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Abstract: Traditional hard-grade asphalts for high-modulus asphalt concrete (HMAC) are produced
by using natural hard-grade asphalt to modify matrix asphalts. However, natural hard-grade asphalts
are scarce and expensive. To find a sustainable alternative, this study presented a method to synthesize
hard-grade asphalts using phenol formaldehyde resin (PFR), hexamethylenetetramine (HMTA) and
matrix asphalts. Infrared radiation (IR) spectra analysis and fraction analysis for the modifiers and
synthesize asphalts show that asphalt molecules can be cross-linked into larger polymeric groups
by the thermosetting phenol formaldehyde resin (TPFR) which is the reaction product of PFR and
HMTA. This process increased the asphaltene and resin fraction in asphalt, thus transforming a matrix
asphalt into hard grade. With the dosing combinations of 4% PFR/15~20% HMTA, 6% PFR/8~10%
HMTA and 8% PFR/5~5.7% HMTA, dynamic modules of HMAC were 14,000~16,000 MPa, which
satisfied the basic application requirements for HMAC. The rutting resistance of the new hard-grade
asphalts with the above dosage combinations completely exceeds the traditional product using the
Trinidad Lake asphalt as the raw material. Increasing the amount of PFR/HMTA can further improve
the rutting resistance. However, to ensure the fatigue and cracking resistance of the HMAC can get a
level like the traditional product, the dosages of HMTA should be controlled below 15%.

Keywords: durable asphalt pavement; high-modulus asphalt concrete; hard-grade asphalts; phenol
formaldehyde resin; hexamethylenetetramine; rutting resistance; fatigue resistance; cracking resistance

1. Introduction

High-modulus asphalt concrete (HMAC) originated in France in the 1980s and is
now widely used around the world, which contributes to its excellent durability and low
maintenance costs [1]. The original HMAC characteristic was that its dynamic modulus
should exceed 11,000 MPa. This minimum was later increased to 14,000 MPa and was
standardized in the first edition of the French standard for HMAC, NF P98-140, published
in 1999 [2]. Meanwhile, this standard also specified that the fatigue parameter ε6 of the
HMAC mixture should be above 130 µm/m to control the fatigue resistance of HMAC [3].
These two parameters have been introduced by most countries as the basic performance
requirements for the development of HMAC in their countries [4].

To achieve the above two performance requirements of HMAC, using hard-grade
asphalt as a binder is necessary. The hard-grade asphalt characterized by a low penetra-
tion, a high complex modulus and a high softening point compared with that common
matrix asphalt. Early hard-grade asphalts used for HMAC were produced by using natural
hard-grade asphalts modified the matrix asphalts [5]. These natural hard-grade asphalts
include the lake asphalt produced in Trinidad Lake, the rock asphalt produced in Spain
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and Italy, and some produced by direct distillation from heavy crudes imported from
Central America, etc. [6]. However, the small global reserves of natural hard-grade asphalt,
combined with high mining and transportation costs, and the wide variation in product
properties between different origins, make it difficult to support large-scale road construc-
tion projects [7]. In the 1970s, with the popularization of the vacuum distillation process,
it has become possible to refine hard-grade asphalts with stable properties from common
oil sources. Currently, France is the world’s largest producer of hard-grade asphalt, with
an annual production of about 100,000 tons of the product of grades 10/20 and 15/25 in
2019 [1]. Currently, China shows great interest in high-modulus concrete and has paved
several test roads using HMAC in various climatic zones across the country [8,9]. Due to
the huge application demand, the market forecast for hard-grade asphalt as the binders for
HMAC in China is well over 100,000 tons per year [10]. It is clear that the current capacity
of hard-grade asphalt is difficult to meet the future expectations of the Chinese market.
Natural hard-grade asphalt is a non-renewable resource like oil. However, the scale of
natural hard-grade asphalt reserves in China is very small [7]. It is mostly rock asphalt
stored in the southwest Sichuan basin, which is difficult to mine. In addition, Chinese
natural hard asphalt has a higher wax content compared to Trinidad Lake asphalt, which
severely impairs the low-temperature crack resistance of the asphalt. The cost of removing
these waxes is extremely high. In addition, Shen reported that the wax content of natural
hard asphalt in China is higher compared to that of Trinidad Lake asphalt, which severely
impairs the low-temperature crack resistance of asphalt [11,12]. The cost of wax removal is
extremely high [13].

To find a sustainable supply of hard-grade asphalt, many Chinese research focused
on alternatives to hard-grade asphalt in recent years [14–17]. Chen et al. summarized
the characteristics of natural hard-grade asphalt from Buton Island, Indonesia, Albania,
Lake Trinidad, Utah, USA and Sichuan, China, where the differences between them were
significant and the latter two performed very poorly in terms of low-temperature crack
resistance [4]. In order to cope with the variety of natural hard-grade asphalt properties
from different origins, using polymer modifiers to prepare hard-grade modified asphalt
is a common practice at present. Zhang et al. synthesized a novel high-modulus agent
with natural rock asphalt, nanopolymer material and a stabilizer [18]. Zhu et al. prepared
HMAC using reclaimed asphalt pavement (RAP) [9]. Wu et al. evaluated the long-term
service performance of HMACs which used multiple types of hard-grade asphalts as
binders based on the accelerated loading test [5]. Yan et al. characterized and compared
the performance of seven types of hard-grade asphalt, including rubberized asphalt, SBS
(Styrene-Butadiene-Styrene) modified asphalt, SBS + Lake bitumen modified asphalt, SBS
+ rock bitumen modified asphalt, SBS + polyester fiber modified asphalt, SBS + PR.M.(a
commercial HMAC additive from France) and common 50# hard-grade asphalts [8]. Al-
Humeidawi et al. submitted using Novolac polymer (Phenol formaldehyde solid resin,
cross-linking agent Hexamethylenetetramine and crumb rubber to prepare the hard-grade
modified, and investigated its modification mechanism and rutting resistance [19]. In the
study of Al-Humeidawi, the optimum ratios of three additives were determined by the
penetration softening point, and ductility test for the modified asphalt, this work provides
an important reference for this study. However, their studies only focused on the effects
of these modifiers on the performance of asphalt layers and lacked investigations on the
effects of these modifiers on asphalt mixtures. Actually, most of the similar studies about
the modified or synthetic hard-graded asphalts only focused on whether the dynamic
modulus and rutting resistance of HMAC can reach the desired threshold, but they ignored
the possible adverse effects of these modification efforts on other properties (such as the
low-temperature crack resistance and fatigue resistance) of the asphalt [20,21].

