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Abstract: The road transportation sector in Saudi Arabia has been observing a surging growth of
demand trends for the last couple of decades. The main objective of this article is to extract insightful
information for the country’s policymakers through a comprehensive investigation of the rising
energy trends. In the first phase, it employs econometric analysis to provide the causal relationship
between the energy demand of the road transportation sector and different socio-economic elements,
including the gross domestic product (GDP), number of registered vehicles, total population, the
population in the urban agglomeration, and fuel price. Then, it estimates future energy demand for
the sector using two machine-learning models, i.e., artificial neural network (ANN) and support
vector regression (SVR). The core features of the future demand model include: (i) removal of
the linear trend, (ii) input data projection using a double exponential smoothing technique, and
(iii) energy demand prediction using the machine learning models. The findings of the study show
that the GDP and urban population have a significant causal relationship with energy demand in
the road transportation sector in both the short and long run. The greenhouse gas emissions from
the road transportation in Saudi Arabia are directly proportional to energy consumption because
the demand is solely met by fossil fuels. Therefore, appropriate policy measures should be taken
to reduce energy intensity without compromising the country’s development. In addition, the SVR
model outperformed the ANN model in predicting the future energy demand of the sector based
on the achieved performance indices. For instance, the correlation coefficients of the SVR and the
ANN models were 0.8932 and 0.9925, respectively, for the test datasets. The results show that the
SVR is better for predicting energy consumption than the ANN. It is expected that the findings of the
study will assist the decision-makers of the country in achieving environmental sustainability goals
by initiating appropriate policies.

Keywords: artificial neural network; causality analysis; energy demand; greenhouse gas emission;
sustainable environment; machine learning; road transport; Saudi Arabia; support vector regression
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1. Introduction

The unprecedented increase in global energy demand requires advanced and com-
prehensive analyses of energy drivers at national, regional, and international levels. The
correlation between energy demand and its independent factors can be understood using
econometric methods [1–3]. The results of causal analysis help understand the most impor-
tant factor of energy demand and assist in accurately estimating future energy demand.
It is essential to estimate future energy demand as it has significant policy implications
regarding energy security and future economic growth patterns. Recent developments in
computing technology, intelligent forecasting methodologies, and algorithms have paved
the way for a major breakthrough in modeling and simulation. Machine learning models
regress energy demand using socio-economic, demographic, and climatic variables. Typ-
ically, these variables are nonlinear. Therefore, energy modeling became a critical issue
for practitioners and scientists to contribute to creating sound plans and policies. One of
the crucial steps in energy planning is to assess current energy use and forecast future
needs [4,5].

Road transportation is one of the major energy consumption sectors in Saudi Ara-
bia [6]. Since renewable energy resources are not used on a large scale in Saudi Arabia
for road transportation, it results in continuous increases in the domestic consumption
of petroleum products and the associated increase in greenhouse gas (GHG) emissions.
The residents of rich urban areas tend to rely on personal automobiles for most of their
travel needs [7]. Saudi Arabia has the highest vehicle ownership in the Middle East [8].
The recent royal decree on allowing women to drive will put 9 million potential new
drivers on the road [9]. This increasing number of cars will significantly increase the energy
demand in road transportation. Future energy demand can be met by analyzing the factors
that have historically influenced energy use and making more accurate predictions based
on these factors and historical trends. Econometrics techniques can help to find the key
drivers from a set of drivers [10]. However, concerning future demand estimation, the
traditional regression method cannot address the nonlinearity of different energy demand
components. Previous studies suggested adjusting nonlinearity while dealing with energy
consumption [11]. Therefore, it is crucial for the Kingdom to investigate the energy de-
mands of road transportation with cutting-edge methods that will enlighten policymakers
and decision-makers.

