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Abstract: Gap acceptance analysis is crucial for determining capacity and delay at uncontrolled
intersections. The probability of a driver accepting an adequate gap changes over time, and in
different intersection types and traffic circumstances. The majority of previous studies in this regard
have assumed homogeneous traffic conditions, and applying them directly to heterogeneous traffic
conditions may produce biased results. Moreover, driver behavior concerning critical gap acceptance
or rejection in traffic also varies from one location to another. The current research focused on the
estimation of critical gaps considering different vehicle types (cars, and two- and three-wheelers)
under heterogenous traffic conditions at uncontrolled crossings in the city of Peshawar, Pakistan.
A four-legged uncontrolled intersection in the study area was used to investigate drivers’ gap
acceptance behavior. The gaps were investigated for various vehicle types: two-wheelers, three-
wheelers, and cars. For data collection, a video recording method was used, and Avidemux video
editing software was used for data investigation. The study investigated the applicability of the
maximum likelihood (MLM) method to analyzing a vehicle’s critical gap. MLM estimation results
indicate that the essential critical gap values for car drivers are in the range from 7.45 to 4.6 s; for
two-wheelers, the critical gap was in the range from 6.78 to 4.7 s; and for three-wheelers, the values
were in the range from 6.3 to 4.9 s. At an uncontrolled intersection, the proposed method’s results
can assist in distinguishing between different road user groups. This study’s findings are intended
to be useful to both researchers and practitioners, particularly in developing countries with similar
traffic patterns and vehicle adherence patterns at unsignalized intersections.

Keywords: traffic congestion; driver behavior; surveys; highway safety; critical gap estimation; risk
assessment; maximum likelihood method

1. Introduction

Traffic congestion has become a threatening socioeconomic concern worldwide [1–3].
The hotspots for traffic congestion are usually urban road junctions, and effective control
and management of traffic in these locations is essential for relieving congestion and
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improving safety [4]. Analysis of critical gap estimation is vital for capacity analysis
of traffic networks. A plethora of studies have investigated the acceptance of critical
gaps between pedestrians and vehicles at junctions having a stop or yield, or without
controls. A specific motorist or pedestrian may accept or reject an open space under
specific circumstances. Numerous research studies describe the critical gap as a value
that determines whether a gap is acceptable. Instead of the critical gap, another study
used the term critical headway, which is well-defined as “the duration in seconds below
which a pedestrian or vehicle will not attempt to start crossing the roadway.” Since the gap
acceptance decisions of vehicles at unsignalized intersections, and those of pedestrians at
unsignalized midblock crossings, are similar [5], it is important to review literature about
both vehicle and pedestrian critical gap acceptance.

The critical gap is the most significant factor in the gap acceptance process. A responsi-
ble driver will accept all gaps that are larger than his crucial gap and reject all gaps that are
smaller than it. The crucial gap is used to determine capacity at unsignalized intersections.
The Highway Capacity Manual of the United States (HCM, 2000) defines the critical gap
as the shortest interval between minor street vehicle arrivals during which a minor street
vehicle can enter the intersection [6]. HCM (2010) defined critical headway as the minimum
headway in a major traffic stream that will permit one small street vehicle to enter the
intersection [7]. The phrase critical headway is often applicable to situations of uniform
traffic; however, when there is a considerable variety in the operating traffic, as in the
case of heterogeneous conditions, it is more appropriate to discuss critical gap rather than
critical headway. Critical gap is a factor that cannot be measured directly in the field but is
estimated based on rejected and accepted gaps. It can be assumed with confidence to lie
between the maximum accepted gap and the rejected gap. When applied to heterogeneous
traffic situations, such as those marked by a lack of lane discipline, a lack of movement
priority, the forced entry of lower priority movements, zigzag crossings of the intersection
area, etc., this estimating procedure becomes problematic. The varying static and dynamic
properties of the operating traffic make estimation more difficult. The MLM approach,
according to Miller (1974), better integrates realistic characteristics than the Ashworth
Method, although it requires more effort with minimum efficiency advantages [8]. In a
similar study of heterogeneous traffic conditions in India, Ashalatha and Chandra (2011)
discovered a wide range in the critical gap values estimated using the prevalent approaches,
with some of them giving unreasonably low values [9].

