Modeling, Simulation, and Performance Analysis of a Liquid-Infill Tunable Window
Abstract
:1. Introduction
2. Numerical Model
3. Performance Simulation
3.1. Room and Window Configurations
3.2. Simulation Cases
4. Simulation Results
4.1. Window Performance under Different Irradiance Conditions
4.2. Window Performance under Different Ambient Temperatures
5. Discussion and Future Works
5.1. Discussion
5.2. Future Works
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
A | cross-sectional area, m2 |
d | thickness, m |
G | solar radiation, W |
g | gravitational constant, m/s2 |
h | heat transfer coefficient, W/(m2·°C); height, m |
L | length, m |
P | pressure, Pa |
T | temperature, °C |
V | volume, m3 |
W | width, m |
Greek | |
α | absorptivity, - |
γ | reflectance, - |
ε | emissivity, - |
θ | absolute temperature, °C |
ρ | density, kg/m3 |
σ | Stefan–Boltzmann constant, 5.67 × 10−8 W/(m2·K−4) |
τ | transmittance, - |
Subscripts | |
0,1 | the initial state and the transformed state |
a | ambient; air |
abs | absorptive |
c | convective |
g | glass |
g1, g2, g3 | numbers of glass panes |
ref | reflective |
r | radiative |
rm | room |
trans | transmitted |
total | total |
wind | wind |
Superscript | |
top | the top part of the window consisting of 3 layers of clear glass without liquid layer |
lower | the lower part of the window consisting of 3 layers of clear glass with liquid layer in the cavity |
References
- Li, C.Z.; Zhang, L.; Liang, X.; Xiao, B.; Tam, V.W.Y.; Lai, X.; Chen, X. Advances in the research of building energy saving. Energy Build. 2022, 254, 111556. [Google Scholar] [CrossRef]
- Guo, S.; Yan, D.; Hu, S.; Zhang, Y. Modelling building energy consumption in China under different future scenarios. Energy 2021, 214, 119063. [Google Scholar] [CrossRef]
- Al-Masrani, S.M.; Al-Obaidi, K.M.; Zalin, N.A.; Isma, M.I.A. Design optimisation of solar shading systems for tropical office buildings: Challenges and future trends. Sol. Energy 2018, 170, 849–872. [Google Scholar] [CrossRef]
- Carroll, M.K.; Anderson, A.M.; Mangu, S.T.; Hajjaj, Z.; Capron, M. Aesthetic Aerogel Window Design for Sustainable Buildings. Sustainability 2022, 14, 2887. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, T. Optimal design of complex dynamic shadings: Towards sustainable built environment. Sustain. Cities Soc. 2022, 86, 104109. [Google Scholar] [CrossRef]
- Lyu, Y.; Chen, S.; Liu, C.; Li, J.; Li, C.; Su, H. Thermal Characteristics Simulation of an Energy-Conserving Facade: Water Flow Window. Sustainability 2022, 14, 2737. [Google Scholar] [CrossRef]
- Manzan, M. Genetic optimization of external fixed shading devices. Energy Build. 2014, 72, 431–440. [Google Scholar] [CrossRef]
- Hernández, F.F.; López, J.M.C.; Suárez, J.M.P.; Muriano, M.C.G.; Rueda, S.C. Effects of louvers shading devices on visual comfort and energy demand of an office building. A case of study. Energy Procedia 2017, 140, 207–216. [Google Scholar] [CrossRef]
- Yao, J. An investigation into the impact of movable solar shades on energy, indoor thermal and visual comfort improvements. Build. Environ. 2014, 71, 24–32. [Google Scholar] [CrossRef]
- Islam, N.; Irshad, K.; Zahir, H.; Islam, S. Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds. Energy 2021, 218, 119542. [Google Scholar] [CrossRef]
- Tabadkani, A.; Roetzel, A.; Li, H.X.; Tsangrassoulis, A.; Attia, S. Analysis of the impact of automatic shading control scenarios on occupant’s comfort and energy load. Appl. Energy 2021, 294, 116904. [Google Scholar] [CrossRef]
- Karlsen, L.; Heiselberg, P.; Bryn, I.; Johra, H. Solar shading control strategy for office buildings in cold climate. Energy Build. 2016, 118, 316–328. [Google Scholar] [CrossRef]