In the relevant literature, the researchers considered different combinations of many
variables, which include GDP, gross national product (GNP), population, transport amount
(vehicle-kilometer), freight transport amount (ton-kilometer), passenger transport amount
(person-kilometer), number of registered vehicles, urbanization rate, and fuel price for
developing transport energy models [12–17]. Multivariate, cointegration, and regression
analysis can explain the influence of different indicators on energy demand. In Ref. [18], a
few selected countries investigated the causal interrelationship between energy consump-
tion and GDP. Ozturk and Acaravchi [19] studied the impact of energy use on GDP growth.
Canyurt et al. [20] proposed an energy model using a genetic algorithm, selecting GDP,
population, and import and export as inputs. Geem [14] proposed a neural network energy
model for South Korea. Azadeh et al. [21] reported a fuzzy regression algorithm based
Iranian energy model. Denoised electricity demand data allowed An et al. [22] to isolate
the seasonal component and use it to train an ANN model. Uzlu et al. [23] used data on
Turkey’s GDP, population, imports, and exports to inform a neural network approach to
optimizing the country’s energy demand. Deshani et al. [24] took the first difference of the
input series. They used a k-means clustering technique to select ANN model inputs for
the prediction of the electricity demand. Table A1 in the Appendix A section summarizes
various methodologies employed in literature to model energy demand in general and
transportation energy demand. Figure 1 presents the article distribution of different coun-
tries worldwide based on the results received in Scopus with the keyword-transportation
energy demand from the year 2000 to 2022. In contrast, Figure 2 presents the results ob-
tained with the keywords transportation energy demand and greenhouse gas emissions for
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the same period. It was also evident from the search that the number of publications over
the years are growing almost exponentially due to the importance of the topic.
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However, according to information presented in Table A1, it was revealed that a
significant trend toward applying artificial intelligence (AI) and other regression techniques
in energy demand modeling in the transport sector globally. The artificial neural networks
approaches are most popular amongst various AI methods. On the other hand, support
vector regression, another dominant AI model, has not been explored frequently to model
transportation energy demand. However, the SVR requires fewer parameters than other
AI models and reaches the global optimum solution at a lower expense. It also does not
suffer from the overfitting problem [25]. Due to its benefits, it has been employed in
research and industries for decades [26–29]. This approach was successfully used in a wide
range of applications such as building energy consumption [30], energy performance [31],
solar radiation [32], and electricity load [33]. Successful application of SVR was also
found in transportation engineering and planning; for instance, it was used in intelligent
transportation systems [34], retro-reflectivity degradation of traffic signs [35], short-term
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travel time [36], electric vehicle charging duration time [37], freeway speed [38], and real-
time crash risk on urban expressways [39]. In Saudi Arabia’s context, there is a dearth of
research on energy demand modeling in the transportation sector of Saudi Arabia that
makes use of AI methods. In addition, to the best of the author’s knowledge, the support
vector regression is yet unexplored for Saudi Arabia’s transportation energy modeling.
Considering the mentioned notes, this article develops a causality-based machine-learning
scheme for modeling the energy demand in the transport sector of Saudi Arabia. The
significant contributions of the article are as follows:

• This research employs a vector error correction model (VECM) for causality test
analysis to identify a short and long-term relationship between the dependent and
explanatory variables;

• This paper develops an SVR model for forecasting energy consumption in the King-
dom’s road transportation between 2018 and 2030 using a double exponential smooth-
ing method using the projected input dataset.

• Finally, it compares the results from the SVR model with an ANN model to identify a
suitable model for Saudi Arabia’s energy demand in the transportation sector. The
ANN model is chosen for comparison purposes due to its popularity in transportation
sector energy demand modeling.

The following sections of the article are organized as follows: Section 2 provides a
methodology that includes model development data, causality analysis approach, and
prediction approach. Section 3 illustrates the results associated with causality analysis and
energy demand projection models. Finally, the article is concluded in Section 4 with policy
implication-related remarks.

2. Methodology

This section briefly discusses the data used for the development of AI-based energy
demand models in the transport sector of Saudi Arabia. In addition, it introduces the
approaches for causality analysis and energy demand projection. In addition, the step-by-
step procedure for the model development is shown using a flow chart in Section 2.4.

2.1. Model Data

The initial and most critical step for causality test analysis and model development is
the selection of input variables. The data type of the explanatory variables is crucial for
causality test analysis because the VECM requires panel data with trends to identify the
short and long-run relationship between the dependent and explanatory parameters [10].
This study adopted VECM for causality analysis because it is a widely used model for
estimating short- and long-run causal relationships among dependent and explanatory
variables [3,40]. Another reason for using VECM is that it is suitable if some of the ex-
planatory variables are co-integrated among themselves. For example, this study identified
that GDP, fuel price, urban population, and passenger vehicle number are the factors of
transport emissions. Here, GDP and fuel price are co-integrated among themselves as GDP
often depends on fuel price. Given that an explanatory variable is co-integrated among
themselves, VECM can effectively be used for causality tests. Another advantage of using
VECM is that it cannot only estimate the causal relationships between dependent and
independent variables, but it can also estimate causal relationships among the de-pendent
variables themselves [3].

For forecasting energy demand, this study developed some AI-based energy demand
models. We note that the accuracy of the energy demand-forecasting model is highly reliant
on selected input variables. A high number of input variables may lead to overfitting and
overtraining, resulting in reduced accuracy of models. Many socio-economic and demo-
graphic factors like GDP, population size, imports, exports, employment rate, and economic
performance influence energy demand and forecasts. A country’s GDP is correlated with
energy consumption. Some studies reveal that the most important elements of energy
consumption are GDP, imports, exports, population size, fuel price, and the number of
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populations in urban agglomeration. Considered an indicator of a nation’s economic health,
GDP measures overall economic activity. When GDP rises, people’s living standards rise
along with them, leading to increased energy consumption. The amount of energy used is
directly related to the number of people since more energy is used as the population grows.
Hence, GDP, the number of registered vehicles, total population, fuel price, and the number
of populations in urban agglomeration are input variables in this study. Figure 3 shows the
trends of some of the variables for Saudi Arabia.
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2.2. Causality Analysis Approach

Causality analysis based on the VECM has three major steps: unit root test, cointegra-
tion test, and short- and long-run Granger causality test. The current study aims to identify
the critical drivers of road transport energy consumption, where energy consumption is
the dependent variable, and socio-economic variables such as GDP, urban population,
fuel price, and vehicle numbers are the explanatory variables. Therefore, the relationship
between energy consumption and socio-economic variables can be represented as [3,40]:

Et = α + β1 GDPt + β2 Pt + β3 Ut + β4 Vt + εt (1)

In the above equation, E, GDP, P, U, and V are road transport energy consumption,
annual GDP, fuel price, urban population, and passenger vehicle number, respectively. The
parameter α and t is intercept and year, respectively. The β1 to β4 are coefficients for GDP,
P, U, and V, respectively, and εt is the constant error term.