The majority of critical gap estimation methods proposed previously were created
for homogeneous traffic conditions, and applying them directly to heterogenous traffic
conditions may produce insignificant results [9]. Patil and Powar (2014) also reported that
the values of the critical gap are smaller for Indian conditions than those of developed
countries due to the aggressive driver behavior [10]. The analysis of the relevant literature
showed that the MLM is the best technique for estimating crucial gaps. To be consistent
with the criterion of having an acceptable and rejected gap as a pair for each driver, this
solution, however, presupposes that drivers are homogeneous. This assumption greatly
differs from actual driving situations and, due to aggressive driving style that is prevalent
in developing nations such as Pakistan, the rejected gap is frequently absent. Conditions on
local, provincial highways are more complicated due to a lack of lane discipline, disregard
for traffic and priority laws, various vehicle characteristics, improper parking, inadequate
geometric design of junctions, and improper road markings. An evaluation of critical gap
estimation at uncontrolled four-legged intersections under heterogeneous traffic conditions
has rarely been addressed in the local context. The critical gap plays an important role
from a safety point of view at unsignalized intersections, particularly under heterogeneous
traffic scenarios. Hence, it is worth studying the critical gap estimation for three different
important modes of transportation in Pakistan using the maximum likelihood estimation
method. The current research focused on estimation of critical gaps considering different
vehicle types (cars, and two- and three-wheelers) under heterogenous traffic conditions at
uncontrolled crossings in the city of Peshawar, Pakistan. Estimation of critical gap analysis
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was undertaken using the maximum likelihood estimation method. The critical gap so
determined can be used to more realistically estimate the capacity of such a junction.

The remainder of the paper is organized in different sections as given below. Section 2
describes the related works, including the importance of critical gap estimation, meth-
ods previously used in this regard, and a summary of recent studies related to the topic.
Section 3 describes the data collection and study area. Sections 4 and 5 present the pro-
posed MLM method for critical gap estimation, and the results and discussion, respec-
tively. Finally, Section 6 of this paper includes the conclusion and recommendations for
future studies.

2. Related Works
2.1. Estimating the Critical Gap

The critical gap “tc” is the shortest time interval between major stream vehicles that is
required for one minor stream vehicle to perform a move (see Figure 1). Critical gaps have
varying values for potential drivers (some are excessively fast or unsafe, while others are
slow or cautious), and they are based on the different kinds of movements, intersection
geometry characteristics, and traffic scenarios. Because of this variability, the critical
gap acceptance procedure is regarded as a stochastic process, with critical gaps acting as
random variables. The estimation of critical gaps aims to determine values for the different
variables and the parameters of their distributions that indicate normal driving behavior at
the intersection under investigation.
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Figure 1. Typical schematic for understanding the critical gap for a right-turning vehicle from a
minor road onto the main traffic stream.

In unsignalized intersection theory, drivers are required to be both homogeneous and
consistent, and drivers are intended to behave in the same way in all of these conditions.
This means that a driver with a specific “tc” value will never accept a gap lower than “tc”
and will accept any significant stream gap more than tc. Within a population of numerous
drivers who all behave consistently, different drivers may have different tc values. These tc
values are then treated as random variables. Ftc(t) represents the cumulative distribution
function and ftc(t) represents the statistical density function. The population of drivers is
homogeneous if each sub-group of drivers in the population has the same functions ftc(t)
and Ftc(t).

The problem is that critical gaps are difficult to quantify explicitly. Only the rejected
and approved gaps of each minor stream vehicle can be measured at the intersection.
The critical gaps can be predicted from such input data using statistical approaches or
procedures. The maximum likelihood method (MLM) proposed by Troubeck et al. [11]
was utilized to estimate critical gaps from vehicle sightings at unsignalized junctions in
this study.
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In developed countries, the traffic is homogeneous, with little distinction between the
vehicles on the highways, and with passenger automobiles forming much of the traffic.
These conditions are distinguished by the orderly movement of traffic, with users adhering
to traffic laws. Road users adhere to the priority regulations at unsignalized crossings,
which provide that lower priority movements must make way for higher-priority traffic.