In this study, a hard-grade asphalt was prepared by phenol formaldehyde resin (PFR),
hexamethylenetetramine (HMTA) and matrix asphalts. Compared with previous studies,
this study not only investigated the mechanism of modification and the dynamic modulus
of the HMAC using this synthetic hard-grade asphalt as a binder, but also systematically



Sustainability 2022, 14, 15689 3 of 18

analyzed the effect of PFR and HMTA dosing on the rutting resistance, fatigue resistance
and low-temperature crack resistance of the HMAC. The results of this study may provide
a sustainable solution to the shortage and inconsistent performance of hard-grade asphalt
used in HMAC.

2. Materials and Methods
2.1. Modifiers of PFR and HMTA

The PFR and HMTA were used to be the modifier to produce hard-grade asphalt based
on recycled asphalt in this study. The molecular formula of PFR is (C6H6O·CH2O)n with
CAS No: 9003-35-4, categorized as phenol and formaldehyde and the role of solid products.
It is a thermoplastic phenolic solid resin and only melts when heated at about 145~155 ◦C
and cannot be changed to an insoluble and infusible state [22]. HMTA is a curing agent for
PFR and the molecular formula is C6H12N4 with CAS No: 100-97-0. After the addition of
HMTA, PFR can be converted into thermosetting phenol formaldehyde resin (TPFR), in the
amount of phenol (molar) more than the amount of aldehyde (molar) and acidic catalyst
conditions. Reactions that take place in this process are shown in Figure 1.
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Figure 1. Reactions in the process added HMTA into PFR at acidic catalyst conditions.

In the curing reaction for PFR (Step 2 in Figure 1), multiple PFR molecular fragments
are cross-linked to become TRFP [23]. The TPFR changes to an insoluble and infusible
state after being heated, and it is acid-resistant, alkali-resistant and heat-resistant. More
importantly, TPFR has more reactivity to interact with polar components in asphalt and
consequently increases the physical interaction between asphalt molecules. Acidic groups
(-COOH) can be most likely functional groups that react with TPFR. Thus, while modifying
asphalt with TPFR, Pyshyev et al. [22] assumed the reaction as shown in Figure 2.
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Through the reaction in Figure 2, asphalt molecules are cross-linked into larger poly-
meric groups by TPFR. In this process, fraction ratios of asphaltenes and resins rise signifi-
cantly in asphalt so that the asphalt is hardened. Some of the free PFR molecular fragments
are added to the aged asphalt as aromatic fractions and act as regenerating agents. Theoret-
ically, the molecular weight of the asphalt cross-linked structure increases with the amount
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of PFR and the ratio of HMTA to PFR, while the degree of hardening of the asphalt also
increases [22,24].

2.2. Matrix Asphalt and the Control Hard-Grade Asphalt

The raw asphalt used to prepare the synthetic hard-grade asphalts is a PG 70-22
asphalt produced in Sichuan Zhonghai, an oil company in China. A widely used hard-
grade asphalt was engaged in all the tests in this study as the control for the synthetic
hard-grade asphalts, which were produced by using Trinidad Lake asphalt to modify
the matrix asphalt. This control sample is labeled as TLA. TLA is recognized by many
HMAC-pavement construction projects in China. The basic properties of the raw asphalt
PG 70-22 and the control sample TLA are listed in Table 1.

Table 1. Basic properties of the raw asphalt and the control sample of TLA.

Asphalt

Original After Rolling Thin Film Oven Tester (RTFOT)

PG b Penetration b @25
◦C [0.1 mm]

Softening Point b

[◦C]
PG

(RTFOT)

Retained
Penetration

[%]

Increase in Softening Point
[◦C] Mass Loss [%]

Matrix
asphalt 70-22 63 47.0 70-22 85.7 5 0.49

TLA 82-16 20 70.0 82-16 70.0 2 0.16
Requirement

for
hard-grade

asphalt
in EN

13924-1 a

- 15~25 55~71 - ≥ 55 ≤ 8 ≤ 0.5

Note: a. EN 13924-1 is the European Standard for Bitumen and bituminous binders—Specification framework for
special paving grade bitumen—Part 1: Hard paving grade bitumens [25], which standardized the main parameters
of hard-grade asphalt based on existing national requirements. b. Tests of performance grade, penetration and
softening point for asphalts, respectively referred to the Standard D6373-21a [26], D5/D5M-20 [27] and D36/D36M-
14 [28] of American society for Testing and Material (ASTM).

