A Strategy to Quantify Water Supply of an Agricultural Reservoir for Integrated Water Management Policy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Data and Flow Monitoring
2.3. Strategies for Quantification of the Reservoir Water Supply
2.4. Assessment Using Hydrological Verification Methods
3. Results
3.1. Characteristics of the Water Level Monitoring in Reservoirs and Canals
3.2. Comparison of Water Level–Flow Relationships Based on Canal Flow Surveys
3.3. Comparison of Reservoir Supply Calculation Methods
3.4. Reliability of Reservoir Supply Calculation Strategies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Environ. Res. Lett. 2009, 4, 035006. [Google Scholar] [CrossRef]
- FAO. AQUASTAT—FAO’s Global Information System on Water and Agriculture; Food and Agriculture Organization: Rome, Italy, 2010; Available online: http://www.fao.org/nr/aquastat (accessed on 16 March 2010).
- WEF. Water Security: The Water-Food-Energy-Climate Nexus; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Hirsch, R.M.; Costa, J.E. US stream flow measurement and data dissemination improve. Eos Trans. Am. Geophys. Union. 2004, 85, 197–203. [Google Scholar] [CrossRef]
- Song, J.H.; Park, M.H.; Cha, J.H.; Kim, C.Y. Applicability evaluation of velocity profile method by V-ADCP measuring real-time river water use. J. Korea Water Resour. Assoc. 2019, 52, 83–96. [Google Scholar]
- Abd Halim, I.H.; Mahamad, A.I.; Mohd Fuzi, M.F. Automated alert system for river water level and water quality assessment using telegram bot API. JCRINN 2021, 6, 65–74. [Google Scholar] [CrossRef]
- Odemis, B.; Evrendilek, F. Monitoring water quality and quantity of national watersheds in Turkey. Environ. Monit. Assess. 2007, 133, 215–229. [Google Scholar] [CrossRef]
- Nam, W.H.; Choi, J.Y.; Hong, E.M. Irrigation vulnerability assessment on agricultural water supply risk for adaptive management of climate change in South Korea. Agric. Water Manag. 2015, 152, 173–187. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport (MOLIT). The 4th Long-Term Comprehensive Plan of Water Resources (2001–2020); Ministry of Land, Infrastructure and Transport (MOLIT): Sejong, Korea, 2016. [Google Scholar]
- Statistics Korea. Census of Agriculture, Forestry and Fisheries in 2020. Available online: http://www.affcensus.go.kr (accessed on 1 June 2022).
- Kim, J.S.; Lee, J.Y.; Lee, J.B.; Song, C.M.; Park, J.S. Evaluation of agricultural water supply potential in agricultural reservoirs. J. Korean Soc. Agric. Eng. 2016, 58, 65–71. [Google Scholar] [CrossRef]
- McNally, A.; Verdin, K.; Harrison, L.; Getirana, A.; Jacob, J.; Shukla, S.; Arsenault, K.; Peters-Lidard, C.; Verdin, J.P. Acute water-scarcity monitoring for Africa. Water 2019, 11, 1968. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.J.; Kim, P.S.; Kim, S.J.; Keun, J.Y.; Joo, U.J. Estimation of water loss in irrigation canals through field measurement. J. Korean Soc. Agric. Eng. 2008, 50, 13–21. [Google Scholar] [CrossRef]
- Kim, S.; Cho, G.; Choi, K. Assessment of paddy rice evapotranspiration estimation methods based on comparisons of agricultural water supply. J. Korea Water Resour. Assoc. 2020, 53, 1131–1142. [Google Scholar] [CrossRef]
- Shin, J.H.; Nam, W.H.; Bang, N.K.; Kim, H.J.; An, H.U.; Do, J.W.; Lee, K.Y. Assessment of water distribution and irrigation efficiency in agricultural reservoirs using SWMM model. J. Korean Soc. Agric. Eng. 2020, 62, 1–13. [Google Scholar] [CrossRef]
- Korea Water Resources Corporation. A Study on the Efficient Use of the Water through Improving the Agricultural Water Use Estimation; Korea Water Resources Corporation: Deajeon, Korea, 2020. [Google Scholar]
- Kim, H.Y.; Nam, W.H.; Mun, Y.S.; An, H.U.; Kim, J.; Shin, Y.; Lee, K.Y. Estimation of irrigation return flow from paddy fields on agricultural watersheds. J. Korea Water Resour. Assoc. 2022, 55, 1–10. [Google Scholar] [CrossRef]
- Kim, J.T.; Park, K.W.; Ju, U.J. Reservoir water monitoring system with automatic level meter. KCID J. 2005, 12, 60–68. [Google Scholar]
- Yang, M.H.; Nam, W.H.; Kim, H.J.; Kim, T.G.; Shin, A.K.; Kang, M.S. Anomaly detection in reservoir water level data using the LSTM model based on deep learning. J. Korean Soc. Hazard Mitig. 2021, 21, 71–81. [Google Scholar] [CrossRef]
- Kang, S.M.; Park, J.S.; Lee, J.N. Systematic management direction of agricultural water. J. Water Policy Econ. 2016, 27, 115–128. [Google Scholar]
- Choi, H.S.; An, S.H. Establishment of informatization plan for the construction of integrated management system of agricultural water. J. Korean Soc. Agric. Eng. 2017, 59, 61–72. [Google Scholar] [CrossRef]
- Korea Meteorological Administration (KMA). Weather Data Opening Portal. Available online: https://data.kma.go.kr (accessed on 1 June 2022).
