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Abstract: In this paper, in order to evaluate the traffic safety status of ordinary arterial highways,
identify the sources of safety risks, and formulate safety development countermeasures for arterial
highways to reduce accident risks, a combination method involving rank-sum ratio (RSR), criteria
importance though intercriteria correlation (CRITIC), and least squares support vector machine
(LVSSM) is adopted. The traffic safety risk index system and risk assessment model of ordinary
arterial highways with two dimensions of risk severity and accident severity are established. Based
on the global sensitivity analysis of the extended Fourier amplitude sensitivity test (EFAST), the
resulting risk assessment model for ordinary arterial highways is proposed. Combined with the
current traffic safety situation of ordinary arterial highways in Weinan City, Shaanxi Province,
China, data collection and analyses were carried out from the perspectives of traffic operation status,
personnel facilities management, road environment characteristics, and accident occurrence patterns.
The results show that the risk level of ordinary arterial highways can be obviously divided into
warning areas, control areas, and prompt areas. The proportion of roads through villages and the
number of deceleration facilities belong to the highly sensitive indicators of the S107 safety risk,
which need to be emphatically investigated. This analysis method based is on the RCLE (RSR-CRITIC-
LVSSM-EFAST) risk assessment model and has high operability and adaptability. It can be adaptively
divided according to the requirements of risk-level differentiation, and the road risk classification can
be displayed more intuitively, which is conducive to formulating targeted improvement measures for
arterial highway safety and ensuring the safe and orderly operation of arterial highway traffic.

Keywords: traffic safety; arterial highways risk assessment; risk level; RSR; CRITIC; LVSSM; EFAST
sensitivity analysis

1. Introduction

In the early stage of China’s motorization development, with the annual growth of
the total number of motor vehicles, traffic accidents occurred frequently. Although the
improvement of safety assurance technology has effectively curbed the surge in traffic
accidents in recent years, the base of road traffic accidents in China is still large, and
many traffic safety problems have not been solved. Due to the special terrain, geology,
and climate conditions, the technical grade of the ordinary arterial highway is low. The
road is often close to water and cliffs, the line is winding, and there are many continuous
curves. Many sections of continuous curves and long and large longitudinal slopes often
appear at the same time. The sight distance conditions of roads, bridges, and tunnels are
poor. There are many intersections with slopes along the line, and many sections pass
through towns and schools. The relevant research on high-grade highways and highways
in other regions has poor applicability to ordinary arterial highways with special roads and
traffic environments. Highway traffic safety issues have become increasingly prominent.
According to the data in [1], on ordinary arterial highways—due to the special roads they
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use—the particular traffic environment results in accident rates and mortality rates that
are significantly higher than the average level of highways in normal areas, and more than
70% of accidents involving death and serious injury occur on ordinary arterial highways.

In order to identify the traffic safety risk status of ordinary arterial highways, clarify
the relationship between risk possibility and accident severity, and take relatively effective
measures to isolate road risk sources, it is necessary to comprehensively consider various
risk factors. Through reasonable safety assessment and risk management methods, the risks
and weak links in the arterial highway system are accurately identified, and corresponding
safeguard measures are implemented to improve the traffic safety level of the ordinary
arterial highway system. Therefore, highway traffic safety risk assessment methods have
a positive guiding role in comprehensively evaluating road safety levels and improving
traffic safety. Therefore, the research problem of this paper is how to divide the risk level of
ordinary arterial highways with the risk possibility and accident severity indexes, find out
the sections with high risk levels, screen the reliability dimension and severity dimension
indicators that have a great impact on them, and propose safety improvement strategies.

Road traffic safety risk management research started early, but there are still many ar-
eas for improvement. In the analysis of safety risk factors, most accident causation theories
summarize the main factors of accidents as unsafe human behavior or an unsafe state of
things [2–6]. Modern system safety theory describes the nature of comprehensive causation
from the perspective of the hazard source. There are two main types of analysis models: the
Hatton matrix model and the EAI model. William Haddon put forward the famous Hatton
matrix model in the 1970s, which reduced the health damage and economic loss caused by
road traffic accidents and improved the road safety level from three aspects: prevention,
injury reduction, and rescue. In Reference [7], the road traffic safety problem was described
as the result of the combined action of three dimensions, travel exposure, accident risk,
and accident consequence, and the EAI three-dimensional model was proposed, which
provided a new idea for solving road traffic safety problems and reducing the degree of
accident harm. The two models provide a guiding ideology for road traffic safety risk and
traffic accident prevention. In terms of safety assessment, researchers have mostly estab-
lished a mathematical model between traffic accidents and their influencing factors based
on traffic accident statistics, so as to evaluate road traffic safety. Traffic operation status
(vehicle status factors [8], driver factors [9], etc.), road environmental factors (pavement per-
formance [10,11], road alignment [12], etc.), traffic facilities [13], accident loss [14–16], and
accident risk [17] provide ideas for the establishment of a safety assessment index system.

Most of the road safety risk assessment and operation management methods use
the MCDM algorithm [18] (multi-criteria decision-making). Among them, the analytic
hierarchy process, the fuzzy comprehensive evaluation method, and TOPSIS are the most
widely used methods in multi-objective decision-making, but these methods have certain
limitations when used alone [19–22]. At the same time, in terms of project operation man-
agement, data development analysis (DEA) was found to be the most effective operation
management method for mine blasting [23]. An improved entropy–TOPSIS method was
proposed to evaluate the comprehensive treatment of industrial wastewater [24]. Arti-
cles [25,26] combined the fuzzy comprehensive evaluation method and analytic hierarchy
process, and they proposed fuzzy–analytic hierarchy processes to determine the weight
of each evaluation factor according to expert opinions. In [27], it is pointed out that the
MADM method takes into account many aspects such as evaluation, prioritization, and
the selection of the best alternative in the decision-making process. By looking at a section
of a road after conducting a risk assessment, the road risk object can be identified. The
commonly used methods include the singular value decomposition method, the cluster
analysis method, the RSR method, the expert method, and the neural network method.
Finally, after the risk object identification process is completed, the sensitivity analysis
method is used to compare the risk objects. Parameter sensitivity analysis methods can
be classified into local sensitivity analysis and global sensitivity analysis. Local sensitivity
analysis is suitable for linear models or models with less uncertainty [28]. The global
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sensitivity analysis method analyzes the total influence of multiple parameters on the
model output. Commonly used global sensitivity analysis methods include the Morris
screening method [29], FAST [30], Sobol [31], and the extended Fourier sensitivity test
(EFAST) [32,33]. The applicable conditions of various methods are shown in Table 1.