2.3. Preparation Process of PFR/HMTA Synthetic Hard-Grade Asphalt

The preparation process of PFR/HMTA-modified hard-grade asphalt includes five
steps, as shown in Figure 3. First, heat the matrix asphalt to about 160 ◦C, which is slightly
higher than the melting point of 150 ◦C for PFR. Second, transfer the hot matrix asphalt to
the high-speed shear mixer and keep it heated. The shear speed is set as 2000 r/min. Third,
gradually add the PFR into the matrix asphalt being sheared through the feed port of the
high-speed shear to avoid agglomeration in the asphalt. Fourth, gradually add the HMTA
and the hydrochloric acid to the matrix asphalt. Finally, continually mix PFR, HMTA
and matrix asphalt in a high-speed shear mixer for 1 h to obtain PFR/HMTA synthetic
hard asphalt.
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It is important to note that the intermediate product formaldehyde, which is classified
as a human carcinogen by the International Agency for Research on Cancer (IARC), will be
produced in the shear mixer during the preparation process. To ensure safety and health,
operators should wear protective masks and clothing and pay attention to the ventilation
of the test site, as well as to the treatment of exhaust gases.

2.4. Mineral Aggregate Gradation of HMAC

In this study, some experiments were designed for HMAC where the PFR/HMTA
synthetic hard-grade asphalt was used as the binder. The aggregate gradation used for the
HMAC in this study was the French EME-14, which was introduced in the French LPC
Bituminous Mixtures Design Guide [29]. The aggregates gradation is given in Table 2. The
mineral type of the aggregate was basalt.

Table 2. Aggregate gradation of French EME-14.

Sieve Size (mm) 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Passing rate (mass%) 100 84.3 58.5 50.6 32.7 24.2 19.7 15.9 13.6 9.0

2.5. Experiment for Hard-Grade Asphalts
2.5.1. Spectral Measurement

To verify the synthetic process of hard-grade asphalts by PFR/HMTA, the spectral
measurement was carried out on the modifier of PFR/HMTA, matrix asphalt and synthetic
hard-grade asphalts. Infrared radiation (IR) spectroscopic studies were conducted using at-
tenuated total reflectance (ATR) in Thermo Scientific™ NICOLET™ 6700 Fourier transform
infrared spectroscopy (FT-IR). The instrument’s resolution was 2 cm−1. The spectra were
recorded in the range 4000–750 cm−1 and represent the averaging of 32 scans collected at
intervals of 1 cm−1.

2.5.2. Fraction Analysis

The test of thin-layer chromatography with flame ionization detection (TLC-FID) was
performed on hard-grade asphalt samples at various PFR/HMTA additions for evaluating
the SARA (saturated, aromatic, resins and asphaltene) fraction changes in the asphalt
before and after being modified. TLC-FID is recognized as an efficient, fast and cost-
effective method to obtain quantitative information about crude oil composition [23].
In TLC-FID testing, a constructed chromatographic column that leverages the different
diffusion heights of the four fractions of the asphalt in a toluene solution is scorched, during
which the intensity of the electrons emitted by each fraction at the point of aggregation is
recorded and converted into the amount of this fraction [30]. A detailed introduction of the
composition of the SARA fraction of asphalt using TLC-FID quantitative analysis can be
found in previous studies by our team [31,32].

2.5.3. Multiple Stress Creep Recovery (MSCR) Test

As the binder for HMAC, hard-grade asphalts should have high-complex modulus and
low non-recoverable creep compliances at high temperatures [8]. The complex modulus is
easily obtained in the test of high-temperature PG. In this study, the non-recoverable creep
compliance of HMAC was measured by the MSCR test, which was conducted following
Standard D7405-15 of ASTM. For each hard-grade asphalt sample, two stress levels of
0.1 kPa and 3.2 kPa were set. The parameter that results from the MSCR test is the non-
recoverable creep compliance (Jnr) and stress recovery ratio. The smaller Jnr and large stress
recovery ratio represents a higher resistance to the permanent deformation of asphalt [33].

2.5.4. Thermal Stress and Critical Cracking Temperature Test

Poor deformability of hard-grade asphalts at low temperatures means that the cu-
mulative rate of temperature stresses is extremely high when the temperature drops sud-
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denly [34]. Although the HMAC was not commonly used in cold regions, it should exhibit
a certain low-temperature strength and toughness to cope with possible low-temperature
conditions. The effect of PFR/HMTA on the performance of the matrix asphalt is not clear.
Therefore the low-temperature stress and critical cracking temperature for all hard-grade
asphalt samples were measured by the notched specimen cracking test (NSCT) [35] as a
supplementary index for low-temperature performance beyond PG classification. NSCT
can simulate the actual thermal contraction state–strain level of asphalt pavement in the lab-
oratory. In the NSCT, a continuous cooling temperature field was applied to a double-edged
notched binder specimen in which contraction deformation was limited, and the thermal
stress of the specimen can be calculated by measuring the force required to overcome its
thermal contraction strain. In this test, the starting temperature of the cooling was set to
10 ◦C and the cooling rate to 2 ◦C/h.

2.6. Experiment for High-Modulus Asphalt Concrete

To investigate whether the asphalt concrete using PFR/HMTA hard-grade asphalt
can replace the HMAC using traditional natural hard-grade asphalt, four experiments
of Dynamic Modulus (DM) Test, Hamburg Rutting Wheel-Tracking Test (HWTT), Three-
Point Bending (3 PB) Test and Four-Point Bending Fatigue Test (4 PB) were performed on
the PFR/HMTA- HMAC. As the control, the HMAC using the TLA was also tested by
these methods.

2.6.1. Dynamic Modulus (DM) Test

To verify whether the asphalt concrete using PFR/HMTA hard-grade asphalts can
satisfy the modulus required for high-modulus asphalt concrete and to determine the
optimal dosing range of PFR/HMTA modifier, the DM test was performed on the HMAC
samples. In this study, the DM test was conducted following Standard T62-03 of State
Highway and Transportation Officials (AASHTO) [36]. The DM test is a stress-controlled
test involving the application of a repetitive sinusoidal dynamic compressive-axial load
(stress) to an unconfined specimen [37]. In this study, the dimensions of the cylinder HMAC
specimen used in DM are 150 in diameter and 170 mm in height. For each sample, the DM
test was performed with six replicates at the temperature of 25 ◦C and a loading frequency
of 10 Hz. The parameter that results from the DM test is the dynamic complex modulus,
E*, of the HMAC specimen and is expressed as Equation (1) [36].