- Korea Rural Community Corporation (KRC). Rural Agricultural Water Resource Information System. Available online: www.ekr.or.kr (accessed on 1 June 2022).
- Rantz, S.E. Measurement and Computation of Streamflow: Volume 1. Measurement of Stage and Discharge; U.S. Government Printing Office: Washington, DC, USA, 1982.
- Lee, M.; Yoo, Y.; Joo, H.; Kim, K.T.; Kim, H.S.; Kim, S. Construction of rating curve at high water level considering rainfall effect in a tidal river. J. Hydrol. Reg. Stud. 2021, 37, 100907. [Google Scholar] [CrossRef]
- Xiong, J.; Guo, S.; Yin, J. Discharge estimation using integrated satellite data and hybrid model in the midstream Yangtze River. Remote Sens. 2021, 13, 2272. [Google Scholar] [CrossRef]
- MAFRA. Design Criteria for Agricultural Infrastructure Improvement Project Plan (Canal); Ministry of Agriculture, Food and Rural Affairs: Sejong, Korea, 2004; Available online: https://www.codil.or.kr/viewDtlMoctRoadGuide.do?scCode=WT1&pageIndex=1&sType=waterTotal&pMetaCode=CIKCWS190092 (accessed on 1 November 2022).
- Park, C.K.; Hwang, J.; Seo, Y. Improvement of agricultural water demand estimation focusing on paddy water demand. J. Korea Water Resour. Assoc. 2020, 53, 939–949. [Google Scholar] [CrossRef]
- Holmes, R.N.; Mayer, A.; Gutzler, D.S.; Chavira, L.G. Assessing the effects of climate change on middle Rio Grande surface water supplies using a simple water balance reservoir model. Earth Interact. 2022, 26, 168–179. [Google Scholar] [CrossRef]
- Dessie, M.; Verhoest, N.E.; Pauwels, V.R.; Adgo, E.; Deckers, J.; Poesen, J.; Nyssen, J. Water balance of a lake with floodplain buffering: Lake Tana, Blue Nile Basin, Ethiopia. J. Hydrol. 2015, 522, 174–186. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Ramanarayanan, T.S.; Williams, J.R.; Dugas, W.A.; Hauck, L.M.; McFarland, A.M. SUsing APEX to Identify Alternative Practices for Animal Waste Management (No. 972209); ASAE Paper: Washington, DC, USA, 1997. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harnel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Kim, S.H.; Nam, W.S.; Bae, D.H. An analysis of effects of seasonal weather forecasting on dam reservoir inflow prediction. J. Korea Water Resour. Assoc. 2019, 52, 451–461. [Google Scholar] [CrossRef]
- Donigian, A., Jr. HSPF Training Workshop Handbook and CD; EPA Headquarters, Washington Information Center: Washington, DC, USA, 2000. [Google Scholar]
- Nhu, V.H.; Mohammadi, A.; Shahabi, H.; Shirzadi, A.; Al-Ansari, N.; Ahmad, B.B.; Chen, W.; Khodadadi, M.; Ahmadi, M.; Khosravi, K.; et al. Monitoring and assessment of water level fluctuations of the Lake Urmia and its environmental consequences using multitemporal landsat 7 ETM+ images. Int. J. Environ. Res. Public Health. 2020, 17, 4210. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.K.; Han, K.W.; Koo, J.W.; Son, J.G. Actual uses and water qualities of irrigation water from agricultural reservoir and pumping station. Korean J. Soil Sci. Fert. 2001, 34, 205–212. [Google Scholar]
- Lee, J.; Shin, H. Agricultural reservoir operation strategy considering climate and policy changes. Sustainability. 2022, 14, 9014. [Google Scholar] [CrossRef]