Table 1. Method used in this study compared with other methods.

Content Name Applicable Conditions

MCDM of road risk
assessment [18,27]

AHP

The analytic hierarchy process is based on the evaluator’s understanding of the nature
and elements of the evaluation problem. It is a more qualitative analysis and

judgment method than the general quantitative method. When we want to solve more
common problems, the number of indicators selected is likely to increase.

Fuzzy evaluation
method

Fuzzy evaluation deals with fuzzy evaluation objects using precise digital means, and
it can make a more scientific, reasonable, and practical quantitative evaluation of

fuzzy information. However, the method is complex, and the determination of the
index weight vector is subjective.

TOPSIS
TOPSIS is a ranking method that approximates the ideal solution. By obtaining the

proximity of each evaluation scheme to the optimal scheme, it is used as the basis for
the advantages and disadvantages of the scheme.

Road risk object
identification

[19–26]

SVD

SVD is a widely used algorithm in the field of machine learning. It is used for feature
decomposition in dimensionality reduction algorithms. It can also be used in

recommendation systems, natural language processing, and other fields. In traffic, it
can be used to calculate the weight of the judgment matrix in MCDM.

Cluster analysis
Cluster analysis can be applied to a variety of research scopes, such as regional

planning and risk object identification. The determination of the category level of the
same type of variable is subjective and objective.

RSR method
The RSR method is comprehensive, can show small changes, and is not sensitive to

outliers. It is an effective means of comparing and finding relationships by sorting and
grading each evaluation object and finding out the advantages and disadvantages.

Expert method The expert method is highly subjective in identifying road risk objects, as it is based
on experience.

Neural network
method

The neural network method is widely used in traffic volume predictions, regression
analysis, clustering analysis, etc. It has strong work randomness.

Global sensitivity
analysis [29–33]

Morris
Morris is based on statistical theory, including the scatter diagram method, the
correlation coefficient method, the regression analysis method, and so on. It has

strong applicability to linear monotonic model analysis.

EFAST

EFAST method is a global sensitivity analysis method based on the FAST method
combined with the Sobol method. The integral required to calculate the sensitivity
index becomes a single variable, saving calculation time. Each order’s sensitivity

index can be obtained to evaluate the coupling between several indexes.

Sobol
Sobol is a sensitivity analysis method based on variance decomposition. As a typical
global sensitivity analysis method, the Sobol method can only evaluate the coupling

effect of each index with all other indexes.

Considering the comprehensiveness, complexity, and uncertainty of traffic safety risks
and the applicable conditions of each evaluation method, this paper needs to find the
relationship between the road risk objects and sort them; thus, the RSR method is selected,
and the CRITIC method is used to calculate the weight. For global sensitivity analysis, it is
necessary to find the coupling relationship between several variables, so the EFAST method
is selected. In summary, this paper proposes a new road traffic safety risk assessment
model: RSR–CRITIC–LVSSM–EFAST.

Through a literature review, we analyze and study safety risk assessment to find the
influencing factors of accident risks, on a large scale, on traffic accident statistics. Through
mathematical theory, the quantitative relationship between a single risk source and accident
number is established, and a variety of models are proposed to quantitatively evaluate the
risk degree of the road. Scholars have made some achievements in road risk assessment,
but the following problems still exist:



Sustainability 2022, 14, 16096 4 of 19

1. Due to the limited data available, most of the current research focuses on the study of
expressways, and there are few studies on the prediction of accident risk levels on
ordinary arterial highways. However, there are many ordinary arterial highways in
China, and their risk classification is an urgent problem to be solved. At the same
time, the research on the risk prediction of ordinary arterial highways mostly focuses
on the qualitative point of view.

2. Some models have a single risk source and lack practicality. In the analysis of the
traffic accident severity, the influencing factors of traffic accidents in the current
research are relatively small, and there are many factors that increase accident severity.
The application scope and applicability of the model have not been fully explored.

3. Road risk assessment and operation management methods used alone have obvious
shortcomings and special conditions.

The rest of the paper is organized as follows. Section 2 establishes a safety risk
assessment index system considering five factors: traffic operation status, road environment,
traffic facilities, accident risk, and accident loss. The risk assessment model is established
by using the RCLE comprehensive method with risk possibility and accident severity as the
main influencing parameters. Section 3 takes 10 ordinary arterial highways in Weinan City,
Shaanxi Province, China, as an example; the road risk level is divided, the risk judgment
matrix is obtained, the surrogate model is determined via LVSSM, and an EFAST sensitivity
analysis is carried out. Section 4 analyzes the results of the example. Section 5 presents the
conclusion and suggestions for future work.

2. Risk Assessment Model Based on RCLE
2.1. Safety Risk Assessment Index System

In view of the characteristics of complex traffic composition, poor road alignment
conditions, and difficult control of the personnel management factors of ordinary arterial
highways, the selection of risk assessment indicators should mainly consider the road
characteristics, accident forms, environmental characteristics, and traffic safety facilities of
arterial highways.

Combined with the study of traffic accidents in References [34,35] and based on road
traffic safety constraints, a multi-dimensional, multi-level, and multi-factor traffic safety
risk index system of ordinary arterial highways is constructed. The system includes three
sub-dimensions using risk possibility as the input dimension, the traffic operation status
factor, the road environment factor, and the traffic facility factor, and using accident severity
as the output dimension, including two sub-dimensions: accident risk and accident loss.

Traffic operation status factors: The traffic operation status of ordinary arterial high-
ways is relatively complex, with the characteristics of high speed limits, many types of
vehicles, and road conditions resulting in the blocked state of the road and frequent acci-
dents that interfere with road operations.

Road environment factors: The design conditions of arterial highways are limited, and
unique environments are an important factor affecting the traffic safety of arterial highways.
If the basic highway performance, geometric conditions, and roadside environmental
conditions produce adverse combinations, they will bring a great threat to road traffic safety.