2.2.1. Unit Root Test

One of the preconditions for using a VECM is that all variables need to be non-
stationary at one level and stationary at their first differences. Therefore, the stationary
test is crucial in a VECM, requiring a logarithmic form of the previous equation. The
logarithmic form can be written as follows [3,40]:
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ln(Et) = ln(α) + β1 ln (GDPt) + β2 ln (Pt) + β3 ln (Ut) + β4 ln (Vt) + ln (εt) (2)

The stationarity of the data set may be checked, and the integration sequence of the
explanatory factors can be investigated using the Augmented Dickey–Fuller (ADF) and
Phillips–Perron (PP) tests. The ADF test is used because it is considered to be the most
widely used unit root test [42]. However, according to Azlina et al. [43], the ADF test often
fails to reject a unit root. Therefore, this study used the PP and ADF tests for a robust result.
The PP test is used because it is suitable mainly for small datasets, and this study has used
a small length of time-series data from 1996 to 2017.

2.2.2. Co-Integration Test

Another precondition for developing a VECM is that at least two of the variables
used in the study need to be co-integrated. Johansen’s cointegration test investigates the
existence of cointegration among variables [44]. This test is used in this study because it is
evident from the unit root test that all the variables are integrated in the same order, and
the test performs better in such situations [45]. Thus, the Johansen cointegration test’s trace
statistic and maximum Eigenvalue statistics are computed to examine the cointegration of
the parameters. Trace and maximum Eigenvalue statistics are the two widely used statistics
for identifying the number of co-integrating equations [10].

2.2.3. Granger Causality Test

Once it is evident that there is at least one co-integrating equation, a VECM can be
developed, and the Granger causality test can be performed using that VECM frame-
work [26]. The Granger causality test examines both the short- and long-term causality and
provides the direction of causality. The error correction term (ECT) of a VECM indicates
the adjustment speed towards attaining long-run equilibrium and helps to understand
the long-run relationship and causality direction between the dependent and explanatory
variables. The Wald F statistics of the Granger Causality test are for understanding the
causal relationships and their directions among variables in the short run because this is
the most widely used technique to explain short-run relationships [10].

2.3. Prediction Approach

The five main steps of the adopted methodology for future energy demand estimation
include (i) input analysis, (ii) input projection, (iii) model construction, (iv) model testing,
and (v) output (road transportation energy consumption in Saudi Arabia) forecasting:

Step 1: Input Processing—All the input data exhibit an increasing trend. Each variable’s
linear trend is removed by developing a first-order linear regression model with the
year as an input. A set of modified variables is obtained by eliminating the linear
trend. In the next stage, normalization is performed to scale the data within the range
between −1 and 1;

Step 2: Input Projection—A double exponential smoothing technique is employed to
project the input data between 2018 and 2030;

Step 3: Model Development—The model is developed using the normalized input data
between 1976 and 2004;

Step 4: Model Testing—The model is tested for the training data between 1976 and 2004
and the testing data between 2004 and 2017, considering suitable error measures;

Step 5: Output Forecasting—The model is utilized to make projections regarding the
output. (road transport energy consumption in Saudi Arabia) for the period between
2018 and 2030 using the projected input data.

2.3.1. Double Exponential Smoothing

The analysis of the GDP, the number of registered vehicles, the total population, and
the population in urban agglomeration data reveals a long-run trend. Double exponential
smoothing is preferred over single exponential smoothing because it takes into account
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both the average and pattern. For n-periods-ahead prediction (Ft+n), the double exponential
forecasting equation is as follows [46–48]:

Ft+n = Pt + nbt (3)

where Pt is the projected intercept; bt is the projected slope. The equations are as fol-
lows [46–48]:

Pt = αyt + (1 − α) (Pt−1 + bt−1) for 0 ≤ α ≤ 1 (4)

bt = γ(Pt − Pt−1) + (1 − γ) bt−1 for 0 ≤ γ ≤ 1 (5)

where [xt] represents the raw data sequence, α and γ are the data and trend smoothing
factors, respectively. The selected initial values of P1 and b1 are equal to the observed
value at t = 1 (i.e., x1) and the difference between the observed values at t = 2 and t = 1
(i.e., x2 − x1), respectively.