By comparison, heterogeneous traffic conditions are typical in developing nations
where slow- and fast-moving cars share the same road space [12]. The static and dynamic
properties of the vehicles on the roadways vary greatly, making it difficult to predict how
traffic will behave on the road. These are characterized by the lack of lane discipline and
frequent violations of the law unless they are strictly enforced by a traffic officer [13,14]. At
unsignalized intersections, drivers do not follow any priority norms and arbitrarily use the
right of way. Minor street cars enter the region of conflict because drivers are so aggressive,
which forces major street vehicles to slow down and provide a gap for minor street vehicles.
As a result, the low mean allowed gap for the same vehicle type will be smaller under
diverse traffic conditions than under homogeneous traffic conditions. Figure 2 shows the
traffic composition for entering flow at a typical Pakistani crossroads.
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2.2. Critical Gap Estimation Methods

In the literature, several methods for determining critical gaps have been proposed.
The majority of these methods assume that driver’s behavior is homogeneous and con-
sistent. For example, one study [15] defined the critical gap as the distance for which the
number of approved gaps shorter than it is equal to the number of rejected gaps longer than
it. Other recent studies [16,17] calculated the average critical gap by combining the principal
stream traffic volume, with the mean and standard deviation of accepted gaps. The authors
of [18] and [19] proposed probit models. Recently, two research studies ( [20] and [21])
employed binary logit and neural networks to investigate vehicle gap acceptance behavior
at stop-controlled junctions. Logit and probit models are frequently used for modeling
the relationships between a dependent variable Y and a set of independent variables X. In
another paper [22], the authors developed a technique for estimating the probability distri-
bution of critical gaps by combining accepted and rejected gaps. Tian et al. [23] employed
the maximum likelihood method (MLM) to calculate a driver’s crucial gap.

Hagrig (2000) employed MLM to estimate the critical gap at unsignalized intersec-
tions [24]. Tian et al. (2000) utilized a stepwise linear regression to determine the variables
influencing the crucial gap and the follow-up duration at intersections [25]. Wu (2006)
employed the probability equilibrium method based on the accepted and rejected gaps to
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estimate the critical gap [26]. To determine the likelihood of accepting or rejecting a gap or
lag, Devarasetty et al. (2012) employed a binary logit model [27]. McGowen and Stanley
(2012) suggested modifying MLM such that the process may be applied to data sets with
only rejected gaps [28]. Wu (2012) used the probability equilibrium method to analyze the
critical gap distribution and discovered that the Weibull distribution was superior at simu-
lating the critical gap distribution than the log-normal distribution specified in MLM [29].
Miller (1972) compared numerous techniques for estimating crucial gaps and discovered
that the MLM and Ashworth method provided appropriate results [30]. In another study,
the researchers reported that the MLM method better combines realistic aspects than the
Ashworth Method but requires more work with minimal efficiency gain [8]. Troutbeck
(2014) examined MLM and PEM’s capacity to forecast the mean and standard deviation of
the crucial gap, and concluded that MLM was more accurate than PEM [11]. The studies
in [31] analyzed many approaches, such as Lag, Raff, Ashworth, the logit technique, probit,
and the maximum likelihood method (MLM).

Many other approaches estimate the critical gap based on the actual gap acceptance;
however, HCM estimates are based on the adequate gap that is essential for pedestrians
crossing. The Manual on Uniform Traffic Control Devices (MUTCD) [32] proposes the
term “adequate gap”, assuming it means the same thing as the critical gap in HCM.
Recently, a study [33] determined the necessary gap based on walking speed, crossing
length, and safety factors, which measures pedestrian confidence in crossing the street.
Several approaches for studying pedestrian gap acceptance have been developed. In
another study, the authors [34] developed a logistic regression model to investigate the
impact of traffic gaps and several variables on pedestrians’ decisions to cross, or not cross,
the street. The findings revealed that the distance between approaching vehicles and
pedestrian waiting times influence this decision. Another paper [35] proposed pedestrian
gap acceptance (PGA) and motorist yield (MOY), which were modeled using different
methodologies. They discovered that a pedestrian’s decision is influenced by the vehicle’s
distance from the crossing and the vehicle’s speed while modeling PGA. Shorter gaps were
allowed by groups of pedestrians rather than individuals, according to research by [36],
and the smallest acceptable gap in a single stream of vehicles was found to be 3.0 s or
75 feet.