Traffic facilities factors: In a complex road environment, in terms of unfavorable road
conditions and road construction funding constraints, traffic safety facilities that are set up
poorly on imperfect road sections will not be able to provide the necessary security.

Accident risk: Through the analysis of road traffic accident data, we can find the law
of accident occurrence, predict the degree of traffic safety risk, and further isolate the source
of accident risk to improve driving safety.

Accident losses: The loss degree after the accident is closely related to road design,
the management system, the rescue system, and other factors. It is necessary to adopt
reasonable statistical indicators to calculate loss from traffic accidents.
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2.2. Risk Judgment Matrix

The risk judgment matrix (R matrix) is based on risk possibility and accident severity
as the main influencing parameters. According to the frequency and characteristics of
traffic accidents on ordinary arterial highways, the CRITIC method and RSR method are
used to process the indicators, the traffic risk and accident consequences are divided into
degrees, and the logical relationship between the elements is established in a matrix mode.
The form of the risk judgment matrix is shown in Table 2.

Table 2. Risk discriminant matrix.

Accident Severity
Risk Possibility

Acceptable Risk
(Low Risk)

Tolerable Risk
(Medium Risk)

Intolerant Risk
(High Risk)

Light loss Low risk of accidents, minor
consequences (R11) *

Accidents not frequent, minor
consequences (R12) **

Accident-prone, minor
consequences (R13) ***

Acceptable loss Low risk of accidents, acceptable
consequences (R21) **

Accidents not frequent,
acceptable consequences (R22) ***

Accident-prone, acceptable
consequences (R23) ****

Heavy loss Low risk of accidents, serious
consequences (R31) ***

Accidents not frequent, serious
consequences (R32) ****

Accident-prone, serious
consequences (R33) *****

* represents the road safety risk level is light, ** represents the road safety risk level is low, *** represents the road
risk level is medium, **** represents the road risk level is high, ***** represents the road safety risk level is heavy.

From the single-dimension direction of the R matrix, the degrees of risk and loss are
divided into three levels, from light to heavy. In the process of interaction between the
two, from the upper left corner to the lower right corner of the R matrix, the increase in
the number of * indicates that the road safety risk level is rising and presents different
road hazards. In general, the classification matrix can be roughly divided into three parts:
the upper left area (area I) is the risk prompt area, the area near the diagonal is the risk
control area (area II), and the lower right area is the risk warning area (area III). In the
actual operation process, the risk possibility level and the accident severity level can be
further refined into z (z > 3) levels according to design needs and grade differentiation
needs to obtain an ideal road risk level.

When the degree of road risk is determined, the design and implementation of safety
measures are carried out according to the results of risk classification and sensitivity
analysis. On the premise of safety, the flexibility of facilities is used to bear higher loss risk
so as to reduce the probability and severity of accidents.

2.3. Risk Assessment Model

After comprehensively analyzing the advantages and disadvantages of each method
and optimizing them, this paper proposes a risk assessment model based on RCLE. Through
the hybrid model, the data-processing and benchmarking analysis of risk objects are carried
out. The calculated possibility and severity dimension rank and ratio are used as the
basis for the classification of risk input and accident output, and the risk judgment matrix
is constructed. The road risk level calculation results are classified into the R matrix to
determine the risk level of the road. Secondly, considering the randomness of parameters,
the surrogate model of LSSVM is established. Finally, through the model analysis and
evaluation results, we can find the safety benchmark objects and risk sensitivity factors and
put forward the corresponding traffic safety improvement measures and implementation
order in order to use less investment to obtain greater safety gains, reducing the overall level
of regional road risk. The calculation process and steps of the RCLE model are as follows:
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1. Initial risk matrix
According to the road traffic safety risk index system, combined with the actual survey

data, the initial risk matrix, A, is established as follows:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 an2 · · · amn

 (1)

where m represents the number of risk assessment objects; n represents the number of risk
indicators (it contains k—possibility dimension indicators—and s—severity dimension
indicators); and amn represents the risk object, m, and the value of the n risk indicator.

2. Risk matrix standardization
In the traffic safety risk index system, there are positive indicators (such as pave-

ment skid resistance, smoothness, etc.) and negative indicators (such as bad linear ratio,
overloaded vehicle ratio, etc.). In order to keep the same change trend and eliminate
the dimensional influence, for traffic safety positive indexes, the conversion method is
as follows:

x′ij =
xij −mix(xj)

max(xj)−min(xj)
(2)

For the negative effect indexes, the conversion method is

x′ij =
max(xj)− xij

max(xj)−min(xj)
(3)

To obtain the standardized matrix, yij =
(

x′ij
)

m×n
, where xij represents the i risk

object in Y and the value of the j risk indicator, in which i = 1, 2, · · · , m, j = 1, 2, · · · , n.
3. Index weight by CRITIC
We can calculate the standard deviation of each index and the linear correlation coeffi-

cient between the indexes, obtain the amount of information contained in the evaluation
index, and determine the weight coefficient of the index:

σj =

√
1
m

m

∑
i=1

(
yij − µj

)
(4)

Cj = σj

n

∑
i=1

(
1− r′ij

)
(5)

wj =
Cj

∑n
j=1 Cj

(6)

where σj represents the standard deviation of indicator j, µj represents the expected value
of indicator j, r′ij represents the linear correlation coefficient of indicator i and indicator j,
Cj represents the information on indicator j, and wj represents the weight of indicator j.

4. Write ranks and calculate weighted rank-sum ratio
The nonintegral RSR method is used to rank the risk matrix after assimilation. For m,

the risk evaluation objects are sorted according to the size of the index value; the maximum
observation value is given m as a rank, the minimum observed value is given 1 as a rank,
and the remaining index values are ranked by similar linear interpolations.

rij = 1 + (m− 1)
x′ij − x′jmin

x′jmax − x′jmin
(7)
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where rij represents the rank of the j indicator of the i risk object, x′jmin represents the mini-
mum of the j indicator value, and x′jmax represents the maximum of the j indicator value.

After calculating the risk rank matrix, Z, the input dimension weighted rank-sum ratio,
α; the output dimension weighted rank-sum ratio, β; and the risk evaluation individual
weighted rank-sum ratio, γ, are calculated as follows:

Z =


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
...