- da Silva, P.C.; Leal, V.; Andersen, M. Occupants interaction with electric lighting and shading systems in real single-occupied offices: Results from a monitoring campaign. Build. Environ. 2013, 64, 152–168. [Google Scholar] [CrossRef]
- O’Brien, W.; Kapsis, K.; Athienitis, A.K. Manually-operated window shade patterns in office buildings: A critical review. Build. Environ. 2013, 60, 319–338. [Google Scholar] [CrossRef]
- Casini, M. Active dynamic windows for buildings: A review. Renew. Energy 2018, 119, 923–934. [Google Scholar] [CrossRef]
- Rezaei, S.D.; Shannigrahi, S.; Ramakrishna, S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Sol. Energy Mater. Sol. Cells 2017, 159, 26–51. [Google Scholar] [CrossRef]
- Ye, H.; Long, L.; Zhang, H.; Gao, Y. The energy saving index and the performance evaluation of thermochromic windows in passive buildings. Renew. Energy 2014, 66, 215–221. [Google Scholar] [CrossRef]
- DeForest, N.; Shehabi, A.; Selkowitz, S.; Milliron, D.J. A comparative energy analysis of three electrochromic glazing technologies in commercial and residential buildings. Appl. Energy 2017, 192, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Cupelli, D.; Nicoletta, F.P.; Manfredi, S.; Vivacqua, M.; Formoso, P.; De Filpo, G.; Chidichimo, G. Self-adjusting smart windows based on polymer-dispersed liquid crystals. Sol. Energy Mater. Sol. Cells 2009, 93, 2008–2012. [Google Scholar] [CrossRef]
- Ghosh, A.; Norton, B.; Duffy, A. Daylighting performance and glare calculation of a suspended particle device switchable glazing. Sol. Energy 2016, 132, 114–128. [Google Scholar] [CrossRef]
- Li, X.H.; Liu, C.; Feng, S.P.; Fang, N.X. Broadband light management with thermochromic hydrogel microparticles for smart windows. Joule 2019, 3, 290–302. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Wang, L. Smart window based on Cu7S4/hydrogel composites with fast photothermal response. Sol. Energy Mater. Sol. Cells 2019, 202, 110109. [Google Scholar] [CrossRef]
- Jiang, T.; Zhao, X.; Yin, X.; Yang, R.; Tan, G. Dynamically adaptive window design with thermo-responsive hydrogel for energy efficiency. Appl. Energy 2021, 287, 116573. [Google Scholar] [CrossRef]
- Aburas, M.; Ebendorff-Heidepriem, H.; Lei, L.; Li, M.; Zhao, J.; Williamson, T.; Wu, Y.; Soebarto, V. Smart windows—Transmittance tuned thermochromic coatings for dynamic control of building performance. Energy Build. 2021, 235, 110717. [Google Scholar] [CrossRef]
- Nakamura, A.; Ogai, R.; Murakami, K. Development of smart window using an hydroxypropyl cellulose-acrylamide hydrogel and evaluation of weathering resistance and heat shielding effect. Sol. Energy Mater. Sol. Cells 2021, 232, 111348. [Google Scholar] [CrossRef]
- Gil-Lopez, T.; Gimenez-Molina, C. Influence of double glazing with a circulating water cavity on the thermal energy savings in buildings. Energy Build. 2013, 56, 56–65. [Google Scholar] [CrossRef]
- Lyu, Y. A Liquid Medium Energy Saving Window Technique and Application; Metallurgical Industry Press: Beijing, China, 2020. [Google Scholar]
- Li, C.; Tang, H.; Tan, J.; Li, C.; Yang, Y.; Zeng, F. Numerical simulation on year-round performance of water-flow window with different shading control modes. Build. Serv. Eng. Res. Technol. 2020, 42, 157–174. [Google Scholar] [CrossRef]
- Fazel, A.; Izadi, A.; Azizi, M. Low-cost solar thermal based adaptive window: Combination of energy-saving and self-adjustment in buildings. Sol. Energy 2016, 133, 274–282. [Google Scholar] [CrossRef]
- Watmuff, J.H.; Charters WW, S.; Proctor, D. Solar and wind induced external coefficients-solar collectors. Coop. Mediterr. Pour L’energie Sol. 1977, 56. Available online: https://www.researchgate.net/publication/234355019_Solar_and_wind_induced_external_coefficients_-_Solar_collectors (accessed on 30 June 2022).