- Asthana, B.N.; Khare, D. Reservoir Sedimentation; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Nie, X.; Fan, T.; Wang, B.; Li, Z.; Shankar, A.; Manickam, A. Big data analytics and IoT in operation safety management in under water management. Comput. Commun. 2020, 154, 188–196. [Google Scholar] [CrossRef]
- Park, C.E.; Kim, J.T.; Oh, S.T. Analysis of stage-discharge relationships in the irrigation canal with auto-measuring system. J. Korean Soc. Agric. Eng. 2012, 54, 109–114. [Google Scholar] [CrossRef]
- Hong, E.M.; Nam, W.H.; Choi, J.Y.; Kim, J.T. 2014. Evaluation of water supply adequacy using real-time water level monitoring system in paddy irrigation canals. J. Korean Soc. Agric. Eng. 2014, 56, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Azamathulla, H.M.; Ahmad, Z.; Ab Ghani, A. An expert system for predicting Manning’s roughness coefficient in open channels by using gene expression programming. Neural Comput. Appl. 2013, 23, 1343–1349. [Google Scholar] [CrossRef]
- Samarinas, N.; Evangelides, C. Discharge estimation for trapezoidal open channels applying fuzzy transformation method to a flow equation. Water Supply. 2021, 21, 2893–2903. [Google Scholar] [CrossRef]
- Choi, J.K.; Son, J.G.; Kim, J.T.; Kim, Y.J. Flow characteristics of lateral irrigation canals diverted from Kimje main canal in Dongjin irrigation area. J. Korean Soc. Agric. Eng. 2012, 54, 113–121. [Google Scholar] [CrossRef]
- Bonnema, M.; Hossain, F. Assessing the potential of the surface water and ocean topography mission for reservoir monitoring in the Mekong River Basin. Water Resour. Res. 2019, 55, 444–461. [Google Scholar] [CrossRef] [Green Version]
- Yasa, I.W.; Bisri, M.; Sholichin, M.; Andawayanti, U. Hydrological drought index based on reservoir capacity–case study of Batujai dam in Lombok Island, West Nusa Tenggara, Indonesia. J. Water Land Dev. 2018, 38, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Noh, J.; Kang, M.; Shin, H. Evaluation of the irrigation water supply of agricultural reservoir based on measurement information from irrigation canal. J. Korean Soc. Agric. Eng. 2020, 62, 63–72. [Google Scholar] [CrossRef]
- Liersch, S.; Fournet, S.; Koch, H.; Djibo, A.G.; Reinhardt, J.; Kortlandt, J.; Van Weert, F.F.; Seidou, O.; Klop, E.; Baker, C.; et al. Water resources planning in the Upper Niger River basin: Are there gaps between water demand and supply? J. Hydrol. Reg. Stud. 2019, 21, 176–194. [Google Scholar] [CrossRef]
- Kang, H.; An, H.; Nam, W.; Lee, K. Estimation of agricultural reservoir water storage based on empirical method. J. Korean Soc. Agric. Eng. 2019, 61, 1–10. [Google Scholar] [CrossRef]
- Kim, S.J.; Kwon, H.J.; Kim, I.J.; Kim, P.S. Economical design of water level monitoring network for agricultural water quantification. J. Korean Soc. Agric. Eng. 2016, 58, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Kang, S.; Lee, D.; Kim, J. A study on water supply and demand prospects for water resources planning. J. Korean Soc. Hazard Mitig. 2018, 18, 589–596. [Google Scholar] [CrossRef]
Strategy | Reservoir | Canal | |
---|---|---|---|
Water Level | Water Level | Flow | |
S1 | O | O | O |
S2 | O | O | X |
S3 | O | X | X |