...
rm1 rn2 · · · rmn

 (8)



αi =
1
m

p
∑

j=1
rijwj

βi =
1
m

l−p
∑

j=1
rijwj

γi =
1
m

l
∑

j=1
rijwj

(9)

where αi represents the possibility dimension weighted rank-sum ratio of the i risk object,
βi represents the severity dimension weighted rank-sum ratio of the i risk object, γi rep-
resents the individual weighted rank-sum ratio of the i risk object, and l,p represents the
intermediate variable.

5. Determine the rank and ratio distribution
According to the small and large values of α, β, and γ, they are arranged separately.

The same values are taken as a group. The frequency, f , and cumulative frequency, f ↓, of
each group are listed, and the rank range and average rank, R, of each group are determined.

After calculating the cumulative frequency,
−
R/m× 100% (the cumulative frequency of the

last group is set to 1− 1/(4m)), the probability unit value, Y, corresponding to the percentile
is listed according to the percentile and its corresponding probability unit table.

6. Calculate regression equation
The values of α, β, and γ are used as dependent variables (represented by RSR), and

the corresponding probability unit value, Y, is used as an independent variable to estimate
the regression equation. The error analysis is carried out to ensure that the regression
equation has significant statistical significance.

RSR = a + bY (10)

where a,b represents the estimate of the parameters.
7. Construct a risk judgment matrix
According to the actual situation, the optimal number of groups of α,β,γ is selected.

According to the different number of groups, the corresponding percentiles and their
probability unit values are listed, and the interval is calculated according to Formula (11):

R∗SR = a + bY∗ (11)

where R∗SR represents the rank-sum ratio calculated by probability unit, Y∗. Y∗ represents
the probabilistic unit value corresponding to the number of groupings. c,d represents the
estimate of the parameters.

According to the reasonable grouping method in the RSR method [36], the risk judg-
ment matrix was constructed by using the grading values of α and β as the grading stan-
dards of risk possibility and accident severity, respectively. At the same time, the variance
consistency test and variance analysis were carried out to ensure that the archived groups
were statistically significant and that there were significant differences between groups.
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8. Road risk judgment
After the judgment model is constructed, each risk evaluation object after group-

ing is classified into the R matrix according to the scores of α and β, and the degree of
road safety risk is judged to determine the priority of the implementation of safety and
security measures.

9. Surrogate model based on LSSVM
The surrogate model can be understood as a mathematical model that predicts un-

known responses by performing regression or interpolation on discrete datapoints through
approximation techniques, with fitting accuracy as a constraint. The least squares support
vector machine transforms the support vector machine problem into linear equations that
can be used as solutions to improve the solution speed and reduce memory usage. At
the same time, the error square sum loss function of the training sample is used as the
empirical loss, which improves the convergence accuracy of the model [37] and is one of
the most commonly used surrogate models.

From the above, RSR obtains the α,β,γ regression equation, and the LSSVM linear
model can be obtained: let the sample be an n-dimensional vector, and the N samples
are (α1, Y1)(α2, Y2), · · · , (αN , YN) = (x1, Y1)(x2, Y2), · · · , (xN , YN) ∈ Rn × R. The data can
be mapped from the original space, Rn, to the high-dimensional space, ϕ(xk), through
the kernel function, and the data can be obtained: Y(x) = ωϕ(xk) + b, according to the
structural risk minimization. minJ(ω, e) = 1

2 ωTω + c
N
∑

k=1
e2

k

s.t.yk = ωT ϕ(xk) + b + ek, k = 1, · · · , N
(12)

where c represents the regularization parameter, ek represents the relaxing factor, and ω,b
represents the coefficients.

Introducing the kernel function, K(x, xk) = ϕ(xk)ϕ(x) = Ωi, and using the Lagrange
method to solve Equation (12), we have[

0 1T
v

1 Ω + c−1 I

][
b
τ

]
=

[
0
Y

]
(13)

where τ represents the Lagrange multiplier.
Using the least square method to solve Equation (13), we can obtain the following:

Y(x) = ωϕ(xk) + b =
N

∑
k=1

τkK(x, xk) + b (14)

The validity of the LSSVM fitting results is tested as follows:

ei =

∣∣∣∣Yi −Y′i
Yi

∣∣∣∣ (15)

M =
1
n

n

∑
i=1

(1− ei) (16)

where Yi represents the true value of the i sample, Y′i represents the test value of the i
sample, ei represents the relative error, and M represents availability.

10. EFAST sensitivity analysis
By using the surrogate model and the sensitivity analysis of the risk possibility influ-

encing factors, the high-risk sensitivity indicators are found and further sorted, and then
the traffic safety improvement strategies are put forward. This paper uses the extended
Fourier sensitivity test (EFAST), which is a global sensitivity analysis method based on
variance [26]. On the basis of the Fourier amplitude sensitivity test, combined with the
idea of Sobol variance decomposition, the first-order and high-order sensitivity indexes can
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be calculated. The number of sampling times [27] is related to the number of influencing
factors considered, and the calculation amount is relatively small and has good robustness.

The variance of the input parameter, Xit, is denoted by Vi; the variance of the inter-
action between the input parameters is denoted by Vi,j, Vi,j,m, and Vi,j,··· ,k; and the total
output variance is denoted by V. The first-order sensitivity index, Si (main utility), of Xit is

Si =
Vi
V

(17)

Higher-order sensitivity indices caused by the interaction of Xit and other input
parameters are as follows: 

Si =
Vi,j
V

Si,j,m =
Vi,j,m

V

Si,j,··· ,k =
Vi,j,··· ,k

V

(18)

This contains the total utility, STi, of the sum of the contribution of Xit and its interac-
tion with the total variance, which can be expressed as

STi = Si + Si,j + Si,j,m + · · ·+ Si,j,··· ,k (19)

The high-sensitivity risk factors are determined by sorting the total utility sensitiv-
ity values.

