Implementing the Maximum Likelihood Method for Critical Gap Estimation under Heterogeneous Traffic Conditions
Abstract
:1. Introduction
2. Related Works
2.1. Estimating the Critical Gap
2.2. Critical Gap Estimation Methods
2.3. Previous Studies
3. Study Area and Data Collection
3.1. Study Area
3.2. Data Collection
4. The Proposed MLM Method for Critical Gap Estimation
5. Results and Discussions
Gap Estimation Method Used | Road User Groups | ||
---|---|---|---|
2-Wheelers | 3-Wheelers | Cars | |
MLM (this study) | 5.18 (1.55) * | 6.39 (1.35) * | 7.04 (2.13) * |
Raff [52] | 2.25 | 2.50 | 2.50 |
Logit [52] | 2.70 | 2.90 | 3.10 |
Greenshield [52] | 2.30 | 2.25 | 2.65 |
MLM [51] | 2.65 | 2.70 | 3.05 |
Ashworth [51] | 2.45 | 2.55 | 2.90 |
Clearing Behavior [51] | 4.80 | 4.65 | 5.00 |
Raff [38] | 2.75 | 4.05 | 4.80 |
Clearing Behavior [38] | 4.03 | 6.53 | 7.69 |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamal, A.; Rahman, M.T.; Al-Ahmadi, H.M.; Ullah, I.M.; Zahid, M. Intelligent Intersection Control for Delay Optimization: Using Meta-Heuristic Search Algorithms. Sustainability 2020, 12, 1896. [Google Scholar] [CrossRef] [Green Version]
- Jamal, A.; Al-Ahmadi, H.M.; Butt, F.M.; Iqbal, M.; Almoshaogeh, M.; Ali, S. Metaheuristics for Traffic Control and Optimization: Current Challenges and Prospects. In Search Algorithm-Essence of Optimization; IntechOpen: London, UK, 2021. [Google Scholar]
- Alinizzi, M.; Haider, H.; Alresheedi, M. Assessing Traffic Congestion Hazard Period Due to Commuters’ Home-to-Shopping Center Departures after COVID-19 Curfew Timings. Computation 2022, 10, 132. [Google Scholar] [CrossRef]
- Al-Ahmadi, H.M.; Jamal, A.; Reza, I.; Assi, K.J.; Ahmed, S.A. Using Microscopic Simulation-Based Analysis to Model Driving Behavior: A Case Study of Khobar-Dammam in Saudi Arabia. Sustainability 2019, 11, 3018. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, B.J. A Behavior-Based Methodology for Evaluating Pedestrian-Vehicle Interaction at Crosswalks; North Carolina State University: Raleigh, NC, USA, 2008; ISBN 0549547797. [Google Scholar]
- Highway Capacity Manual. Highway Capacity Manual; Highway Capacity Manual: Washington, DC, USA, 2000; Volume 2. [Google Scholar]
- Highway Capacity Manual. HCM2010. Transportation Research Board; National Research Council: Washington, DC, USA, 2010; p. 1207. [Google Scholar]
- Miller, A.J. A Note on the Analysis of Gap-Acceptance in Traffic. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1974, 23, 66–73. [Google Scholar] [CrossRef]
- Ashalatha, R.; Chandra, S. Critical gap through clearing behavior of drivers at unsignalised intersections. KSCE J. Civ. Eng. 2011, 15, 1427–1434. [Google Scholar] [CrossRef]
- Patil, G.R.; Pawar, D.S. Temporal and spatial gap acceptance for minor road at uncontrolled intersections in India. Transp. Res. Rec. 2014, 2461, 129–136. [Google Scholar] [CrossRef]
- Troutbeck, R.J. Estimating the mean critical gap. Transp. Res. Rec. 2014, 2461, 76–84. [Google Scholar] [CrossRef]
- Ijaz, M.; Lan, L.; Usman, S.M.; Zahid, M.; Jamal, A. Investigation of factors influencing motorcyclist injury severity using random parameters logit model with heterogeneity in means and variances. Int. J. Crashworthiness 2021, 27, 1412–1422. [Google Scholar] [CrossRef]