E∗ =
σ0

ε0
(1)

where σ0 is the axial (compressive) stress (MPa), and ε0 is the axial (compressive) strain.

2.6.2. Hamburg Rutting Wheel-Tracking Test (HWTT)

Improving rutting resistance through the high-modulus is the main design aim of
HMAC. Therefore, HWTT was performed to investigate the anti-rutting performance of
HMAC using PFR/HMTA hard-grade asphalt at high temperatures. In this study, the
HWTT was conducted following Standard T323 of AASHTO [38]. During the test, two
cylindrical HMAC specimens were submerged in a water bath at a constant temperature of
60 ± 2 ◦C and subjected to a rubber wheel rolled back and forth by 42 cycles/min and at a
contact pressure of 0.7 MPa. Dimensions of the cylinder HMAC specimen used in HWTT
are 150 mm diameter and 63.5 mm in height. The HWTT pass–fail criteria are based on a
maximum rutting depth of 10 mm and the number of loads passes of 20,000, whichever
comes first.

2.6.3. Three-Point Bending (3 PB) Test at Low-Temperatures

To investigate the crack resistance at a low temperature of the HMAC using PFC/HMTA
hard-grade asphalts, the 3 PB test was conducted for them. The 3 PB test was conducted
following the Standard T0715-2011 of the Chinese Standard Test Method of Bitumen and
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Bituminous Mixtures for Highway Engineering (JTG E20-2011). For each sample, this
test was performed on three replicates at −10 ◦C, using a Material Test System (MTS)
closed-loop servohydraulic loading system. Dimensions of the prismatic HMAC beam
used in a 3 PB test are 250 mm in length, 35 mm in height and 30 mm in width. During
the test, the span length of the HMAC specimen is supported at 0.8 of the beam lengths
(200 mm). The load transmission occurs with a displacement control system, where the top
loading ring descends at a speed of 50 mm/min until the specimen fails. The maximum
tensile strain εB at the bottom edge of the HMAC beam can be calculated using the tension
bending beam equation as Equation (2) [39].

εB =
6hd
L2 (2)

where h is the height of the mixture beam, 35 mm; d is the deflection of the mid-cross
section; L is the span of the testing fixture, 200 mm.

The schematic diagram of the 3 PB test for the asphalt mixture beam and the relevant
parameters in Equation (2) are shown in Figure 4.
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2.6.4. Four-Point Bending Fatigue (4 PB) Test

To investigate the fatigue resistance of the HMAC using PFC/HMTA hard-grade
asphalts, the 4 PB test was conducted for them. The 4 PB test was conducted following
the Standard T321-22 of AASHTO [40]. For each sample, this test was performed on four
replicates at 10 ◦C, using the MTS closed-loop servohydraulic loading system. Dimensions
of the prismatic HMAC beam used in a 4 PB test are 380 mm in length, 63.5 mm in height
and 50 mm in width. During the test, the displacement at the top surface of the beam
specimen is measured using a Linear Variable Differential Transformer (LVDT). Based on
the measured displacement, the maximum tensile strain and the stiffness modulus of the
specimen are calculated [41]. The cyclic haversine loading waveform with a frequency of
10 Hz is applied during the test. The controlled strain mode is used. When the stiffness
modulus of the specimen declines to 50% of the initial stiffness, the test is over and the
number of load cycles is defined as fatigue life (N f 50). It should be noted that the N f 50 only
is the fatigue life of single mixtures beam. Analyzing the fatigue life for one type of mixture
most often evaluates its ε6 parameter [42]. The first step for calculating the ε6 is regressing
the N f 50 − ε curves using results from multiple replicate tests, as Equation (3) [41].

N f 50 = A·εb (3)

where N f 50 is the fatigue life, ε is the strain during the fatigue test, µm/m, A is the liner
regression parameters and b is the inclination of the fatigue line. After obtaining N f 50 − ε
curves, the ε6 is the strain when input N f 50 is 1 million loading cycles. A higher value of ε6
means potentially better fatigue properties.
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3. Results and Discussion
3.1. Determining Dosages of PFR/HMTA in Hard-Grade Asphalts by DM Tests

Considering the generalized application requirements of HMAC, the minimum value
of its dynamic modulus should be greater than 14,000 MPa (at 15 ◦C and 10 Hz) according
to the French standard NF P98-140 for high modulus concrete [43]. Besides, the statistical
data of Wang et al. on the actual dynamic modulus of HMAC in existing highway pave-
ments showed that the upper quartile value of this statistical interval was 16,000 MPa [44].
Therefore, dosages of PFR/HMTA are determined based on the following: the dynamic
modulus of the HMAC which used PFR/HMTA modified asphalts as binder should be in
the range of 14,000~16,000 MPa at 15 ◦C and 10 Hz.