3. Case Study
3.1. Profile

Weinan City is located in Shaanxi Province, China, and is the junction of Shaanxi,
Henan, and Shanxi Provinces. Weinan’s terrain up to the Weihe River is an axis; two
mountains are in the north and south, as well as two plateaus and central plains and five
major types of landforms. Through the investigation of the road network distribution
status and road network development planning of the arterial highways in the Weinan
area, considering factors such as terrain and natural conditions in the Weinan area, this
paper selects G310, G3108, G327, G210, S209, S107, S108, S201, S205, and S305, which are
typical ordinary arterial highways, combined with traffic operation data and accident data
from January to June 2021, for case analysis. The location is shown in Figure 1.
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3.2. Evaluating Indicators

Through the field survey, according to the easy collection and accuracy of the data, the
indicators that can reflect the characteristics of the arterial highway are selected to construct
the safety risk evaluation index system. In the actual operation process, because the object
of the risk analysis is the whole road section, the index selection mainly focuses on the
macro quantitative index and does not evaluate the micro road linearity. The selection and
calculation of specific indicators are shown in Figure 2.
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Figure 2. Index system of road traffic safety risk.

The road traffic safety risk index system includes qualitative indicators and quanti-
tative indicators. The evaluation criteria and acquisition methods of some indicators are
shown in Table 3.

3.3. Risk Assessment

Taking 10 ordinary arterial highways in Weinan City as an example, the risk assessment
of road safety is carried out by establishing a risk assessment model based on RCLE. After
obtaining the basic data required by the index system, the initial risk matrix is constructed
(Table 4), and the initial matrix is standardized.

In order to find the relative connection strength between each index, the CRITIC
method is used to calculate the weight value of the index, and the results are shown in
Table 5.

According to the rules of the rank-sum ratio method, the index values of each risk
factor are ranked, and the weighted rank-sum ratios are calculated, as shown in Table 6.
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Table 3. Index calculation methods.

Index Meaning Evaluation Methods

X1 Overload vehicle ratio
X1 = a1

b1
. The number of overloaded vehicles, a1, and the total

number of vehicles, b1, in the sampling survey.

X2 Heavy-duty vehicle ratio
Statistics of vehicles in the traffic flow by vehicle type, of which

heavy vehicles include large trucks, very large trucks, and
container trucks.

X3
Ratio of drivers with driving experience

less than 5 years
X3 = a3

b3
. Drivers with more than 5 years of driving experience in

sample survey, a3; total drivers’ sample, b3.

X4 AADT Provided by traffic flow observation stations in highway
networks.

X5 Basic performance of pavement
The basic performance of the pavement includes flatness, a5; skid

resistance, b5; lane width, c5; and shoulder width, d5.
X5 = a5b5c5d5

X6
Proportion of horizontal and vertical bad

linear sections

Poor linear sections of horizontal and vertical sections include
sharp bends, steep slopes, continuous downhills, poor sight

distance sections, and their combinations.

X7 Average road test hazard level
The roadside danger degree is divided into four grades according
to the width of the roadside clear area, slope grade, and roadside

dangerous goods.

X8 Village roads ratio
X8 = a8

b8
. Length of road through village, a8; total length of road,

b8

X9
The ratio of bad weather affecting road

sections

Effect of cloudy, rainy, snowy, fog, high-temperature, freezing,
dust, and other adverse weather conditions such that the driver‘s
line of sight is blocked; the road adhesion coefficient decreased

and the road length accounted for the proportion of the total
road length.

X10
Number of special hydrological and

geological disaster points

According to data from monitoring stations, the affected road
sections of disasters such as earthquakes, landslides, collapses,

debris flows, and roadbed subsidence are counted.

X11 Traffic signs coverage Number of traffic signs per kilometer of road included.

X12 Fence coverage Proportion of road length covered by roadside guardrails.

X13 Number of deceleration facilities The deceleration setting includes deceleration markings, vibration
deceleration belts, three-dimensional deceleration markings, etc.

X14–X19

Severity dimension indicators represent
the number of traffic accidents, car

accident rates, percentage of serious
accidents, death tolls, car accident death

rates, and direct economic loss.

Severity dimension indicators can be provided by the Highway
Authority.

After determining the weighted rank-sum ratio, the correlation and regression analyses
of the dependent variable, α,β,γ, and the independent variable, Y, are performed, and the
results are shown in Table 7.
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Table 4. Initial risk matrix.

Index
Ordinary Arterial Highway Number

G310 G108 G327 G210 S209 S107 S108 S201 S205 S305

X1 0.0145 0.0278 0.0136 0.0249 0.1652 0.2108 0.1725 0.2519 0.1568 0.1818
X2 0.1071 0.1009 0.1803 0.1201 0.1317 0.2245 0.1146 0.1869 0.1245 0.1221
X3 0.5861 0.5365 0.5219 0.5488 0.6017 0.5932 0.5346 0.6105 0.6033 0.6045
X4 1341 1928 4485 5624 6007 1668 1874 5546 2815 1457
X5 1.78 0.77 1.66 1.52 1.99 1.66 2.39 2.74 1.21 1.32
X6 0.1047 0.0431 0.0229 0.0781 0.171 0.1481 0.0125 0.0199 0.1321 0.0257
X7 0.1925 0.1604 0.1568 0.2465 0.6126 0. 1176 0.381 0.0901 0.3925 0.2489
X8 0.037 0.2819 0.1547 0.1324 0.3025 0.4025 0.2198 0.264 0.4554 0.3215
X9 0.5056 0.0707 0.1357 0.3458 0.312 0.4025 0.2198 0.264 0.4554 0.3217
X10 42 31 25 16 8 66 21 4 52 31
X11 4.5945 3.0433 4.1571 3.1245 3.3978 1.775 2.3432 2.1869 2.456 2.647
X12 0.2885 0.3652 0.4863 0.4332 0.5997 0.2449 0.487 0.1131 0.4882 0.3214
X13 18 16 12 13 6 5 8 7 2 1
X14 45 82 12 20 121 245 33 26 21 84
X15 0.0568 0.625 0.0128 0.0267 0.5519 4.0242 0.04824 0.3214 0.2524 0.6932
X16 0.5 0.2837 0.2347 0.3645 0.0331 0.0286 0.0606 0.3461 0 0.1247
X17 2 3 1 4 11 18 9 5 0 6
X18 0.0284 0.226 0.1234 0.3415 0.0182 0.1807 0.0292 0.0445 0 0.2315
X19 15,150 668.47 6549 2142 235 114.08 92.22 120.15 2.3 203

Table 5. Index weights.