- Ijaz, M.; Liu, L.; Almarhabi, Y.; Jamal, A.; Usman, S.M.; Zahid, M. Temporal Instability of Factors Affecting Injury Severity in Helmet-Wearing and Non-Helmet-Wearing Motorcycle Crashes: A Random Parameter Approach with Heterogeneity in Means and Variances. Int. J. Environ. Res. Public Health 2022, 19, 10526. [Google Scholar] [CrossRef]
- Moslem, S.; Farooq, D.; Jamal, A.; Almarhabi, Y.; Almoshaogeh, M.; Butt, F.M.; Tufail, R.F. An Integrated Fuzzy Analytic Hierarchy Process (AHP) Model for Studying Significant Factors Associated with Frequent Lane Changing. Entropy 2022, 24, 367. [Google Scholar] [CrossRef]
- Raff, M.S. A Volume Warrant for Urban Stop Signs; Pennsylvania State University: State College, PA, USA, 1950. [Google Scholar]
- Ashworth, R. A note on the selection of gap acceptance criteria for traffic simulation studies. Transp. Res. 1968, 2, 171–175. [Google Scholar] [CrossRef]
- Ashworth, R. The analysis and interpretation of gap acceptance data. Transp. Sci. 1970, 4, 270–280. [Google Scholar] [CrossRef]
- Madanat, S.M.; Cassidy, M.J.; Wang, M.-H. Probabilistic delay model at stop-controlled intersection. J. Transp. Eng. 1994, 120, 21–36. [Google Scholar] [CrossRef]
- Mahmassani, H.; Sheffi, Y. Using gap sequences to estimate gap acceptance functions. Transp. Res. Part B Methodol. 1981, 15, 143–148. [Google Scholar] [CrossRef]
- Pant, P.D.; Balakrishnan, P. Neural network for gap acceptance at stop-controlled intersections. J. Transp. Eng. 1994, 120, 432–446. [Google Scholar] [CrossRef]
- Sangole, J.P.; Patil, G.R. Adaptive neuro-fuzzy interface system for gap acceptance behavior of right-turning vehicles at partially controlled T-intersections. J. Mod. Transp. 2014, 22, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, R.H. Measuring critical gap. Transp. Sci. 1983, 17, 87–109. [Google Scholar] [CrossRef]
- Tian, Z.; Vandehey, M.; Robinson, B.W.; Kittelson, W.; Kyte, M.; Troutbeck, R.; Brilon, W.; Wu, N. Implementing the maximum likelihood methodology to measure a driver’s critical gap. Transp. Res. Part A Policy Pract. 1999, 33, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Hagring, O. Estimation of critical gaps in two major streams. Transp. Res. Part B Methodol. 2000, 34, 293–313. [Google Scholar] [CrossRef]
- Tian, Z.Z.; Troutbeck, R.; Kyte, M.; Brilon, W.; Vandehey, M.; Kittelson, W.; Robinson, B. A further investigation on critical gap and follow-up time. In Proceedings of the 4th International Symposium on Highway Capacity, Maui, HI, USA, 27 June–1 July 2000; Transportation Research Circular E-C018. 2000; pp. 409–421. [Google Scholar]
- Wu, N. A new model for estimating critical gap and its distribution at unsignalized intersections based on the equilibrium of probabilities. In Proceedings of the 5th international Symposium on Highway Capacity and Quality of Service, Yokohama, Japan, 25–27 July 2006. [Google Scholar]
- Devarasetty, P.C.; Zhang, Y.; Fitzpatrick, K. Differentiating between left-turn gap and lag acceptance at unsignalized intersections as a function of the site characteristics. J. Transp. Eng. 2012, 138, 580–588. [Google Scholar] [CrossRef]
- McGowen, P.; Stanley, L. Alternative methodology for determining gap acceptance for two-way stop-controlled intersections. J. Transp. Eng. 2012, 138, 495–501. [Google Scholar] [CrossRef]