Combinations of the PFR with four dosages of 2%, 4%, 6% and 8% (by asphalt mass)
and the HMTA with four dosages of 5%, 10%, 15% and 20% (by PFR mass) were selected
to modify the matrix asphalt. Then, 16 obtained PFR/HMTA-modified asphalt samples
were used to prepare the corresponding mixtures. The aggregate gradation used was the
EME-14 as listed in Table 2. Then, the dynamic modulus of these PFR/HMTA mixtures was
measured by the DM tests. Results of the dynamic modulus of HMAC at various dosage
combinations of PFR and HMTA are shown in Figure 5.
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Each hollow point in Figure 5 represents the mean of results of six replicate dynamic
modulus tests at the same dose combination of PFR and HMTA. Clearly, the dynamic
modulus increased with the dosage of PFR and HMTA. However, only mixtures at dosage
combinations of 4% PFR/15% HMTA, 4% PFR/20% HMTA, 6% PFR/10% HMTA, 6%
PFR/15% HMTA and 8% PFR/5% HMTA satisfied or close to the dynamic modulus
requirement of 14,000~16,000 MPa for HMAC. In Al-Humeidawi’s study, the optimal value
of additives was 4% PFR by mass of asphalt and 10 % of HMTA by mass of PFR. This dosage
combination was determined according to the requirement of penetration, softening point
and ductility for hard-grade bitumen in the EME2 design method. Clearly, the dosing range
selected in this study deviates slightly from the optimal dosing given by Al-Humeidawi,
which is due to the fact that the two were determined based on different benchmarks. The
benchmark used in this study was the dynamic modulus of the asphalt mixture, while that
used in the Al-Humeidawi’s study was the mandatory requirement for the performance of
the asphalt in the current material standard. Of course, the dosing combinations given here
are not the optimal combinations recommended in this study, and their effects on asphalt
and asphalt mixes are discussed systematically in the subsequent sections.
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3.2. FTIR for PFR/HMTA Synthetic Hard-Grade Asphalts

The IR spectra for the modifier 4% PFR + 15% HMTA and asphalt samples of 4%
PFR/15% HMTA, 6% PFR/15% HMTA and the matrix asphalt PG70-22 are shown in
Figure 6.
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Typical functional groups in the modifier of 4% PFR + 15% HMTA include phenolic
hydroxyl group (Ar − OH), methylene (-CH2-), aroxyl (Ar-O-), methylidyne (≡ CH) and
olefinic bond (C = C) in the benzene ring. The signal of the ether groups (C − O − C) at
1100 cm−1 indicates that some of the resins are “stitched up”, forming ethers, which verified
the curing reaction for PFR in the Step 2 of Figure 1. After adding the modifier PFR/HMTA
into the matrix asphalt, the absorption peaks increased at 905 and 1189 cm−1 [45], as shown
in the right enlargement in Figure 6b. This is due to the increase in ether groups (C−O−C).
It should be noted here that the absorption peak of C−O−C overlaps with that of sulfoxide
(S = O), so the increase in corresponding absorption peaks is not noticeable in the full-scale
plot of the IR spectra for synthetic asphalts. The areas of the absorption peak of C − O − C
(within the signal bands of 1144~1192 cm−1 and 909~1047 cm−1) were calculated by the
trapezoidal integration method in MATLAB, and the results are listed in Table 3. When the
amount of PFR doping is increased from 4% to 6% (a 1.5-fold increase), the amount of this
type of ether group (C − O − C) also increases by a factor of about 1.58. This indicates that
the PFR in both samples reacted adequately with HMAT to produce TPFR (recall Figure 1).
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Table 3. Areas under absorption bands of IR spectra.

Absorption
Bands
[cm−1]

Function
Groups

Area in IR Spectra [wt%]

Matrix Asphalt 4% PFR/15%
HMTA

6% PFR/15%
HMTA

1478~1536 C = C 0 0.031 0.048
1144~1192 and

909~1047 C − O − C 0.0414 0.0538 0.0862

Another major change in the IR spectra for the asphalt after adding the modifier
PFR/HMTA is an absorption peak that occurred at 1498 cm−1, but it cannot be found
in the IR spectra for the matrix asphalt. The area of this absorption peak increased with
the dosage of PFR/HMTA, as shown in the left enlargement in Figure 6b. This is due to
the shift in the absorption of C = C bonds in various aromatic systems—benzene ring
for the modifier PFR/HMTA and cross-linking structure for synthetic asphalts [22]. The
corresponding absorption peak that occurred in 1478~1536 cm−1 represents the function
groups of C = C, the area of which should is related to the amount of aromatic systems
(benzene ring) compounds that actually participate in the cross-linked structure of the
asphalt. All the aromatic systems (benzene ring) were provided by the PFR, not the HMTA.
Therefore, it is possible to verify whether all the PFR added is sufficiently involved in the
construction of the cross-linked structure by calculating this peak area. In matrix asphalt,
the peak area is 0 (Table 3). When the PFR doping was increased from 4% to 6% (a 1.5-fold
increase), the area of this peak also increased by a factor of about 1.54. This indicates that
the TPFR under both additive regimens fully participated in the creation of the asphalt
cross-linked structure. One conclusion that can be obtained here is the dosages of modifier
PFR/HMTA in asphalts can be verified by calculating the areas of ab-309 sorption peaks of
the above two function groups (C-O-C and C=C). All of the above results from FTIR test
indicate that the matrix asphalt and PFR/HMAT products undergo a condensation reaction,
resulting in the formation of a larger molecular weight cross-linked structure. This is quite
different from the conclusion given by Al-Humeidawi, who argued that there was only
physical mixing occurred in the polymers and asphalt in presence of heat and mechanical
mixing. This may be caused by the different positions of attention to the absorption bands
of the asphalt functional groups in the two studies. Similar conclusions with this study
can be found in the study of Pyshyev et al. [22] for Phenol-cresol-formaldehyde resins
(PhCR-F).