Index Weight Index Weight

X1 0.0548 X11 0.0452
X2 0.0487 X12 0.0476
X3 0.0530 X13 0.0490
X4 0.0797 X14 0.0392
X5 0.0525 X15 0.0408
X6 0.0529 X16 0.0744
X7 0.0573 X17 0.0416
X8 0.0418 X18 0.0617
X9 0.0465 X19 0.0672
X10 0.0461

Table 6. Values of rank-sum ratio.

Ordinary Arterial
Highway Number

Possibility
Dimension Severity Dimension Individual

Dimension
α β γ

G310 0.705 0.582 0.666
G108 0.738 0.674 0.719
G327 0.732 0.768 0.745
G210 0.629 0.643 0.632
S209 0.462 0.824 0.575
S107 0.397 0.534 0.448
S108 0.714 0.884 0.764
S201 0.506 0.792 0.591
S205 0.425 0.988 0.601
S305 0.557 0.742 0.608
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Table 7. Results of correlation and regression analysis.

Variable Regression Equation Correlation
Coefficient r Significance Level p

α α = 0.128Y− 0.077 0.997 0.00001519
β β = 0.140Y + 0.017 0.9679 0.00003481
γ γ = 0.091Y + 0.162 0.9815 0.000008897

In Table 7, it can be seen that the correlation coefficient, r, between the dependent
variable and the independent variable is greater than 0.967, so it can be judged that the
two have an obvious linear correlation. Via the F test, the significance level, p-value,
does not exceed 0.0005; therefore, the linear regression equation has statistical significance.
According to the reasonable classification method of RSR, the weighted rank-sum ratio
is classified, and the R matrix is constructed. According to the actual requirements, the
weighted rank-sum ratio of different dimensions is divided into five grades, and the road
risk evaluation object is classified into the R matrix. The risk level of the road evaluation
object is divided, which is used to analyze and evaluate the safety risk degree of the road.
The results are shown in Table 7.

4. Analysis of Evaluation Results

By calculating the rank-sum ratio of the two dimensions of risk possibility and accident
severity, the risk degree of each road is reasonably divided. The chromaticity difference
calibrated in the matrix is used to assist in the judgment of the degree of risk, so as to more
intuitively show the level of risk faced by the evaluation object, and accordingly determine
the urgency of each road safety improvement demand. From the relationship matrix in
Table 8, it can be seen that the risk ranking of ordinary arterial highways in Weinan City is
mainly divided into three gradients: S107 and G310 are located in the risk warning area;
S205, S209, G327, G210, S201, and S305 are located in the risk control area; and S108 and
G108 are located in the risk warning area. S107 is in the position with the deepest color,
indicating that the possibility of accidents is higher; the degree of loss after the accident
is more serious, the risk level is the highest, and the corresponding safety and security
measures need to be taken into account first. In contrast, the risk level of G209 and G327 is
slightly higher than that of S108 and G108, and the lowest risk level is S108.

Table 8. Relation matrix (R matrix).

Severity Dimension βi

Possibility Dimension αi

Light Risk
(>0.791)

Low Loss
(0.638~0.791)

Medium Risk
(0.485~0.638)

Higher Level of
Risk (0.332~0.485)

High Risk
(<0.332)

Light loss (>0.967) S205
Low level of loss

(0.800~0.967) S108 S209

Medium loss
(0.632~0.800) G108 G327 G210, S201, S305

Higher level of loss
(0.464~0.632) G310 S107

Heavy loss (<0.464)

4.1. LSSVM Fitting Results

After determining the risk level and the implementation order of traffic safety guar-
antee measures, the key investigation sections are selected. This paper selects S107 and
S108 for comparative analysis and obtains the probability distribution of the risk possibility
index influencing factors. The data distribution characteristics are as follows in Table 9. We
then use EFAST to observe the sensitivity of each risk possibility influencing factor of the
evaluation object.
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Table 9. Distribution characteristics of the risk possibility index.

Index Mean Value * Standard
Deviation Diversity Dispersion

Pattern

X1 1.388 0.191 0.137 Uniform
X2 1.082 0.131 0.121 Uniform
X3 1.085 0.078 0.072 Uniform
X4 1 0.03 0.03 Uniform
X5 1 0.012 0.012 normal
X6 1.015 0.05 0.05 normal
X7 0.999 0.044 0.043 normal
X8 0.788 0.044 0.044 Uniform
X9 1.09 0.085 0.108 Uniform
X10 1.131 0.031 0.028 Uniform
X11 1.034 0.032 0.022 normal
X12 1.321 0.045 0.036 normal
X13 1 0.065 0.065 normal

* The mean value is the actual value/standard value.

According to the probability distribution characteristics of Table 9, 100 Monte Carlo
samplings were carried out on the influencing factors by multiplying the 3 coefficients of
0.7, 1.0, and 1.3 to explore whether the dispersion degree of the variables had an impact on
the evaluation index, taking 30 samples from each group of the above calculation results
as training samples for LSSVM modeling and taking 20 samples from each group as test
samples to test the model effectively. An effective LSSVM model is used to expand the
sample data for global sensitivity analysis.

In Table 10, it can be seen that LSSVM has a good fitting effect, the residuals are tested
by the lillietest function of MATLAB, and the return values are all zero, so the results are
credible. In addition, taking the S107 index under the condition of the minimum covariance
of the influencing factors as an example, the difference between the true value and the
predicted value of the test sample of the LSSVM model is compared using a scatterplot
(Figure 3). The figure can intuitively reflect the difference between the real value and the
predicted value. It can be seen in Figure 3 that, except for individual abnormal points,
the real value and the predicted value in each case are very close, and some points even
completely coincide, indicating that the surrogate model has an excellent fitting effect.

Table 10. LSSVM model effective.

Availability Small Covariance Medium Covariance Large Covariance

YS107 0.99 0.099 0.98
YS108 0.96 0.97 0.96
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4.2. EFAST Global Sensitivity Analysis

The input parameter samples are generated on the Simlab platform (sensitivity analysis
software), and the result parameters are output by LSSVM. Each group of 845 samples
generates a total of 13 groups, forming the entire sample space. On this basis, the EFAST
method is used to calculate the first-order sensitivity index (main utility) of each parameter
and the high-order total sensitivity index (total utility), including the interaction with other
parameters. We draw a sensitivity diagram index for S107 and S108, as shown in Figure 4.

