Impact of Energy-Biased Technological Progress on Inclusive Green Growth
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Analysis and Research Hypotheses
3.1. Technological Progress and Inclusive Green Growth
3.2. Energy-Biased Technological Progress, Industrial Structure Upgrading, and Inclusive Green Growth
4. Model Construction and Variable Selection
4.1. Model Construction
4.2. Variable Selection
4.2.1. Core Explanatory Variable
4.2.2. Explained Variable
4.2.3. Intermediate Variables
4.2.4. Control Variables
4.3. Data Sources
5. Characterization of Energy-Biased Technological Progress and Inclusive Green Growth
5.1. Characterization of Typical Features of Energy-Biased Technological Progress
5.1.1. Model Testing and Identification
5.1.2. Overall Characterization of Energy-Biased Technological Progress in China
5.1.3. Provincial Characteristics of Energy-Biased Technological Progress
5.2. Characterization of Typical Features of Inclusive Green Growth
5.2.1. Overall Characterization of Inclusive Green Growth in China
5.2.2. Provincial Characteristics of Inclusive Green Growth
6. Results
6.1. The Impact of Energy-Biased Technological Progress on Inclusive Green Growth
6.1.1. Benchmark Regression
6.1.2. Heterogeneity Analysis
6.2. Energy-Biased Technological Progress, Industrial Structure Upgrading, and Inclusive Green Growth
6.2.1. Analysis of the Impact Mechanism
6.2.2. Heterogeneity Analysis
6.3. Robustness Test
7. Discussion
7.1. Discussion of the Impact of EBT on IGG
7.2. Discussion of the Mechanism of Action of EBT on IGG
8. Conclusions and Policy Implications
9. Limitations and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Dimension | First Level Indicator | Secondary Indicator | Nature | Indicator Unit |
---|---|---|---|---|
Economic growth | Economic output | Per capita GDP | + | Yuan |
The proportion of fiscal revenue | + | % | ||
The proportion of secondary industry | − | % | ||
The proportion of tertiary industry | + | % | ||
Income level | Net income of rural residents | + | Yuan | |
Per capita disposable income of urban residents | + | Yuan | ||
Per capita income ratio of urban and rural residents | − | Multiple | ||
Social opportunity fairness | Fair employment opportunities | The employment rate of secondary and tertiary industries | + | % |
The registered urban unemployment rate | − | % | ||
Fair educational opportunities | The intensity of investment in education | + | % | |
The student-teacher ratio in general universities | + | Multiple | ||
Fair medical opportunities | Number of health technicians per thousand population | + | Person | |
Number of beds in medical and health institutions per thousand population | + | Unit | ||
Fair opportunities for social security | The proportion of essential endowment insurance fund expenditure | + | % | |
The proportion of expenditure of primary medical insurance fund | + | % | ||
Fair infrastructure conditions | Length of transport lines per 10,000 people | + | Km | |
The number of buses per 10,000 people | + | Unit | ||
Green production and consumption | Green production | Energy consumption per unit of output value | − | Ton |
Wastewater emissions per unit of output | − | Ton | ||
Sulfur dioxide emissions per unit of output value | − | Ton | ||
CO2 emissions per unit of output | − | Ton | ||
Green consumption | Energy consumption per capita | − | Ton | |
Wastewater discharge per capita | − | Ton | ||
Sulfur dioxide emissions per capita | − | Ton | ||
CO2 emissions per capita | − | Ton | ||
Ecological environmental protection | Ecological resource endowment | Water resources per capita | + | Cubic meter |
Nature reserve area share | + | % | ||
Public green space per capita in cities | + | Square meter | ||
Ecological environment control | Investment intensity of environmental pollution control | + | % | |
Harmless treatment rate of municipal solid waste | + | % | ||
Urban sewage treatment rate | + | % | ||
The comprehensive utilization rate of solid waste | + | % | ||
The proportion of soil and water loss control area | + | % |
References
- Kartal, M.T. The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries. Renew. Energy 2022, 184, 871–880. [Google Scholar] [CrossRef]
- Ofori, I.K.; Gbolonyo, E.Y.; Ojong, N. Towards Inclusive Green Growth in Africa: Critical energy efficiency synergies and governance thresholds. J. Clean. Prod. 2022, 369, 132917. [Google Scholar] [CrossRef]
- Saidi, K.; Omri, A. The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries. Environ. Res. 2020, 186, 109567. [Google Scholar] [CrossRef] [PubMed]
- BP Statistical Review of World Energy. 2022. Available online: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (accessed on 15 November 2022).