3.3. Performance of PFR/HMTA Synthetic Hard-Grade Asphalts
3.3.1. Basic Properties and SARA Fractions of PFR/HMTA Synthetic Hard-Grade Asphalts

Basic properties, including penetration, softening point and PG of five PFR/HMTA
synthetic hard-grade asphalts at the initial state and corresponding short-aging state (after
RTFOT) are shown in Table 4. The TLA is the control sample. At their original state,
three synthetic asphalts of 4% PFR/15% HMTA, 4% PFR/20% HMTA and 6% PFR/15%
HMTA possessed a relatively high softening point compared with not only the TLA but
also the requirement of the General-Class grade hard-grade asphalt as specified in the
British Standard EN 13924-1 [25]. Their penetration was also slightly smaller than TLA.
After the RTFOT, their retained penetrations were smaller than that of the other two, and
their increases in softening point were more significant. These three synthetic asphalts
have an obvious commonality in that they had high HMTA dosages (HMTA ≥ 15%). Only
the PG of asphalts with 4% PFR/15% HMTA and 4% PFR/20% HMTA changed before
and after RTFOT, where the low-temperature PG of 4% PFR/15% HMTA reduced by one
level and the high-temperature PG of 4% PFR/20% HMTA raised increased by one level. A
preliminary conclusion that can be drawn is that the addition of more than 15% of HMTA
may cause excessive hardening of the asphalt. However, whether this excessive hardening
has negative effects on high-grade asphalts cannot be concluded from the parameters in
Table 4. The results of Al-Humeidawi et al. [19] can provide some support for the conclusion
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of this study, where the asphalt hardness increased significantly with either PFR or HMTA
admixture. However, the dosage combination determined in Al-Humeidawi‘s study to
comply with the EME2 requirements (EN13924-1) was 4% PFR/10% HMAT, which is a
slight deviation from the 6% PFR/10% HMAT and 8% PFR/5% HMAT given in Table 4.
This may be due to differences in additive purity and deviations in the properties of
the bitumen.

Table 4. Basic properties of PFR/HMTA synthetic hard-grade asphalts.

Asphalt

Original After RTFOT

PG Penetration @25
◦C [0.1 mm]

Softening Point
[◦C]

PG
(RTFOT)

Retained
Penetration [%]

Increase in Softening Point
[◦C]

Mass
Loss [%]

4% PFR/15% HMTA 82-16 17 73.0 b 82-10 58.8 5 0.22
4% PFR/20% HMTA 88-10 14 b 77.0 b 94-10 40.6 b 7 0.17
6% PFR/10% HMTA 82-16 22 69.5 82-16 76.2 4 0.42
6% PFR/15% HMTA 88-10 12 b 78.5 b 88-10 58.3 6 0.22
8% PFR/5% HMTA 82-16 26 65.5 82-16 76.9 3 0.38

TLA 82-16 20 70.0 82-16 70.0 2 0.16
EME2 Requirement of EN

13924-1 a - 15~25 55~71 - ≥ 55 ≤ 8 ≤ 0.5

Note: a means that this parameter does not meet the requirement of the General-Class hard-grade asphalt as
specified in Standard EN 13924-1; b means that the value is out of the requirement range recommended by
Standard EN 13924-1.

Results of SARA fraction analysis for five synthetic hard-grade asphalts and TLA
(the control sample) are shown in Figure 7, which were obtained by the TLC-FID. Three
synthetic asphalts with 4% PFR/15% HMTA, 4% PFR/20% HMTA and 6% PFR/15% HMTA
processed larger asphaltene ratios and smaller resins ratios than TLA, which should be
caused by the high additions of HMTA in them. Compared with them, SARA fraction
compositions of synthetic asphalts with 6% PFR/10% HMTA, and 8% PFR/5% HMTA
were closer to that of TLA. However, their asphaltene ratio was a little lower than that of
TLA. Synthetic asphalts of 6% PFR/10% HMTA and 8% PFR/5% HMTA possessed higher
saturated ratios than that of the other three and TLA. Previous studies indicated that a
fraction saturated is the most unstable fraction in asphalts and it is highly susceptible to
loss or conversion into other heavy fractions, such as asphaltene and resins during the
aging process of asphalt [31]. This explains why the mass loss of these two samples after
RTFOT was more than the other three and TLA.
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3.3.2. Resistance to Permanent Deformation of PFR/HMTA Synthetic Hard-Grade Asphalts

Figure 8a,b shows the results of the MSCR test for each sample at stress levels of
3.2 kPa and 0.1 kPa, respectively. The recovery rate represents the elastic response, and
the Jnr indicates the permanent deformation sensitivity of asphalt binders. The higher
recovery rate and lower Jnr value are desired to guarantee sufficient resistance to permanent
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deformation of hard-graded asphalt at high service temperatures, which is necessary for
the rutting resistance of the corresponding asphalt mixtures. The descending order of
resistance to permanent deformation for these PFR/HMTA synthetic hard-grade asphalts
based on the Jnr and recovery ratios are 4% PFR/20% HMTA, 6% PFR/15% HMTA, 4%
PFR/15% HMTA, 6% PFR/10% HMTA, 8% PFR/5% HMTA and the control sample of
TLA. As observed, all PFR/HMTA synthetic hard-graded asphalt samples performed
considerably well than the control. This should be attributed to the cross-linking structure
in the synthetic hard-grade asphalt strengthened by the modifier of PFR/HMTA. In asphalt
samples with the same dosage of PFR, the resistance to permanent deformation increased
with the dosage of HMTA. For example, the Jnr3.2 of 6% PFR/15% HMTA was 59% smaller
than that of 6% PFR/10% HMTA. In asphalt samples with the same dosage of HMTA,
the resistance to permanent deformation increased with the dosage of PFR as well. The
Jnr3.2 of 4% PFR/15% HMTA was 48% smaller than that of 6%PFR/15%HMTA. However,
HMTA seems to provide better enhancement of asphalt-rutting resistance than PFR. The
sample with 4% PFR/20% HMTA (had the maximum dosage of HMTA among all samples)
possessed the minimum Jnr3.2, but the sample with 8% PFR/5% HMTA (had the maximum
dosage of PFR among all samples) possessed the maximum Jnr3.2. These indicate that
increasing the amount of HMTA/PFR can enhance the resistance to permanent deformation
of asphalt (reduce the Jnr and increase the elastic recovery rate), and this enhancement can
be further improved by using a recipe with a higher-dosage ratio of HMTA and PFR.
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3.3.3. Critical Cracking Temperature of PFR/HMTA Synthetic Hard-Grade Asphalts