- Wu, N. Equilibrium of probabilities for estimating distribution function of critical gaps at unsignalized intersections. Transp. Res. Rec. 2012, 2286, 49–55. [Google Scholar] [CrossRef]
- Miller, A.J. Nine Estimators of Gap-Acceptance Parameters; Traffic Flow and Transportation: Washington, DC, USA, 1971. [Google Scholar]
- Brilon, W.; Koenig, R.; Troutbeck, R.J. Useful estimation procedures for critical gaps. Transp. Res. Part A Policy Pract. 1999, 33, 161–186. [Google Scholar] [CrossRef]
- American Association of State Highway and Transportation Officials. Federal Highway Administration Manual on Uniform Traffic Control Devices; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2009. [Google Scholar]
- Wan, B.; Rouphail, N.M. Using arena for simulation of pedestrian crossing in roundabout areas. Transp. Res. Rec. 2004, 1878, 58–65. [Google Scholar] [CrossRef]
- Yannis, G.; Papadimitriou, E.; Theofilatos, A. Pedestrian gap acceptance for mid-block street crossing. Transp. Plan. Technol. 2013, 36, 450–462. [Google Scholar] [CrossRef]
- Sun, D.; Benekohal, R.F. Modeling and simulation of pedestrian-motorist interaction at uncontrolled mid-block crosswalks. In Proceedings of the Institute of Transportation Engineers (ITE) 2003 Technical Conference and ExhibitInstitute of Transportation Engineers (ITE), Portland, OR, USA, 13–16 August 2003. [Google Scholar]
- Di Pietro, C.M.; King, L.E. Pedestrian Gap-Acceptance; Highway Research Record: Morgantown, WV, USA, 1970. [Google Scholar]
- Mohan, M.; Chandra, S. Review and assessment of techniques for estimating critical gap at two-way stop-controlled intersections. Eur. Transp.-Trasp. Eur. 2016, 1, 1–18. [Google Scholar]
- Abhigna, D.; Brahmankar, D.P.; Ravishankar, K.V.R. Multi Vehicle-Type Right Turning Gap-Acceptance and Capacity Analysis at Uncontrolled Urban Intersections. Period. Polytech. Transp. Eng. 2020, 48, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Abhishek, A.; Boon, M.A.A.; Mandjes, M. Generalized gap acceptance models for unsignalized intersections. Math. Methods Oper. Res. 2019, 89, 385–409. [Google Scholar] [CrossRef] [Green Version]
- Barchański, A. Analysis of critical gap times and follow-up times at selected, median, uncontrolled T-intersections differentiated by the nature of the surrounding. In Proceedings of the Scientific And Technical Conference Transport Systems Theory And Practice, Katowice, Poland, 16–18 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 242–256. [Google Scholar]
- Barchański, A.; Żochowska, R. Estimation of critical gaps and follow-up times at median uncontrolled T-intersection. Arch. Transp. 2021, 60, 105–124. [Google Scholar] [CrossRef]
- Arasan, V.T.; Koshy, R.Z. Methodology for modeling highly heterogeneous traffic flow. J. Transp. Eng. 2005, 131, 544–551. [Google Scholar] [CrossRef]
- Dutta, M.; Ahmed, M.A. Gap acceptance behavior of drivers at uncontrolled T-intersections under mixed traffic conditions. J. Mod. Transp. 2018, 26, 119–132. [Google Scholar] [CrossRef]
- Vinayaraj, V.S.; Arkatkar, S.; Joshi, G.; Parida, M. Examining Pedestrian Critical Gap Analysis at Un-Signalized Midblock Crosswalk Sections in India. Transp. Res. Procedia 2020, 48, 2230–2250. [Google Scholar]