2.3.2. Support Vector Regression

The SVR was initially proposed by Cortes and Vapnik [49] on the basis of the structural
risk minimization principle. The technique allows us to reduce the generalization error
constraint without worrying too much about the training error. Generalization error is
critical in evaluating the algorithm’s accuracy in forecasting unseen data. Although the
applications of SVR were initially restricted to pattern recognition problems, the regression
problems can also be solved now. The SVR builds an optimal geometric hyperplane for
separating the data. It also uses nonlinear mapping (∅) to transform the data into a high-
dimensional feature set before performing the linear regression in the transformed feature
space [50–52].

For a mathematical explanation of the concept, let us consider x ∈ Rn and y ∈ R,
the hyper-plane function, y = f (x) = w.∅(x) + b, where w ∈ Rn = weight vector, and
c ∈ R = bias. The function ∅(x) is a nonlinear transformation from Rn to a higher dimen-
sional space. Now, it is required to discover the w and b values for the determination of the
x values by minimizing the regression risk [49–52]:

R =
1
2

n

∑
i=1
{ f (xi)− yi}2 +

λ

2
‖ w ‖2 (6)

where λ is the regularization constant, n indicates the sample inputs (x1, . . . . . . ., xn),
(y1, . . . . . . ., yn) refers to target output, and w represents the optimal desired weights vector
of the regression hyperplane and can be represented as:

w∗ =
N

∑
i=1

(βi − β∗i )∅(xi) (7)

where βi, β∗i are the solutions to the mentioned quadratic equation [51]. The regression
equation can be rewritten by substituting w∗:

f (x, β, β∗) =
N

∑
i=1

(βi − β∗i )(∅(xi).∅
(
xj
)
+ b =

n

∑
i=1

(βi − β∗i )K
(

xi, xj
)
+ b (8)

Here, K
(

xi, xj
)

is known as the kernel function, which is the product of the vectors xi
and xj in the feature space. The considered kernel function can be a linear, polynomial, or
radial basis function (RBF) and is written as:

K
(
xi , xj

)
= exp

[
−
‖ xi − xj ‖2

2σ2

]
(9)

where the user provides σ.
One common form of a cost function is Vapnik’s ε-insensitive loss function [53]:
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Eε( f (xi)− yi) =

{
| f (xi)− y| − ε, for | f (xi)− y| ≥ ε

0 Otherwise
(10)

Now, the quadratic problem is defined as:

Minimize 1
2 ∑n

i=1 ∑n
j=1
(

βi − β∗i
)(

β j − β∗j

)
K
(
xi, xj

)
− ε ∑n

i=1
(

βi + β∗i
)

+∑n
i=1
(

βi − β∗i
)
yi

(11)

Subject to : ∑n
i=1(βi − β∗i ) = 0, 0 ≤ an ≤ C, 0 ≤ a−n ≤ C (12)

The βi and β∗i are the forces which push and pull the estimate f (xi) towards the
target output yi [54]. The constant C values cause penalties for errors in estimation for
balancing the training error and generalization capability. The biases are determined using
the Karush–Kuhn–Tucker (KKT) conditions [49–52].

2.3.3. Artificial Neural Networks

An ANN is a system of interconnected computing nodes (neurons). The information is
processed similarly to how the human brain would. Multilayer perceptron (MLP) networks
are the most popular type of neural networks. Each layer consists of neurons. Every neuron
has a different weight associated with it. The information is passed from the input layer
through hidden layers and finally reaches the output layer. Every neuron except the neuron
in the input layer receives the information from the neurons in the preceding layer. After
this, the neuron passes information to the output through a sigmoid function [55–58]. A
training algorithm is adopted to obtain the weights while the algorithm minimizes the
cost function, such as mean squared error considering the target and the model output.
A general representation of a neural network is shown in Figure 4. As can be seen, the
network consists of two inputs, one output, and one hidden layer. The input layer is not
associated with any calculations; it simply transfers the input to the first hidden layer, while
the remaining connections carry real-valued connection weights that modify the signal
strength carried by other nodes. As inputs, the node of hidden layers and output layer
receives the sum of the previous layer’s weighted outputs and the bias. The corresponding
activation function modifies the input and transfers the result to the nodes of the subsequent
layer or the environment.
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Figure 4. A simplified illustration of an ANN.

The output of a node in the hidden layer and the output layer are in the following part
as adopted from [55–58]. The output of the hidden node j:

zj = f (q) =
eq

eq + 1
, where q = ∑i wijxi + woj (13)



Sustainability 2022, 14, 16064 9 of 21

where wij is the weight of the connection from the ith input node to the jth hidden node,
and w0j is the bias of the jth hidden node. In the preceding example, the activation function
of the hidden node is a sigmoid function with an input of q.

The final output can be represented as [56,57]:

y = w35z1 + w45z2 (14)

where w35 and w45 are the weights, and z1 and z2 are the output of the third and fourth
nodes, respectively.