- LBNL Window. Available online: https://windows.lbl.gov/software/window (accessed on 30 June 2022).
- Chunying, L. Performance Evaluation of Water-Flow Window Glazing. Ph.D. Thesis, City University of Hong Kong, Hong Kong, China, 2012. [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Chow, T.T.; Li, C.; Lin, Z. The function of solar absorbing window as water-heating device. Build. Environ. 2011, 46, 955–960. [Google Scholar] [CrossRef]
- Chow, T.T.; Li, C.; Lin, Z.; Fong, K.F.; Chan, L.S.; Pei, G. Experimental evaluation of ventilated glazing performance in Hong Kong. Int. J. Energy Res. 2009, 33, 526–537. [Google Scholar] [CrossRef]
- Choi, H.; An, Y.; Kang, K.; Yoon, S.; Kim, T. Cooling energy performance and thermal characteristics of a naturally ventilated slim double-skin window. Appl. Therm. Eng. 2019, 160, 114113. [Google Scholar] [CrossRef]
- Tällberg, R.; Jelle, B.P.; Loonen, R.; Gao, T.; Hamdy, M. Comparison of the energy saving potential of adaptive and controllable smart windows: A state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Sol. Energy Mater. Sol. Cells 2019, 200, 109828. [Google Scholar] [CrossRef] [Green Version]
- Aburas, M.; Soebarto, V.; Williamson, T.; Liang, R.; Ebendorff-Heidepriem, H.; Wu, Y. Thermochromic smart window technologies for building application: A review. Appl. Energy 2019, 255, 113522. [Google Scholar] [CrossRef]
Glazing ID | 01_Clear_6.syp |
---|---|
Thickness (m) | 0.006 |
Solar transmittance at normal incidence | 0.804 |
Solar reflectance at normal incidence (front side) | 0.074 |
Solar reflectance at normal incidence (back side) | 0.074 |
Emissivity (front side) | 0.84 |
Emissivity (back side) | 0.84 |
Combination No. | Global Solar Irradiance (W/m2) | Incident Angle (°) | Total Incident Solar Energy (W/m2) | Incident Beam Solar Energy (W/m2) | Incident Diffused Solar Energy (W/m2) |
---|---|---|---|---|---|
1 | 1000 | 60 | 597 | 390 | 207 |
2 | 650 | 60 | 442 | 115 | 327 |
3 | 300 | 60 | 223 | 5 | 218 |
4 | 1000 | 30 | 865 | 675 | 189 |
5 | 650 | 30 | 521 | 199 | 322 |
6 | 300 | 30 | 227 | 9 | 217 |
7 | 1000 | 0 | 946 | 780 | 166 |
8 | 650 | 0 | 545 | 230 | 315 |
9 | 300 | 0 | 228 | 11 | 217 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yang, Y.; Li, X.; Li, C. Modeling, Simulation, and Performance Analysis of a Liquid-Infill Tunable Window. Sustainability 2022, 14, 15968. https://doi.org/10.3390/su142315968
Wang X, Yang Y, Li X, Li C. Modeling, Simulation, and Performance Analysis of a Liquid-Infill Tunable Window. Sustainability. 2022; 14(23):15968. https://doi.org/10.3390/su142315968
Chicago/Turabian StyleWang, Xiaodong, Yinan Yang, Xiaoyu Li, and Chunying Li. 2022. "Modeling, Simulation, and Performance Analysis of a Liquid-Infill Tunable Window" Sustainability 14, no. 23: 15968. https://doi.org/10.3390/su142315968
APA StyleWang, X., Yang, Y., Li, X., & Li, C. (2022). Modeling, Simulation, and Performance Analysis of a Liquid-Infill Tunable Window. Sustainability, 14(23), 15968. https://doi.org/10.3390/su142315968