Sustainability 2022, 14, 16096  16  of  20 
 

(Figure 3). The figure can intuitively reflect the difference between the real value and the 

predicted value. It can be seen in Figure 3 that, except for individual abnormal points, the 

real value and the predicted value in each case are very close, and some points even com‐

pletely coincide, indicating that the surrogate model has an excellent fitting effect. 

Table 10. LSSVM model effective. 

Availability  Small Covariance  Medium Covariance  Large Covariance 

YS107  0.99  0.099  0.98 

YS108  0.96  0.97  0.96 

 

Figure 3. Test sample scatter comparison. 

4.2. EFAST Global Sensitivity Analysis 

The input parameter samples are generated on the Simlab platform (sensitivity anal‐

ysis software), and the result parameters are output by LSSVM. Each group of 845 samples 

generates a total of 13 groups, forming the entire sample space. On this basis, the EFAST 

method is used to calculate the first‐order sensitivity index (main utility) of each parame‐

ter and the high‐order total sensitivity index (total utility), including the interaction with 

other parameters. We draw a sensitivity diagram index for S107 and S108, as shown in 

Figure 4. 

   

(a)  (b) 

Figure 4. S107 and S108: sensitivity of each evaluation index. (a) S107 sensitivity analysis; (b) S108 

sensitivity analysis. 
Figure 4. S107 and S108: sensitivity of each evaluation index. (a) S107 sensitivity analysis; (b) S108
sensitivity analysis.

In Figure 4, red indicates the main utility, and blue corresponds to the total utility.
Since the total utility contains the main utility of the single factor and the utility caused
by the interaction between factors, the total utility is not less than the main utility. From
the 3a analysis, it can be seen that the sensitivity of S107’s risk possibility dimension risk
indicators, X6 (poor linear ratio of horizontal and vertical), X7 (proportion of roadside
dangerous sections), X8 (proportion of village roads), and X13 (number of deceleration
facilities), is relatively high, and these are part of S107’s safety risk sensitivity indicators.
From the analysis of 3b, it can be seen that the sensitivity of S108’s risk possibility dimension
risk indicators, X3 (driver ratio of no more than 5 years), X11 (traffic sign coverage), and
X13 (number of deceleration facilities), is relatively high, and these are part of S108’s safety
risk sensitivity indicators.

4.3. Analysis and Discussion

This paper proposes a new road risk assessment and global sensitivity analysis model,
which can effectively identify the risk points of ordinary arterial highways, refine the risk
level, and conduct benchmarking analyses on roads with obvious risk differences. The
LSSVM and EFAST models are used to identify the sensitivity between the parameters.
According to the road risk sensitivity factors, corresponding traffic safety guarantee mea-
sures are taken to improve the accuracy and effectiveness of the risk response measures
formulated by the traffic managers so as to obtain the highest safety return with minimum
investment, reduce safety risk to a large extent, improve the road safety, and ensure the life
and property safety of road participants.

Based on the analysis of 10 ordinary arterial highways in Weinan City, a risk assessment
model is constructed by considering the driver, road, and traffic environment factors with
respect to the risk possibility, accident risk, and the accident severity loss and 5 levels
and 19 indicators. This method is similar to the safety hazard method of the high-speed
horizontal and vertical curve combination section in Reference [38]. Using the multi-
objective decision-making method to determine the risk level of different sections, this
paper puts the roads into the matrix and intuitively presents the risk degree of each
road. Among them, S108 and G108 have the lowest risk degrees, while S107 is in the
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darkest warning area with the highest risk level, so it is necessary to give priority to safety
remediation measures.

Further sensitivity analysis shows that the roadside environment has a significant
impact on the traffic safety of ordinary arterial highway road S107. The data show that
the sensitivity of the proportion of the village road is the highest, and the main utility
and total utility are more than 0.3. The results are similar to those in the literature [39,40].
Through the LSSVM and EFAST methods, the real value and the predicted value of the
model are first fitted. It can be found that, except for individual abnormal points, the real
value and the predicted value in each case are very close, and some points even completely
coincide, indicating that the surrogate model has an excellent fitting effect. The global
sensitivity analysis of S107 showed that X8 > X7 > X13 > X6 > X9 > X1 > X3 > X4 >
X2 > X12 > X10 > X5 > X11. Therefore, the proportion of roads through villages is the
most sensitive, and the improvement of measures for this factor can obtain higher risk
returns. The number and scope of extreme geographical environments where roads are
located are highly sensitive indicators, which need to be focused on. Under the condition
that the road route is difficult to change, for the S107 road with the highest risk level, a
village prompt sign and a deceleration facility can be first added to the position where
it passes through the village, and the continuity of the guardrail setting should be paid
attention to in order to remind the driver of the condition changes in the road ahead.
The monitoring and management of geological disaster points should be strengthened.
In special weather, the traffic flow should be reasonably dredged, and the number of
patrols at special environmental points should be increased. When road damage occurs,
the speed of repair should be accelerated. Special risk investigations and assessments for
dangerous roadside sections should be conducted, and better traffic safety measures should
be taken. Traffic safety facilities have a significant impact on the traffic safety of ordinary
arterial highway road S108. According to its global sensitivity, we found that only the
main effect and total effect of X13 (number of deceleration facilities) exceed 0.2, and the
order is as follows: X13 > X3 > X10 > X9 > X1 > X4 > X6 > X5 > X12 > X11 > X8 >
X2 > X7. Therefore, factors with great influence are found, and the analysis of high-risk
sensitivity indicators can provide necessary guidance for the implementation of road safety
improvement measures so as to reduce the road risk level and improve road traffic safety.

In addition, the RLCE risk assessment model of ordinary arterial highways proposed
in this paper has some limitations. On the one hand, the article focuses on the two
dimensions of risk possibility and accident severity, considering the five factors of traffic
operation status, road environmental factors, traffic facilities, accident risk, and accident
loss. However, the driver is a key factor. Due to the lack of data, this paper only considers
the driving age, that is, ‘Ratio of drivers with driving experience of less than 5 years’. In
other traffic accident studies, the possibility of risk and the severity of the accident are
affected by the gender, age, and driving characteristics of the traffic participants [41]. In
particular, some studies confirm that drivers with reckless driving characteristics are more
prone to collisions. On the other hand, with regard to hazardous meteorological factors,
some studies have pointed out that, although not the main factor in traffic accidents, they
are an important modifying factor [42]. Therefore, further statistical analysis of the above
two aspects of the experimental section will help to determine the key factors affecting
traffic incidents, extract more comprehensive accident indicators, and further improve the
accuracy of the model.