Figure 9a shows the development of the thermal stress during the cooling process of
five synthetic hard-grade asphalts and the control sample, which was outputted by the
NSCT. When the temperature reached critical cracking temperatures (TCR), the accumulated
thermal stress within the asphalt specimen was greater than its tensile strength. At this
moment, cracking occurred rapidly in the asphalt specimen, while the thermal stress curve
suddenly dropped to 0. Figure 9b shows the TCR of all samples. The lower TCR is desired
to guarantee higher cracking resistance of hard-grade asphalt binders at low temperatures.
The descending order of cracking resistance for these PFR/HMTA synthetic hard-grade
asphalts based on the TCR are 8% PFR/5% HMTA, 6% PFR/10% HMTA, 4% PFR/15%
HMTA, TLA, 6% PFR/15% HMTA and 4% PFR/20% HMTA. The gap between the highest
TCR of 4% PFR/20% HMTA and lowest TCR of 4% PFR/20% HMTA reached 10 ◦C. As
observed, the maximum stresses before cracking are at least 22% greater in all five types
of synthetic hard-grade asphalts than in TLA, which indicates that the low-temperature
strength (tensile) of synthetic asphalt has been improved. However, the growth rates of
thermal stress with cooling were greater for the three samples with 15% and 20% HMTA
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addition than for TLA, which indicates that the deformability of these three synthetic
asphalts at low temperatures is lower than that of TLA. Accordingly, although their low-
temperature tensile strength performed well than TLA, their TCR were higher than TLA
due to the larger rate of thermal stress accumulation. Compared with these three, the
two samples with 5% and 10% HMTA additions not only have greater low-temperature
tensile strength, but also have a significantly lower rate of thermal stress accumulation with
cooling than TLA. On the basis of these results, one can conclude that the modifiers of PFR
and HMTA can improve the low-temperature tensile strength of asphalts, but the higher
the addition of HMTA, the worse the deformation capacity of asphalts at low temperatures.
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3.4. Performance of PFR/HMTA-HMAC

The rutting resistance, fatigue resistance and cracking resistance of the HMAC which
used the PFR/HMAC synthetic hard-grade asphalts as binders were also investigated in
this study. The used aggregate gradation for these PFR/HMTA-HMAC was the French
EME-14 (Table 2). To ensure compaction quality, target air void ratios of this aggregate
gradation should be controlled at 0~6% [2]. The actual air void rates for all HMAC
specimens made were checked as shown in Table 5, all of which satisfied the requirement.

Table 5. Air voids of PFR/HMTA-HMAC specimens.

HMAC Asphalt Content [%] Air Voids in Compacted
Mixture

4% PFR/15% HMTA

4.8

2.8
4% PFR/20% HMTA 2.6
6% PFR/10% HMTA 2.5
6% PFR/15% HMTA 1.8
8% PFR/5% HMTA 2.0

TLA 2.4

3.4.1. Rutting Resistance

The results of HWTT for six HMACs which used the five PFR/HMTA modified
asphalts and the control asphalt TLA as binders are shown in Figure 10. For each sample,
three replicate tests were conducted. Figure 10a displays the rutting depth increased
with the wheel loading cycles for these six HMAC samples in one set of tests. In five
samples of PFR/HMTA-HMAC, rutting depths increased almost linearly with loading
cycles. However, in the sample of TLA-HMAC, rutting depths increased rapidly in the
first 5000 loading cycles, about 40% of total rutting depths occurred in this stage. In the



Sustainability 2022, 14, 15689 14 of 18

following 15,000 loading cycles for TLA-HMAC, the growing rate of rutting depths declined
slightly but it was also above that of the 8% PFR/5% HMTA which had the large growth
rate among the PFR/HMTA-HMAC.
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synthetic hard-grade asphalts and the control sample.

Figure 10b shows the averages of final rutting depths after 20,000 loading cycles for
the six HMAC samples. No samples failed (rutting depths large than 10 mm) before the
wheel loading cycles reached 20,000 cycles, and descending order of rutting resistance for
these samples based on rutting depths are 6% PFR/15% HMTA, 4% PFR/20% HMTA, 4%
PFR/15% HMTA, 6% PFR/10% HMTA, 8% PFR/5% HMTA and the control sample of TLA.
This order of rutting resistance for asphalt mixtures given by HWTT is similar to the above
results for asphalts given by MSCR. These also further verified the conclusion obtained
above that PFR/HMTA synthetic hard-grade asphalt exhibit a better rutting resistance than
the TLA. In the same dosage of PFR, larger additions of HMTA can further improve the
rutting resistance of HMAC. For example, in the two samples with 4% PFR, the rutting
depths of 20% HMTA were 30% smaller than that of 15% HMTA. Similar results can be
found in the two samples with 6% PFR. Similarly, using a large dosage of PFR in the sample
with the same HMTA content can also improve the rutting resistance.

3.4.2. Fatigue Resistance

Poor resistance to fatigue cracking is a general shortcoming of high-modulus asphalt
concrete, and many studies attempted to solve this problem. For HMAC using synthetic
hard-grade asphalts as binders, their fatigue resistance should be at least better than that of
those traditional hard-grade asphalts. Figure 11 shows the results of 4 PB fatigue tests for
five PFR/HMTA-HMAC samples and the control of TLA-HMAC. The regressed N f 50 − ε
curves (Wöhler fatigue curves) for all samples are also displayed in it and the parameters
of corresponding curves are listed in Table 6.
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and the control sample.