2.3. Previous Studies

Mohan and Chandra presented a review of critical gap assessment techniques at two-
way stop-controlled intersections [37]. It was reported that most of the included studies
used the mean gap value, while a few also focused on the entire distribution of the critical
gap. Further, the authors concluded that estimation methods for critical gap analysis
are dependent on conflicting traffic volumes. In their study, Abhigna et al. investigated
the effect of major street vehicle types on the gap acceptance behavior of minor stream
drivers and calculated the capacity of uncontrolled urban intersections in Warangal city,
India [38]. The authors also took into account the influence of right turning vehicles during
the intersection capacity analysis. As a result, the total effect of traffic volume on the
result was found to be negligible. Generally, the critical gap values are often employed in
capacity and delay model estimation at intersections. Abhishek et al. adopted a queuing
model incorporating driver impatience behavior and multiple classes of gap acceptance
for estimating the critical gap distribution at unsignalized intersections [39]. The proposed
method yielded useful results for determining the service time and, consequently, the
capacity estimation on the minor road. The authors assumed that the arrival process on the
major road is a Poisson process. In practice, nevertheless, a platoon may form on this road,
and multiple articles have shown that this vehicle clustering would affect the capacity of
the minor road. It would be interesting to integrate the framework presented in this study
with Markov platooning.

In another study, Adrian Barchański highlighted the importance of follow-up times
and critical gap times for capacity analysis of unsignalized T-controlled intersections in
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an Upper Silesian agglomeration in Poland [40]. The findings for the specified object
were unique and distinct from those of other intersecting types. Each object of the tested
type managed a distinct type of traffic, and the drivers that utilized it exhibited distinct
behaviors. To determine the values of critical gaps and follow-up periods that describe
a particular type of intersection, considerably stricter conditions must be defined. In
another study, Barchański and Zochowska attempted to evaluate the follow-up times
and critical gaps at a median uncontrolled T-intersection (MUT) with major two-lane
roadways in an Upper Silesian agglomeration area in Poland [41]. The empirical results
obtained suggested that values for both the metrics (gap times and follow-up times) do
not comply with corresponding values used in the HCM and Polish manual for capacity
analysis of examined intersection types. Arasan and Koshy proposed a simulation-based
methodology for modeling heterogenous traffic flow (comprising vehicles with a wide
range of dynamic characteristics) in the absence of lane discipline under a mixed traffic
flow [42]. Model validation using headway distribution and speeds was accomplished
by data collection from the field. The findings of model validation indicate that the
simulation model replicates the observed traffic flow characteristics in the field. Using
a simulation model, it was determined that the new notion of the area occupancy is
a legitimate metric that can be used to depict the concentration of road traffic under
homogeneous traffic conditions.

Dutta and Ahmed also attempted to analyze and model minor street drivers’ gap
acceptance behavior, considering their aggressive nature [43]. The authors used data for
an uncontrolled T-intersection in a northeast region in India. The authors argued that
considering aggressive behavior and clearing time will yield more realistic gap acceptance
behavior. In this study, only modest street right-turning movements at T-intersections were
analyzed; the approach might be expanded to examine the gap acceptance behavior of
major street right-turning vehicles. To obtain a deeper understanding of traffic behavior
at uncontrolled crossings, it is possible to undertake research on four-legged intersections
and the effects of other elements, such as geometric features, side friction, and driver
characteristics. A recent study [44] determined the pedestrian critical gap using different
methods. Study results revealed that the logit technique is the most appropriate for
predicting critical gaps since it simultaneously analyses both pedestrian and vehicular
factors. Significant changes were required to be made to projected critical gap values if
pedestrian behavioral characteristics were considered. According to the latest study by [45],
the pedestrian gap acceptance during midblock street crossings was found to be heavily
influenced by the oncoming vehicle’s speed and distance [46]. Pedestrians also accept lesser
spacing when the opposing vehicle is smaller, such as a two-wheeler or an auto-rickshaw.
This research can be used to evaluate the safety and performance of uncontrolled midblock
traffic crossing in developing countries.