5. Conclusions

Based on the analysis of the characteristics of ordinary arterial highways, this paper
establishes a targeted road safety risk index system. Through the construction of the
risk assessment model, the road risk level is adaptively divided according to the needs
of the evaluation object. Through the model calculation results and combined with the
color difference auxiliary judgment, the intuitive description of different risk levels is
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completed, which is more conducive for decisionmakers to intuitively understand the road
safety situation.

Through RSR and CRITIC, the road is classified into a risk relationship matrix, and the
LSSVM and EFAST methods are used to analyze the influencing factors of road safety in
detail, find the risk index agent model, determine the sensitive risk factors, and take this as
a guide. Corresponding safety improvement measures to reduce the risk of road accidents
can then be put forward.

In the case of ordinary arterial highways in Weinan City, Shaanxi Province, the road
risk level is divided. Through the analysis of calculation results, we found that geological
disasters and roadside safety hazards are the main factors affecting the overall safety of the
S107 road, and improvement measures to reduce road safety risks are put forward.

In a follow-up study, the traffic participants can be further evaluated and analyzed
from the perspective of management, and the impact factors can be determined to pro-
vide the necessary theoretical basis for the improvement of the traffic safety of ordinary
arterial highways.

Author Contributions: Conceptualization, J.W. and C.M.; methodology, J.W., C.M. and S.W.; valida-
tion, J.W., C.M. and S.W.; writing—original draft preparation, J.W. and C.M.; writing—review and
editing, J.W., C.M. and X.L.; visualization, X.L. and D.L.; supervision, X.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant No. 52172338 and the Xi’an 2022 Social Science Planning Fund (No. 22JX201).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, Y.; Jin, L. Visualizing Temporal and Spatial Distribution Characteristic of Traffic Accidents in China. Sustainability 2022,

14, 13706. [CrossRef]
2. Raghvendra, V.C.; Joseph, H.S. Coordinability and Consistency: Application of Systems Theory to Accident Causation and

Prevention. J. Loss Prevent. Proc. 2015, 33, 200–212.
3. Abraha, H.H.; Liyanage, J.P. Review of Theories and Accident Causation Models: Understanding of Human-Context Dyad

Toward the Use in Modern Complex Systems. In Proceedings of the 7th World Congress on Engineering Asset Management,
Deajeon City, Republic of Korea, 8–9 October 2012; Springer: Berlin, Germany, 2015; pp. 17–32.

4. Kageyama, I.; Kuriyagawa, Y.; Haraguchi, T.; Kaneko, T.; Nishio, M.; Watanabe, A. Study on Road Friction Database for Traffic
Safety: Construction of a Road Friction-Measuring Device. Inventions 2022, 7, 90. [CrossRef]

5. Khattak, A.; Almujibah, H.; Elamary, A.; Matara, C.M. Interpretable Dynamic Ensemble Selection Approach for the Prediction of
Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5. Sustainability 2022, 14, 12340. [CrossRef]

6. Abdullah, P.; Sipos, T. Drivers’ Behavior and Traffic Accident Analysis Using Decision Tree Method. Sustainability 2022, 14, 11339.
[CrossRef]

7. Nasibeh, A.F.; Anna, S.; Ehsan, R.; Jaime, A.C. Risk Assessment of Occupational Injuries Using Accident Severity Grade. Saf. Sci.
2015, 76, 160–167.

8. Ye, X.; Pendyala, R.M.; Shankar, V.; Konduri, K.C. A Simultaneous Equations Model of Crash Frequency by Severity Level for
Freeway Sections. Accid. Anal. Prev. 2013, 57, 140–149. [CrossRef]

9. Mujalli, R.O.; De, O.J. A Method for Simplifying the Analysis of Traffic Accidents Injury Severity on Two-lane Highways Using
Bayesian Networks. J. Saf. Res. 2011, 42, 317. [CrossRef]

10. Msallam, M.; Asi, I.; Abudayyeh, D. Safety Evaluation (Skid Resistance) of Jordan’s National Highway Network. Jordan J. Civ.
Eng. 2019, 11, 2017–2165.

11. Hussein, N.; Hassan, R.; Fahey, T. Effect of Pavement Condition and Geometrics at Signalised Intersections on Casualty Crashes.
J. Saf. Res. 2021, 76, 276–288. [CrossRef]

12. Khattk, A.J.; Shamayleh, H. Highway Safety Assessment Through Geographic Information System-based Data Visualization.
Comput. Civil Eng. 2005, 19, 407–411. [CrossRef]

13. Transportation Association of Canada. Drag Model Approach: Developments and Applications; Transportation Research Board:
Washington, DC, USA, 2002.

http://doi.org/10.3390/su142113706
http://doi.org/10.3390/inventions7040090
http://doi.org/10.3390/su141912340
http://doi.org/10.3390/su141811339
http://doi.org/10.1016/j.aap.2013.03.025
http://doi.org/10.1016/j.jsr.2011.06.010
http://doi.org/10.1016/j.jsr.2020.12.021
http://doi.org/10.1061/(ASCE)0887-3801(2005)19:4(407)


Sustainability 2022, 14, 16096 19 of 19

14. Charly; Mathew. Evaluation of Driving Performance in Relation to Safety on an Expressway Using Field Driving Data. Transp.
Lett. 2020, 12, 340–348. [CrossRef]

15. Orsini, F.; Gecchele, G.; Gastaldi, M.; Rossi, R. Large-scale Road Safety Evaluation Using Extreme Value Theory. IET Intell. Transp.
Sy. 2020, 14, 1004–1012. [CrossRef]

16. Alfonso; Montella. Safety Reviews of Existing Roads: Quantitative Safety Assessment Methodology. Transport. Res. Rec. 2018,
1922, 62–72.

17. Ait-Mlouk, A.; Agouti, T. DM-MCDA: A Web-based Platform for Data Mining and Multiple Criteria Decision Analysis: A Case
Study on Road Accident. Soft. X. 2019, 10, 100323. [CrossRef]
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