 mm
∆i = z(i+u)ou − ziod, u 6= 0 mm (7)

where, ziou is the height of the upper structural plane at point i in the initial state; ziod is the
height of the upper structural plane at point i in the initial state; z(i+u)ou is the height of the
upper structural plane at point (i + u) in the initial state; and δn is the normal displacement
when the shear displacement is u.

4.2. Analysis of Impact Tendency of Structural Plane

As a result of the aforementioned analysis, the evolution of gap width with different θ
was obtained as shown in Figure 18.
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In Figure 18a–c represent the gap width corresponding to the structural plane at the
initial point, unloading point, and instability point, respectively. Apparently, with the
increase in the θ, the gap width at the corresponding position increases gradually. At the
same time, the change of the gap width gradually decreases, that is, the gap at the adjacent
position basically does not change, indicating that the impact tendency of the structural
plane instability is smaller.

The evolution of the gap width under different v is shown in Figure 19. Similarly,
under each v, (a–c) represent the gap width at the initial point, unloading point, and
instability point, respectively. Evidently, with the increase in v, the damage degree in the
structural plane increases and the change of adjacent positions decreases, so the impact
tendency is stronger.
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As the shear box is sealed, the structural plane cannot be taken out for 3D scanning
in the three stages, so the 3D scanning map of each stage cannot be obtained in real time,
which affects the accuracy of the gap width results. It is recommended that the shear box
and the upper and lower structural planes be created with resin materials at the same time,
so that the structural plane morphology can be scanned in real time and the 3D point cloud
data obtained are more accurate, meaning the accuracy of the test results can be further
improved. In future research, work should focus on the establishment of the structural
plane visualization system.

5. Conclusions

This study analyzes the influence of θ and v on the evolution laws of characteristic
displacement, failure strength, 3D morphology parameters, and energy of the structural
plane through the unloading normal stress test. The main conclusions of the study are
as follows:

(1) In the first step, the normal displacement increases nonlinearly and the increase rate
decreases gradually. In the second step, the shear displacement increases linearly



Sustainability 2022, 14, 15656 19 of 21

and the increase rate is 0.001 mm/s. In the third step, the normal displacement de-
creases nonlinearly, the reduction rate increases gradually and the shear displacement
increases nonlinearly until the instability of the structural plane occurs. With an
increase in θ, the Du1 gradually increases, however, Du2 and Ds gradually decrease.
The increase in Du1 is less than the height of a single asperity on the structural plane.
Dsu and σnf decrease gradually with an increase in the v.

(2) With an increase in v, the Un increases gradually and Un released under the same θ
decreases gradually. At the unloading point, Us increases gradually with an increase
in θ. However, Us decreases gradually with an increase in v. With an increase in θ, Us
at the unloading point increases gradually.

(3) The tension crack that forms on the wall of the structural plane is at an acute angle
with the shear direction. By analyzing the evolution of the 2D section line and 3D
morphology parameters of the structural plane, it is obtained that the damage degree
of the structural plane increases with the increase in v. Meanwhile, an analysis of the
evolution of the gap width of the structural plane, with the decrease in the θ or the
increase in v, demonstrates that the ability of instability failure of the structural plane
increases while the impact tendency of the structural plane, however, decreases.
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