3. Study Area and Data Collection
3.1. Study Area

For analysis of the critical gap, a four-legged unsignalized intersection in the province
of Khyber Pakhtunkhwa, Pakistan, was used. This four-legged non-signalized intersection
on main Saddar Road Peshawar was selected to estimate the critical gap behavior of vehicles.
This intersection was in an open field with reasonable visibility for all directions of travel. At
intersections, there is no side friction, such as vehicle parking or bus stops. The selected four-
legged unsignalized intersection is composed of a minor 14 m divided road, and a major
22 m divided road. Figure 3 illustrates the location and traffic composition at the study
site. Because the chosen site is located on a major arterial road, the percentage of people
using cars, two-wheelers, and three-wheelers was significantly higher than the percentage
of people using other modes. Further, several distribution families were examined and it
was discovered that the normal distribution best fit the measured speed data.
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The total traffic volume on main roads is between 1200 and 2500 vehicles per hour, while
minor streams range between 600 and 1000 vehicles per hour. The average speed was
discovered to be 52 km/h, with minimum and maximum speeds at the site measured to
be 33 and 80 km/h, respectively. A video graphics survey was conducted to observe the
movement of vehicles at the four-legged unsignalized intersection. An adjacent high-rise
structure was used to mount two high-resolution video cameras. Data were obtained on
December 2020. The information was gathered during the peak hours of a typical weekday
(8 a.m to 11 a.m). Data on more than 350 trips were collected during the mentioned time
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frame for the selection of 200 random drivers, including both accepted and rejected gap
criteria considered for this study The video camera was put up in such a way that it could
record every movement of the cars. Because bicycles and heavy vehicles (trucks and buses)
were rarely spotted approaching crossings on modest approaches, they were excluded from
the analysis. Table 1 shows the descriptive statistics of all the study settings.

Table 1. Study setting and variable description.

Parameter/Variable Description

Initial sample selection (total = 356) 2-wheelers (=133); 3-wheelers (=105);
cars (=118)

Sample selected for analysis (satisfying
threshold for accepted and rejected gaps,

total = 200)
2-wheelers (=82); 3-wheelers (=71); cars (=47)

Survey period Morning (including peak period)

AADT (major stream) 1200–2500 vph

AADT (minor stream) 600–1000 vph

Average stream speed 52 km/h

AVS video editor software 25 frames/s

The gap distribution was extracted and evaluated from the recorded data, and shown
on a large screen using AVS video editor software (version 9.4.3) capable of processing
videos at a frame rate of 25 frames per second. All major road vehicles were separated
into three types (cars, two-wheelers, and three-wheelers), and only gap data for the right
turn from a minor road was extracted. Among more than 350 trips, data was collected for
a random sample of 200 drivers (for both accepted and rejected gaps) riding on different
modes such as two-wheelers (82), three-wheelers (71), and passenger cars (47).

4. The Proposed MLM Method for Critical Gap Estimation

The maximum likelihood method (MLM) was adopted to achieve the research objec-
tive, i.e., the estimation of vehicle critical gaps under heterogeneous traffic conditions. The
MLM method for estimating the critical gap is based on the driving population’s critical
gap values being distributed in a probabilistic distribution. Because different drivers will
have varying perceptions of gap acceptance, a critical gap distribution is more appropriate
than a single value. As a result, a single critical gap value will not be sufficient to capture
the behavior of the whole driver population. Driver behavior varies stochastically with
time, traffic circumstances, and intersection type while accepting the available gap [47].
The MLM can calculate the critical gap distribution, which ranges from the greatest rejected
gap to the smallest accepted gap [48]. The MLM approach presupposes that the critical
gap of a driver is larger than the largest rejected gap and smaller than the acceptable gap.
Assuming a probability distribution for the crucial gaps is the first step, which is typically
believed to be lognormal. For MLM, it is assumed that:

ai = accepted gap by the ith driver in queue;
ri = largest rejected gap rejected by the ith driver (ri is assumed to be zero in the case where
there is no rejected gap); and
f(x) and F(x) = probability density and cumulative distribution functions.