2.4. Model Development

The ANN and SVR models were developed using MATLAB software. Data sets from
1976 to 2017 were used for analysis. Data from 1976–2004 were utilized for training, whereas
data from 2005–2017 were used for testing. The data were projected up to 2030 using a
double exponential smoothing technique. Data and trend smoothing factors were selected
using the systematic trial and error process. Road transportation energy consumption was
modeled using the projected input. Two important hyperparameters which need to be
specified in the SVR model are appropriate C and ε values. With the goal of maintaining
a balance between the learning error and the complexity of the model, C determines the
optimal number of support vectors. The lower and higher C values are associated with
underfitting and overfitting, respectively. When used to SVR, the ε is a normalization
setting that establishes a compromise between error margin and model robustness to
produce optimal adaptation on a new testing dataset. The smoothness of SVR’s response
is affected by the value of ε. As a result, the model’s complexity and predictive validity
rely on the parameter value of ε. After many systematic trial and error experiments, the
values of C and ε are fixed to 1000 and 0.001, respectively. The conceptual framework of
the suggested AI-model for predicting Saudi Arabia’s energy needs for road transport is
depicted in Figure 5.
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The important hyperparameters of an ANN include the number of hidden layers,
the number of neurons in each layer, the learning algorithm, the activation function, the
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learning rate, and the learning goal. Due to the small dataset, only one hidden layer was
considered in this study. The number of neurons in the hidden layer was ascertained
through a systematic trial and error approach considering 1 to 4 neurons. The mean abso-
lute percentage error values for the training dataset varied between 4.34% and 9.35% for
the considered neurons. The testing results varied between 4.82% and 5.26% for the same
number of neurons. The ANN with three neurons in the hidden layer with an activation
function of tan-sigmoid, a learning rate of 0.00002, and a goal of 0.000001 produce the best
result considering both the training and the testing results. Figure 6 presents the compara-
tive analysis of ANN and SVR models in terms of mean squared error (MSE) index where
the minimum values for the models were 0.0295 (MTOE) and 0.0001 (MTOE), respectively.
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3. Results and Discussion

The section starts by demonstrating the results obtained from causality analysis ap-
proaches. Then, it presents the result of the developed SVR-based energy demand model
along with different statistical performance measures to verify the efficacy of the developed
model. Finally, a comparative analysis between the SVR-based and ANN-based approaches
is also discussed.

3.1. Causality Analysis Model Results

In the unit root test, two specifications are used: the ‘intercept’ and the ‘Intercept and
Trend.’ Table 1 presents the ADF and the PP test results for both specifications. All the
variables are non-stationary at the level and stationary at their first differences, which is the
first condition for developing a VECM for causality test analysis. The second condition for
creating a VECM is the existence of cointegration between at least two of the variables. The
Johansen cointegration test is performed to understand the cointegration among variables.
The result is presented below in Table 2. The Johansen cointegration test result based on the
Trace statistics and the Maximum Eigenvalue statistics shows that at least one co-integrating
equation exists at a 1% significance level. The summary of the co-integrating equation is
presented in Table 3. The signs of the coefficient values of the explanatory variables indicate
that GDP and the number of vehicles have a positive relationship with transport energy
consumption. In contrast, the relationship is negative between the urbanization rate and
fuel prices. An increase in GDP or vehicle number increases transport energy consumption,
while an increase in urbanization rate or fuel price decreases energy consumption. Since
cointegration exists among variables and all the variables are non-stationary ‘at level’
and stationary ‘at their first differences’, a VECM has been developed to understand the
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long- and short-run causal relationship between transport energy consumption and its
explanatory variables, as can be seen in Table 4.

Table 1. The unit root test result.

At Level
ADF (Lag Length) PP (Lag Length)

Intercept Intercept and Trend Intercept Intercept and Trend

E 2.03 (1) −2.23 (0) 2.42 (3) −2.54 (6)

GDP −0.50 (0) −1.92 (0) −0.50 (0) −2.06 (1)

P −1.18 (0) −1.04 (0) −1.43 (1) −1.31 (1)

U 4.14 (3) −3.66 ** (4) 4.65 (2) −3.95 ** (2)

V 1.36 (1) −0.68 * (1) 7.09 (2) −1.18 (2)

At first difference Intercept Intercept and Trend Intercept Intercept and Trend

E −4.81 (0) *** −6.19 (0) *** −4.82 (2) *** −6.20 (1) ***

GDP −3.82 (2) *** −3.75 (0) ** −3.84 (2) *** −3.73 (2) **

P −3.43 (0) ** −3.39 (0) * −3.43 (0) ** −3.39 (0) *

U −2.50 * (4) 2.34 (3) −2.07 * (2) 0.30 (2)

V −039 (0) * −2.00 (0) −0.39 (0) −2.00 (0)
Note: E, GDP, P, U, and V are road transport energy consumption, annual GDP, fuel price, urban population, and
passenger vehicle number, respectively. The numbers in parentheses are lag lengths, while the asterisks (***, **, *)
denote statistical significance at the 0.01, 0.05, and 0.1 levels, respectively.

Table 2. Results of the Johansen cointegration test.

Hypothesized Number of
Co-Integrating Equation(s) r = 0 r = 1 r = 2 r = 3 r = 4

Trace statistics 113.91 *** 61.58 *** 27.04 7.21 0.57

Maximum Eigenvalue statistics 52.33 *** 34.54 *** 19.83 6.64 0.57
Note: *** indicate significance at 0.01 level.