S4 | X | X | X |
No. | Water Level | Observed Flow | Estimated Flow | Difference | No. | Water Level | Observed Flow | Estimated Flow | Difference |
---|---|---|---|---|---|---|---|---|---|
(m) | (m3/s) | (m) | (m3/s) | ||||||
1 | 0.180 | 0.033 | 0.067 | −0.034 | 9 | 0.300 | 0.124 | 0.138 | −0.014 |
2 | 0.210 | 0.046 | 0.083 | −0.037 | 10 | 0.310 | 0.134 | 0.144 | −0.010 |
3 | 0.220 | 0.055 | 0.089 | −0.034 | 11 | 0.320 | 0.150 | 0.151 | −0.001 |
4 | 0.230 | 0.055 | 0.095 | −0.040 | 12 | 0.330 | 0.169 | 0.157 | 0.012 |
5 | 0.240 | 0.064 | 0.101 | −0.037 | 13 | 0.340 | 0.173 | 0.164 | 0.009 |
6 | 0.265 | 0.092 | 0.116 | −0.024 | 14 | 0.310 | 0.128 | 0.144 | −0.016 |
7 | 0.280 | 0.104 | 0.125 | −0.021 | 15 | 0.130 | 0.015 | 0.041 | −0.026 |
8 | 0.290 | 0.112 | 0.131 | −0.019 | 16 | 0.060 | 0.003 | 0.012 | −0.009 |
Year | Strategy | Agricultural Water Supply (103 m3) | Difference from S1 (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
April | May | June | July | August | September | October | Sum | |||
2018 | S1 | 0 | 123 | 230 | 93 | 290 | 22 | 0 | 758 | - |
S2 | 0 | 187 | 319 | 150 | 330 | 39 | 0 | 1024 | +35.0 | |
S3 | 18 | 123 | 230 | 93 | 290 | 22 | 0 | 776 | +2.3 | |
S4 | 10 | 61 | 313 | 239 | 338 | 5 | 0 | 965 | +27.4 | |
2019 | S1 | 0 | 229 | 270 | 390 | 458 | 78 | 0 | 1425 | - |
S2 | 0 | 292 | 342 | 360 | 497 | 92 | 0 | 1584 | +11.2 | |
S3 | 6 | 239 | 188 | 63 | 279 | 0 | 27 | 802 | −43.7 | |
S4 | 9 | 63 | 282 | 159 | 269 | 43 | 0 | 824 | −42.2 | |
2020 | S1 | 0 | 372 | 89 | 49 | 208 | 34 | 0 | 753 | - |
S2 | 0 | 435 | 124 | 65 | 232 | 43 | 0 | 900 | +19.6 | |
S3 | 22 | 303 | 114 | 134 | 198 | 26 | 0 | 798 | +6.0 | |
S4 | 11 | 80 | 220 | 42 | 122 | 4 | 0 | 480 | −36.3 |
Strategy | Period | R2 | NSE | RE (%) |
---|---|---|---|---|
S1 | 2018 | 0.94 | 0.93 | 0.07 |
2019 | 0.99 | 0.98 | −1.50 | |
2020 | 0.91 | 0.82 | −2.20 | |
Average: | 0.95 | 0.91 | −1.21 | |
S2 | 2018 | 0.91 | 0.74 | 5.41 |
2019 | 0.97 | 0.89 | 8.51 | |
2020 | 0.96 | 0.96 | −0.37 | |
Average: | 0.95 | 0.86 | 4.52 | |
S3 | 2018 | 0.95 | 0.93 | −0.11 |
2019 | 0.26 | −0.57 | −19.48 | |
2020 | 0.84 | 0.61 | −2.86 | |
Average: | 0.68 | 0.32 | −7.48 | |
S4 | 2018 | 0.87 | 0.25 | 3.67 |
2019 | 0.34 | −0.39 | −23.5 | |
2020 | 0.43 | 0.06 | −5.59 | |
Average: | 0.55 | −0.03 | −8.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Shin, H.; Noh, J. A Strategy to Quantify Water Supply of an Agricultural Reservoir for Integrated Water Management Policy. Sustainability 2022, 14, 16076. https://doi.org/10.3390/su142316076
Lee J, Shin H, Noh J. A Strategy to Quantify Water Supply of an Agricultural Reservoir for Integrated Water Management Policy. Sustainability. 2022; 14(23):16076. https://doi.org/10.3390/su142316076
Chicago/Turabian StyleLee, Jaenam, Hyungjin Shin, and Jaekyoung Noh. 2022. "A Strategy to Quantify Water Supply of an Agricultural Reservoir for Integrated Water Management Policy" Sustainability 14, no. 23: 16076. https://doi.org/10.3390/su142316076
APA StyleLee, J., Shin, H., & Noh, J. (2022). A Strategy to Quantify Water Supply of an Agricultural Reservoir for Integrated Water Management Policy. Sustainability, 14(23), 16076. https://doi.org/10.3390/su142316076