Critical gap distribution using MLM is defined by real positive values with one tail
at either end. The log-normal distribution is typically assumed for modeling the critical
gap distribution due to its simplicity and ease of calculations [49]. The total area under
the curve must be 1 for a valid critical gap distribution. For the current study, data on
the maximum rejected gap ri (highest value amongst the rejected gaps) and the accepted
gap ai were observed for specific driver i (i = 1,2,3 . . . n) riding on different modes and
waiting in a queue on the minor leg/roadway to merge with the main arterial traffic. It
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was assumed that all the drivers will accept the gap value greater than the critical gap
and vice versa. The MLM was then used to estimate the probability of critical gaps being
between accepted gaps (ad) rejected gaps and the largest rejected gap (rd) for all drivers.
The likelihood of vehicles’ critical gap being between ad and rd was then computed using
the following expression (Equation (1)):

LL∗ =
n

∏
i=1

[F(ai)− F(ri)] (1)

The logarithmic of the likelihood is then calculated as (Equation (2)):

L =
n

∑
i=1

ln[(F(ai)− F(ri)] (2)

Equation (2) can be used to obtain the mean and variance of the critical gap using
the optimal solution. The two essential critical gap distribution parameters, mean (µ) and
variance (σ2), were determined by maximizing the above likelihood relation. F() represents
the cumulative distribution function. After obtaining the values of µ and σ2, critical gap
values (tc) were estimated using the relations presented in Equations (3) and (4).

tc = eµ+0.5σ2
(3)

D(tc) = E(tc)
2.(eσ2

) (4)

5. Results and Discussions

Measurements were taken at an unsignalized intersection in Peshawar, Pakistan. All
traffic flows at this crossroads were videotaped. Following that, video recordings were
processed using the software. Each vehicle’s time at a certain point (a specified line across
the road) was recorded in an MS Excel spreadsheet. The passing time of a designated line
across the road, the vehicle type, and the direction were all recorded for each mainstream
vehicle. All the data were processed. For each minor stream vehicle, the accepted and
greatest rejected gaps were identified (for each minor stream, separately). The biggest
rejected time gap was equal to 0 s if a driver from the minor stream accepted the lag and
did not reject any time gaps.

This study examined the use of the maximum likelihood technique (MLM) to predict
critical gaps of vehicles (cars, and two and three-wheelers) to a minor right-turn stream at
an unsignalized intersection in Peshawar (see Figure 3). First, data collection for 200 drivers
was undertaken that included the maximum size of rejected gaps and the size of accepted
gaps. For each driver, the maximum size of the rejected gap is always less than the
size of the accepted gap. According to studies, gaps of more than 6 s are frequently
accepted [9,50] (Figure 4).