Table 3. Summarized form of the co-integrating equation.

Dependent Variable: TE

Explanatory Variables Coefficients Standard Error t-Statistics

Constant 11.8 13.71 0.86

GDP 0.003 0.017 0.176

P −127.10 35.91 −3.54

U −17.73 2.53 −7.00

V 14.35 1.82 19.23

The Granger causality test result shows that GDP and urbanization rate have short-
run and long-run-causal relationships with transport energy consumption. However,
the number of vehicles and fuel prices do not have a noteworthy causal relationship
with energy consumption. Although vehicle number does not have a short-run causal
relationship with fuel consumption, there is a causal relationship running from vehicle
number to urban population rate and GDP. This means that policy measures are required
to promote alternative modes of transportation, especially in urban areas. Since GDP has a
strong causal relationship with transport energy consumption in the short and long run,
energy intensity needs to be immediately reduced through appropriate policy measures.
In addition, urbanization needs to be managed through high-density urban development
instead of urban sprawl.
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Table 4. Granger causality test result.

Short-Run Granger Causality—F Statistics Long-Run Granger
Causality—t-Statistics

Ln (E) Ln (GDP) Ln (P) Ln (U) Ln (V) Error Correction Term (ECT)

Ln (E) - 3.93 * (0.07) 0.04 (0.85) 3.63 * (0.08) 0.20 (0.66) −1.58 (0.14)

Ln (GDP) 1.52 (0.24) - 8.02 ** (0.02) 5.21 ** (0.04) 4.53 * (0.05) 1.98 * (0.07)

Ln (P) 3.11 (0.10) 0.01 (0.92) - 0.01 (0.91) 0.03 (0.86) 0.45 (0.66)

Ln (U) 0.60 (0.45) 0.29 (0.60) 0.79 (0.39) - 3.31 * (0.09) 1.91 * (0.08)

Ln (V) 0.003 (0.96) 2.17 (0.17) 0.19 (0.67) 3.02 (0.10) - 0.19 (0.85)

Note: p-values are shown in parentheses, and the symbols ** and * denote statistical significance at the 0.05 and
0.1 levels, respectively.

3.2. AI-Based Model Results

The input variables are forecasted to project the road transportation energy demand
for Saudi Arabia between 2017 and 2030 (Figures 7 and 8). Both the training (1976–2004)
and testing (2005–2017) datasets are used to assess the created model’s efficacy. The model
appears to produce results near the observed values for both training and testing datasets.
Figure 9 presents the comparative illustrations of the machine learning models predicted
energy demand for the road transportation sector of Saudi Arabia with actual energy
demand. As can be seen, the SVR model predicted numbers are much closer to the actual
numbers than ANN predicted numbers. Therefore, the superiority of the SVR model over
the ANN model for the case under study (Saudi Arabia’s transportation sector energy
prediction) is verified. The effectiveness of the model is assessed with the help of the
root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage
error (MAPE), correlation coefficient (CC), and Willmott’s index of agreement (IA). The
values of IA for an ideal match and complete disagreement are 1 and 0, respectively [59].
The created model shows satisfactory performance on the training and testing datasets,
as shown by the estimated values of the investigated performance measures (Table 5).
The comparative analyses of the achieved performance indices for both machine-learning
models are presented in Figure 10.
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Table 5. Performance measures of developed ANN and SVR models.

Heading RMSE (MTOE) MAE (MTOE) MAPE CC IA

Training Datasets (ANN) 0.7 0.43 4.34 0.9924 0.9989

Testing Datasets (ANN) 3.9 15.39 7.53 0.8932 0.9899

Training Datasets (SVR) 0.0 0.00 0.00 1 1

Testing Datasets (SVR) 0.9 0.73 1.91 0.9925 0.9996
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energy demand for the developed machine learning models.

Figure 11 is a scatter plot illustrating the correlation between the data and the model’s
predictions. An identity line, i.e., a y = x line, is generally drawn as the reference. The data
points coincide with the identity line whenever the model’s predictions and observations
are in perfect numerical agreement. For both the test and training datasets, the scatter
diagram of the observable data and the model output showed that the prediction model
reasonably conforms to the observed data. The coefficients of determination (R2) values are
also satisfactory. Removing the trend line to concentrate on the nonlinear aspect of energy
consumption and employing the twofold smoothing procedure for given input projection
may account for the reliability of the observed data and the model’s predictions.
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4. Conclusions and Policy Implementation

The rising energy usage of Saudi Arabia’s transport sector poses challenges to poli-
cymakers in achieving the country’s sustainability goals. As a result, the Kingdom must
identify the factors that influence energy consumption trends in the sector and develop
mitigation plans without compromising the country’s development. Considering the men-
tioned note, this article studied a few selected socio-economic drivers (GDP, fuel price,
urban population, and passenger vehicle number) and their impacts on the energy trends
of the sector using econometric analysis. Then, it predicted the future energy demand of
the sector employing machine learning tools.