- Pawar, D.S.; Patil, G.R. Pedestrian temporal and spatial gap acceptance at mid-block street crossing in developing world. J. Saf. Res. 2015, 52, 39–46. [Google Scholar] [CrossRef]
- Ahmed, T.; Moeinaddini, M.; Almoshaogeh, M.; Jamal, A.; Nawaz, I.; Alharbi, F. A New Pedestrian Crossing Level of Service (PCLOS) Method for Promoting Safe Pedestrian Crossing in Urban Areas. IJERPH 2021, 18, 8813. [Google Scholar] [CrossRef]
- Almadi, A.I.M.; Al Mamlook, R.E.; Almarhabi, Y.; Ullah, I.; Jamal, A.; Bandara, N. A Fuzzy-Logic Approach Based on Driver Decision-Making Behavior Modeling and Simulation. Sustainability 2022, 14, 8874. [Google Scholar] [CrossRef]
- Vikram, D.; Agarwal, S. A Methodology to Estimate Parameters of Critical Gap Distribution. Transp. Res. Procedia 2020, 48, 665–672. [Google Scholar] [CrossRef]
- Orth, D.; Kolossa, D.; Paja, M.S.; Schaller, K.; Pech, A.; Heckmann, M. A maximum likelihood method for driver-specific critical-gap estimation. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (iv), Los Angeles, CA, USA, 11–14 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 553–558. [Google Scholar]
- Patil, G.R.; Sangole, J.P. Gap acceptance behavior of right-turning vehicles at T-intersections—A case study. J. Indian Roads Congr. 2015, 76, 44–54. [Google Scholar]
- Maurya, A.K.; Amin, H.J.; Kumar, A. Estimation of Critical Gap for through Movement at Four Leg Uncontrolled Intersection. Transp. Res. Procedia 2016, 17, 203–212. [Google Scholar] [CrossRef]
- Amin, H.J.; Maurya, A.K. A review of critical gap estimation approaches at uncontrolled intersection in case of heterogeneous traffic conditions. J. Transp. Lit. 2015, 9, 5–9. [Google Scholar] [CrossRef]
Parameter/Variable | Description |
---|---|
Initial sample selection (total = 356) | 2-wheelers (=133); 3-wheelers (=105); cars (=118) |
Sample selected for analysis (satisfying threshold for accepted and rejected gaps, total = 200) | 2-wheelers (=82); 3-wheelers (=71); cars (=47) |
Survey period | Morning (including peak period) |
AADT (major stream) | 1200–2500 vph |
AADT (minor stream) | 600–1000 vph |
Average stream speed | 52 km/h |
AVS video editor software | 25 frames/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamal, A.; Ijaz, M.; Almosageah, M.; Al-Ahmadi, H.M.; Zahid, M.; Ullah, I.; Mamlook, R.E.A. Implementing the Maximum Likelihood Method for Critical Gap Estimation under Heterogeneous Traffic Conditions. Sustainability 2022, 14, 15888. https://doi.org/10.3390/su142315888
Jamal A, Ijaz M, Almosageah M, Al-Ahmadi HM, Zahid M, Ullah I, Mamlook REA. Implementing the Maximum Likelihood Method for Critical Gap Estimation under Heterogeneous Traffic Conditions. Sustainability. 2022; 14(23):15888. https://doi.org/10.3390/su142315888
Chicago/Turabian StyleJamal, Arshad, Muhammad Ijaz, Meshal Almosageah, Hassan M. Al-Ahmadi, Muhammad Zahid, Irfan Ullah, and Rabia Emhamed Al Mamlook. 2022. "Implementing the Maximum Likelihood Method for Critical Gap Estimation under Heterogeneous Traffic Conditions" Sustainability 14, no. 23: 15888. https://doi.org/10.3390/su142315888
APA StyleJamal, A., Ijaz, M., Almosageah, M., Al-Ahmadi, H. M., Zahid, M., Ullah, I., & Mamlook, R. E. A. (2022). Implementing the Maximum Likelihood Method for Critical Gap Estimation under Heterogeneous Traffic Conditions. Sustainability, 14(23), 15888. https://doi.org/10.3390/su142315888