Similarly, the least accepted gap is expected to be greater than 3 s, as the minimum
perceptual reaction time is commonly assumed to be 2.5 s. In addition, the initial guesses
for a and b were 0.5 s and 100 s, respectively. This overview is because a gap of less than
0.5 s cannot be accepted, and a gap of more than 100 s cannot be denied. The likelihood
parameters, the mean µ and variance σ2, were derived using an iteration procedure as a
solution of two equations. The Excel application was used to program the iteration process.
The values µ and σ2 here were gradually modified until the functions in Equation (4)
tended to zero. Equations (2) and (3) were used to calculate the critical gap’s mean E(tc)
and variance D values. Using a data set of 200 drivers, the ideal values of parameters b
and a for the critical gap distribution were found to be 7.45 and 4.6 s for cars, 6.78 and
4.7 s for two-wheelers, and 6.3 and 4.9 s for three-wheelers, respectively. As a result, the
critical gap range was determined, and it can be inferred that a time gap of less than
4.6 s for a car is always rejected, while a gap of more than 7.45 s is always allowed. For
two-wheelers, it can be inferred that a time gap of less than 4.7 s is always rejected, while a
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gap of more than 6.78 s is always accepted, whereas for three-wheelers it can be inferred
that a time gap of less than 4.9 s is always rejected, while a gap of more than 6.3 s is always
accepted. Furthermore, the parameters can be derived using the optimum values of a and b
to determine the crucial gap distribution. Table 2 presents the mean and standard deviation
of mean critical gap values for different road user groups. As shown in the table, drivers of
two-wheelers require much smaller gaps to merge into the mainstream traffic compared to
the other two groups. Table 2 also presents a comparative analysis of the obtained mean
critical gap values with other methods widely used in the literature.
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These values are much larger compared to the critical gaps estimated by other re-
searchers. Maurya et al. estimated the critical gap for two- and three-wheelers and cars
using different conventional methods [51]. Targeting the MLM method, X estimated the
critical gap value for two- and three-wheelers and cars to be 2.65, 2.70, and 3.05 s respec-
tively. In another recent study, Amin and Maurya compared the critical gap values for two-
and three-wheelers and cars using nine differentmethods for both through movements and
right-turn movements [52]. For through movements, the critical gap values vary between
2.30 and 4.80 s for two-wheelers, 2.25 and 4.65 s for three-wheelers, and 2.65 and 5.00 s for
cars. By comparison, for right-turn movements, these values range between 2.20 and 4.70 s
for two-wheelers, 2.20 and 4.50 s for three-wheelers, and 2.55 and 4.55 s for cars, respec-
tively. The results obtained by these nine approaches are erroneous and thus cannot be
applied under the conditions relevant to India and Pakistan, where the traffic is heteroge-
neous. In another study, the researchers used the Raff and clearing behavior methods for
critical gap estimation of different vehicle types. Results revealed that the clearing behavior
method yielded higher values for critical gaps compared to the Raff method. The critical
gap values estimated using the clearing behavior method were 4.03, 6.53, and 7.69 (s) for
two-wheelers, three-wheelers, and cars, respectively, which are close to those obtained
by the MLM method in the current study for the corresponding vehicle types. A study
conducted by Troutbeck et al. reported a mean critical gap value of 5.40 (s) for drivers
merging from a minor stream, which is slightly lower than the average critical gap value of
the road user groups considered in this study. A critical comparative analysis with previous
studies (shown in Table 2) suggests that critical gap values of the current study are slightly
larger those reported in the literature.
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Table 2. Comparison of mean critical gap values (in seconds) for different road user groups from
the literature.

Gap Estimation
Method Used

Road User Groups

2-Wheelers 3-Wheelers Cars

MLM (this study) 5.18 (1.55) * 6.39 (1.35) * 7.04 (2.13) *
Raff [52] 2.25 2.50 2.50

Logit [52] 2.70 2.90 3.10
Greenshield [52] 2.30 2.25 2.65

MLM [51] 2.65 2.70 3.05
Ashworth [51] 2.45 2.55 2.90

Clearing Behavior [51] 4.80 4.65 5.00
Raff [38] 2.75 4.05 4.80

Clearing Behavior [38] 4.03 6.53 7.69
* values in parenthesis shows standard deviation (SD).

6. Conclusions

This study investigated the possibility of applying the MLM to analyze the vehicle
critical gap estimation for three different vehicle types for a case study of an unsignalized
intersection in Peshawar, Pakistan. The MLM used was proposed by Troutbeck (2014),
which is one of the essential models for calculating critical gaps, and yields realistic results.
With the use of a video camera, a video graphic assessment was conducted in Peshawar
city at a four-legged uncontrolled intersection. By studying the data, it was found that
drivers act violently because they do not observe traffic rules, rather than because they have
lost patience due to the lack of an appropriate space. For car drivers, the model found the
essential critical gap to be in the range from 7.45 to 4.6 s; for two-wheelers the essential critical
gap was in the range from 6.78 to 4.7 s; and for three-wheelers, the values were in the range
from 6.3 to 4.9 s. At an uncontrolled intersection, the proposed method’s results were proven
to assist in distinguishing between cars, and two- and three-wheeled vehicles. According to
the findings, city demographics and geographical characteristics play a significant effect
in vehicle crossing maneuverers from minor to major streams. This study’s findings are
intended to be useful to both researchers and practitioners, particularly in Asian nations
with similar traffic conditions and vehicle compliance patterns at unsignalized intersections.
The future scope of research includes estimating the impact of various parameters (such as
occupancy, age of the driver, sex of the driver, speed of oncoming traffic, size of oncoming
vehicles, and number of rejections) on the critical gap parameter, particularly in the case
of heterogenous traffic conditions. Furthermore, the performance of the MLM method for
critical gap estimation may be compared with other widely used approaches, such as the
Raff, logit, and clearing behavior methods in future studies.
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