Table 6. Parameters of N f 50 − ε curves for all HMAC samples.

Mixture
N f 50 − ε Curves Parameter ε

[µm/m]A b R2

4% PFR/15% HMTA 2.58 × 1020 −6.45 0.87 170.70
4% PFR/20% HMTA 2.08 × 1016 −5.01 0.69 114.68
6% PFR/10% HMTA 5.54 × 1023 −7.64 0.94 210.11
6% PFR/15% HMTA 8.43 × 1018 −5.96 0.70 147.49
8% PFR/5% HMTA 1.55 × 1021 −6.48 0.91 220.89

TLA 8.39 × 1016 −5.45 0.76 178.78

The descending order of fatigue resistance for these HMAC based on ε6 are 8% PFR/5%
HMTA, 6% PFR/10% HMTA, TLA, 4% PFR/15% HMTA, 6% PFR/15% HMTA and 4%
PFR/20% HMTA. In some European countries, the ε6 parameter of high-modulus asphalt
concrete must be greater than 130 µm/m [42]. Obviously, the HMAC samples of 4%
PFR/20% HMTA cannot satisfy it, and the 6% PFR/15% HMTA just crossed this threshold.
Compared with them, the ε6 of two samples with 5% and 10% HMTA were about 69.2% and
61.5% above this threshold, and they were also about 23.1% and 17.9% above the sample of
TLA. Slopes of N f 50 − ε curves for 6% PFR/15% HMTA, and 4% PFR/20% HMTA are large
than other curves, which means a strong sensitivity for the fatigue life to strain in these two
samples. This slight increase in the strain (corresponding to heaver vehicle load cycles or
thermal cycles with large temperature gaps) may lead a significant decrease in the fatigue
life of pavements [24]. All of these indicate that the dosage of HMTA in the asphalt should
avoid exceeding 15% to ensure enough fatigue resistance of the HMAC.

3.4.3. Cracking Resistance

The results of a 3 PB beam test for six HMAC samples are shown in Figure 12. The
descending order of cracking resistance for these mixture samples based on the εB is
identical to the order for PFR/HMTA synthetic hard-grade asphalt samples obtained by
NSCT. This is due to the fact that the cracking resistance of asphalt mixtures at a low
temperature is highly dependent on the crack resistance of the asphalt binders. The εB of
samples with HMTA doping of more than 10% of samples did not reach the level of the
control group of TLA. None of the samples doped with more than 10% HMTA reached the
same level of εB as the TLA control. However, εB of samples of 8% PFR/5% HMTA and
6% PFR/10% HMTA were 48.8% and 36.0% higher than the control group, respectively.
In general, the cracking resistance of modified asphalt synthesized by adding modifier
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PFR/HMTA at low temperatures can completely reach a level similar to that of traditional
hard-grade asphalt, but the dosage of HMTA should not exceed 10%.
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4. Conclusions

This study introduced a method to synthesize hard-grade asphalts using phenol
formaldehyde resin (PFR), hexamethylenetetramine (HMTA) and matrix asphalt, and
investigated the effects of multiple dosing combinations of PFR and HMTA on the perfor-
mance of hard-grade asphalts and the corresponding HMAC. Major conclusions can be
summarized as follows

(1) To satisfy the basic application requirements of HMAC, i.e., the dynamic modules
of HMAC should be in the range of 14,000~16,000 MPa, the dosing combinations of PFR and
HMTA were determined as 4% PFR/15~20% HMTA, 6% PFR/8~10% and 8% PFR/5~5.7%.

(2) IR spectra and SARA fraction analysis for the PFR/HMTA synthetic hard-grade
asphalts verified the assumed reaction that asphalt molecules can be cross-linked into
larger polymeric groups by the TPFP which is the reaction product of PFR and HMTA. This
process increased the asphaltene and resin fraction in the asphalt, thus transforming the
matrix asphalt into hard grade. The higher dosage of PFR/HMTA the harder asphalt can
be obtained.

(3) The rutting resistance of PFR/HMTA synthetic hard-grade asphalts under the
above dosage combinations completely exceeded that of a widely used hard-grade asphalt
which was produced by using Trinidad lake asphalt to modifier the matrix asphalt. Increas-
ing the amount of PFR/HMTA can enhance the rutting resistance of asphalt (reduce the Jnr
and increase the elastic recovery rate), and further enhancement can be obtained by using a
recipe with a higher dosage ratio of HMTA to PFR.

(4) The fatigue resistance of PFR/HMTA-asphalt mixtures can reach and even exceed
that of TLA just in case of the HMTA dosage was lower than 15%. If the dosage of
HMTA is over 15%, the sensitivity of the fatigue life to strain increases. Furthermore, the
fatigue parameter ε6 of the asphalt mixture with 20% HMTA content cannot meet the
application requirements.

(5) Similarly with their fatigue resistance, the cracking resistance of PFR/HMTA-
asphalt mixtures at a low temperature reached and even exceeded TLA only on the condi-
tion that the HMTA was lower than 15%. Although the PFR/HMTA enhanced the tensile
strength of asphalts at low temperatures, the inner accumulation rate of thermal stress was
also increased due to the increase in the hardness and the decline in the deformability of
the asphalt.
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In general, PFR/HMAC synthetic hard-grade asphalts can be considered as an al-
ternative to traditional hard-grade asphalt as binders for high-modulus asphalt concrete.
The aging resistance of it and the effect of the performance of matrix asphalt on it will be
considered in subsequent studies.
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