The econometric model analysis revealed that the GDP and urban population have
short- and long-run causal relationships with road transport energy consumption. As of the
co-integration test, the GDP affected energy consumption negatively, while urbanization
affected it positively. Therefore, Saudi Arabia needs to shift its GDP growth towards a
low-energy-intensive economy and manage its urban population growth tactfully to reduce
both short-and long-run road transport energy demand. In addition, road transportation’s
greenhouse gas emissions are directly proportionate to energy consumption because fossil
fuels are the only source of energy in Saudi Arabia. Investments in renewables, public
transport infrastructures, and low-carbon service sectors could be crucial to breaking
the nexus between GDP, urbanization rate, and road transport energy consumption. In
addition, promoting electric vehicles powered by renewables and fuel-efficient cars can be
a valid option to reduce transport fuel consumption. Shift urban sprawl to smart growth to
decouple the urban population from road transport energy consumption. Such a shift is
likely to promote active travel (walking, cycling, etc.) and support public transport services,
thereby reducing road transport energy consumption. These policy options are crucial for
Saudi Arabia to tackle the critical drivers of energy demand in the transport sector and
achieve environmental sustainability.

Prediction results of the future energy demand of road transportation employing
machine learning models validated the efficacy of the SVR model over the ANN model. All
selected statistical performance measures (RMSE, MAE, CC, and IA) for both training and
testing datasets were better for the SVR model than the ANN model. For instance, the IA
for the ANN model was 0.9899 for the testing dataset, whereas the value was only 0.9996 for
the SVR model. Therefore, the concerned authorities can utilize the model for scenario de-
velopment using different policy approaches to curtail road energy consumption. Although
the overall performance of both machine learning models was adequate, both models
did not realize the recent changes in energy demand well. Including additional relevant
variables with longer time-series data can enhance the model performance. Moreover, other
promising machine learning techniques including transparent machines, deep learning
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models, etc. can also be explored as an extension of this research to model energy demand
of various sectors of the country.
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Appendix A

Table A1. Review of the energy demand estimation in the road transport sector.

Country and Ref. Methodology Model Data Forecasting
Period

Predicted
Variable Predictor Variables

India by Bose et al. in
1997 [60]

LEAP (Long-range
Energy Alternatives

Planning)
1981–1989 1990–2010 Passenger transport

energy consumption

Total number of vehicles, VMT (vehicles
miles traveled), occupancy level, modal

split, and fuel efficiency

Europe by Zachariadis et al.
in 2003 [61]

Macro-economic
forecast 1970–1999 2000–2030 Transport energy

demand
GDP, population, VMT, occupancy rate,

and fuel consumption

Nepal by Dhakal in 2003 [62] LEAP 1998–2000 2005–2020 Passenger transport
energy consumption

Total number of vehicles, annual vehicle
kilometers traveled, occupancy level,

and fuel efficiency

Turkey by Ozturk et al. in
2004 [19] Genetic algorithm 1975–2002 2002–2020 Energy demand Population, GDP, house production,

export, and import

Turkey by Haldenbilen et al.
in 2005 [22]

Linear and quadratic
equations using
harmonic search

1990–2000 2002–2020 Energy demand Population, GDP, and VMT

Murat and Ceylan in
2006 [13] ANN 1970–2001 2002–2020 Energy demand GNP, population, annual average

vehicle km, and historical energy data

Greece by Polemis in
2006 [63] Log-linear model 1978–2003 Not specified Diesel demand Per capita income and vehicle fleet, and

gasoline and diesel prices

South Korea by Geem et al.
in 2007 [64] ANN 1980–2007 Not specified Energy demand GDP, import, export, and population

Turkey by Edigar et al. in
2007 [65]

Autoregressive
Integrated Moving
Average (ARIMA)

1950–2004 2005–2020 Primary energy demand GDP, population, import, and export

Turkey by Sozen et al. in
2007 [66] ANN 1968–2005 Not specified Net energy demand GDP, population, import, and export

Turkey by Ceylan et al. in
2008 [67]

Linear and quadratic
equations using
harmonic search

1970–2005 2006–2025 Road transport energy
demand Population, GDP, and VMT

China by Yan et al. in
2009 [68] LEAP 2000–2005 2005–2030 Road transport energy

demand
Total number of vehicles, VMT, and fuel

economy

Taiwan by Lu et al. in
2009 [69] Grey forecasting model 1990–2006 2007–2025 Road transport energy

demand Population, GDP, and VMT



Sustainability 2022, 14, 16064 17 of 21

Table A1. Cont.