- Mohsin, M.; Kamran, H.W.; Nawaz, M.A.; Hussain, M.S.; Dahri, A.S. Assessing the impact of transition from nonrenewable to renewable energy consumption on economic growth-environmental nexus from developing Asian economies. J. Environ. Manag. 2021, 284, 111999. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.; Vegelin, C. Sustainable development goals and inclusive development. Int. Environ. Agreem. Politics Law Econ. 2016, 16, 433–448. [Google Scholar] [CrossRef] [Green Version]
- Halkos, G.; Alba, J.; Todorov, V. Economies’ inclusive and green industrial performance: An evidence based proposed index. J. Clean. Prod. 2020, 279, 123516. [Google Scholar] [CrossRef]
- Ojha, V.P.; Pohit, S.; Ghosh, J. Recycling carbon tax for inclusive green growth: A CGE analysis of India. Energy Policy 2020, 144, 111708. [Google Scholar] [CrossRef]
- Hicks, J.R. The Theory of Wages; Macmillan and Co. Limited: London, UK, 1932. [Google Scholar]
- Yang, Z.; Shao, S.; Fan, M.; Yang, L. Wage distortion and green technological progress: A directed technological progress perspective. Ecol. Econ. 2021, 181, 106912. [Google Scholar] [CrossRef]
- Mohsin, M.; Taghizadeh-Hesary, F.; Iqbal, N.; Saydaliev, H.B. The role of technological progress and renewable energy deployment in green economic growth. Renew. Energy 2022, 190, 777–787. [Google Scholar] [CrossRef]
- Hampf, B.; Krüger, J.J. Estimating the bias in technical change: A nonparametric approach. Econ. Lett. 2017, 157, 88–91. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Ngepah, N. Dynamic ARDL Simulations Effects of Fiscal Decentralization, Green Technological Innovation, Trade Openness, and Institutional Quality on Environmental Sustainability: Evidence from South Africa. Sustainability 2022, 14, 10268. [Google Scholar] [CrossRef]
- Ikram, M. Transition toward green economy: Technological Innovation’s role in the fashion industry. Curr. Opin. Green Sustain. Chem. 2022, 37, 100657. [Google Scholar] [CrossRef]
- Abbasi, K.R.; Hussain, K.; Haddad, A.M.; Salman, A.; Ozturk, I. The role of financial development and technological innovation towards sustainable development in Pakistan: Fresh insights from consumption and territory-based emissions. Technol. Forecast. Soc. Chang. 2022, 176, 121444. [Google Scholar] [CrossRef]
- Khan, A.; Chenggang, Y.; Hussain, J.; Bano, S.; Nawaz, A. Natural resources, tourism development, and energy-growth-CO2 emission nexus: A simultaneity modeling analysis of BRI countries. Resour. Policy 2020, 68, 101751. [Google Scholar] [CrossRef]
- Zhou, X.; Song, M.; Cui, L. Driving force for China’s economic development under Industry 4.0 and circular economy: Technological innovation or structural change? J. Clean. Prod. 2020, 271, 122680. [Google Scholar] [CrossRef]
- Grossman, G.M.; Oberfield, E. The elusive explanation for the declining labor share. Annu. Rev. Econ. 2022, 14, 93–124. [Google Scholar] [CrossRef]
- Bergholt, D.; Furlanetto, F.; Maffei-Faccioli, N. The decline of the labor share: New empirical evidence. Am. Econ. J. Macroecon. 2022, 14, 163–198. [Google Scholar] [CrossRef]
- Klump, R.; McAdam, P.; Willman, A. The normalized CES production function: Theory and empirics. J. Econ. Surv. 2012, 26, 769–799. [Google Scholar] [CrossRef] [Green Version]