Country and Ref. Methodology Model Data Forecasting
Period

Predicted
Variable Predictor Variables

Pakistan by Shabbir et al. in
2010 [70] LEAP 2000 2000–2030

Urban passenger
transport energy

consumption

Total number of vehicles, VMT,
occupancy level, modal split, and

fuel efficiency

Iran by Behrang et al. in
2011 [71] Bee algorithm 1981–2005 2006–2030 Energy demand population, GDP, export, and import

South Korea by Geem in
2011 [14] ANN 1990–2007 2008–2025 Energy demand

GDP, population, passenger transport
amount, number of vehicle registrations,

and oil price

Jordan by
AhmedAl-Ghandoor et al. in

2012 [72]

Adaptive neuro-fuzzy
inference system

(ANFIS)
1985–2009 2010–2030 Energy demand vehicles no./year, vehicle ownership

and income level, and fuel price

Croatia by Pukšec et al. in
2013 [73]

Energy demand of
transport (EDT) model

Not
specified 2008–2050 Long-term energy

demand
Railway, road, seawater and coastal,
inland waterway, and air transports

Iran by Sadri et al. in 2014
[74] LEAP and EnergyPLAN 1997–2008 2009–2025 Long-term energy

demand GDP and population

United States by Kialashaki
and Reisel in 2014 [75]

ANN and multiple
linear regression 1981–2009 2010–2030 Energy demand GDP, population, oil price, and vehicles

Thailand by Tansawat et al.
in 2015 [76]

Linear and log-linear
regression models 2007 Not specified Transport fuel

consumption

Gross provincial product, total number
of sedans and gas stations, and a few

dummy variables

Malaysia by Azam et al. in
2016 [77] LEAP 1990–2012 2013–2040 Long-term energy

demand Historical data

China by Chai et al. in
2016 [78]

ARIMA and ETS (Error,
Trend, Seasonal) models 1971–2011 2012–2020 Energy demand

GDP, employment, urbanization rate,
core business tax, total road turnover,
highway mileage, car manufacturing

charges, and automobile
industry output

Saudi Arabia by Alshehry
and Belloumia in 2017 [79]

Environmental Kuznets
curve 1971–2011 Not specified Transport CO2

emissions
GDP, transport CO2 emissions, and

transport energy consumption

China by Teng et al. in
2017 [80]

Group method of data
handling 1980–2011 2012–2052 Long-term energy

demand

GDP, population, urbanization rate,
incomes, passenger, and freight

turnovers, registered vehicle numbers,
and fuel retail price index

24 countries in the Latin
America by Llorca et al. in

2017 [81]

Stochastic frontier
approach 1990–2010 Not specified Energy demand

GDP, population, energy price index,
gross value added, and

population density

China by Peng et al. in
2018 [82] CPREG model 2015 2015–2050 Energy demand and

GHG emissions
GDP, population, vehicle miles traveled,

and vehicle stock

New Zealand by Hasan et al.
in 2019 [10] Regression 1990–2016 2017–2030 Emissions from the road

transport sector

Demography and urban economics,
energy, socio-economic development

transport factors, and politics
and policies

Indonesia by Deendarlianto
et al. in 2020 [83]

Sustainable mobility
project (SMP) model 1999 –2013 2014–2030 Energy demand GDP, population, vehicle type, travel

distance, and fuel economy

Turkey by Talebi et al. in
2021 [84] ANN 1975–2016 2020–2030 Energy demand GDP, population, oil prices, ton-km,

vehicle-km, and passenger-km

Taiwan by Yao et al. in 2021
[85]

Convolutional neural
network 1999–2019 Up to 2025 Energy demand

GDP, population, number of registered
vehicles, passenger transport value, and

oil price

Turkey by Sahraei et al. in
2021 [86]

Multivariate adaptive
regression splines 1975–2019 2020–2030 Energy demand GDP, population, oil price, vehicle-km,

passenger-km, and ton-km

Malaysia by Solaymani in
2022 [87]

Autoregressive
distributed lag (ARDL) 1978–2018 Not specified CO2 emissions

GDP, urbanization, energy and carbon
intensity, and renewable energy in

energy mix.

Turkey by Turgut et al. in
2021 [88] OPTSGULL algorithm 1970–2017 2018–2028 Energy demand

GDP, population, employment, trade,
inflation, crude oil price, total amount of

goods transported, and total vehicle
travel in km

Turkey by Özdemiïr and
Dörterler in 2022 [89]

Linear, exponential, and
quadratic models

assisted by heuristic
algorithm

1970–2013 2014–2034 Energy demand GDP, total vehicle
kilometer/year, population
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Table A1. Cont.

Country and Ref. Methodology Model Data Forecasting
Period

Predicted
Variable Predictor Variables

Morocco Oubnaki et al. in
2022 [90] Regression models 1990–2014 2020–2030 Energy demand

GDP, population, urbanization, fuel
price, working women rate, number of
vehicles registration and active vehicles
on the road, and activity rate by gender

and category

28 European countries by
Maaouane et al. in 2022 [91] ANN 1990–2019 2020–2050 Energy demand

GDP, population, population density,
gasoline and diesel price, purchasing

power parity, price index, and
household final

consumption expenditure

Turkey by Sahraei and
Çodur in 2022 [86]

Hybrid meta-heuristic
ANN

1975–2019
(First 80%)

1975–2019
(Last 20%) Energy demand GDP, population, oil price,

passenger-km, vehicle-km, and ton-km

Pakistan by Asim et al. in
2022 [92] LEAP 2003–2018 2019–2035 Energy consumption Historical energy consumption data
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