- Irmen, A. Frictional unemployment, labor market institutions, and endogenous economic growth. Econ. Bull. 2009, 29, 1127–1138. [Google Scholar]
- Klump, R.; McAdam, P.; Willman, A. Factor Substitution and Factor-Augmenting Technical Progress in the United States: A Normalized Supply-Side System Approach. Rev. Econ. Stat. 2007, 89, 183–192. [Google Scholar] [CrossRef]
- Li, J.; Stewart, K. Factor Substitution, Factor-Augmenting Technical Progress, and Trending Factor Shares: The Canadian Evidence; University of Victoria Department of Economics Econometrics Working Papers 2014; University of Victoria: Victoria, BC, Canada, 2014; p. 1403. [Google Scholar]
- Haider, S.; Mishra, P.P. Benchmarking energy use of iron and steel industry: A data envelopment analysis. Benchmarking 2019, 26, 1314–1335. [Google Scholar] [CrossRef]
- Pastor, J.T.; Lovell, C.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Dasgupta, S.; Roy, J. Understanding technological progress and input price as drivers of energy demand in manufacturing industries in India. Energy Policy 2015, 83, 1–13. [Google Scholar] [CrossRef]
- Reinhard, S.; Lovell, C.K.; Thijssen, G.J. Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. Eur. J. Oper. Res. 2000, 121, 287–303. [Google Scholar] [CrossRef]
- Niroui, F.; Zhang, K.; Kashino, Z.; Nejat, G. Deep reinforcement learning robot for search and rescue applications: Exploration in unknown cluttered environments. IEEE Robot. Autom. Lett. 2019, 4, 610–617. [Google Scholar] [CrossRef]
- Bravo-Ureta, B.E.; González-Flores, M.; Greene, W.; Solís, D. Technology and technical efficiency change: Evidence from a difference in differences selectivity corrected stochastic production frontier model. Am. J. Agric. Econ. 2021, 103, 362–385. [Google Scholar] [CrossRef]
- Karanfil, F.; Yeddir-Tamsamani, Y. Is technological change biased toward energy? A multi-sectoral analysis for the French economy. Energy Policy 2010, 38, 1842–1850. [Google Scholar] [CrossRef] [Green Version]
- Gu, K.; Dong, F.; Sun, H.; Zhou, Y. How economic policy uncertainty processes impact on inclusive green growth in emerging industrialized countries: A case study of China. J. Clean. Prod. 2021, 322, 128963. [Google Scholar] [CrossRef]
- Hassan, S.T.; Khan, S.U.-D.; Xia, E.; Fatima, H. Role of institutions in correcting environmental pollution: An empirical investigation. Sustain. Cities Soc. 2020, 53, 101901. [Google Scholar] [CrossRef]
- He, Q.; Du, J. The impact of urban land misallocation on inclusive green growth efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 3575–3586. [Google Scholar] [CrossRef]
- Ofori, I.K.; Gbolonyo, E.Y.; Ojong, N. Foreign direct investment and inclusive green growth in Africa: Energy efficiency contingencies and thresholds. Energy Econ. 2022, 106414. [Google Scholar] [CrossRef]
- Xue, W.; Zhang, J.; Zhong, C.; Li, X.; Wei, J. Spatiotemporal PM2. 5 variations and its response to the industrial structure from 2000 to 2018 in the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2021, 279, 123742. [Google Scholar] [CrossRef]
- Akram, R.; Chen, F.; Khalid, F.; Ye, Z.; Majeed, M.T. Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: Evidence from developing countries. J. Clean. Prod. 2020, 247, 119122. [Google Scholar] [CrossRef]
- Huang, J.B.; Zou, H.; Song, Y. Biased technical change and its influencing factors of iron and steel industry: Evidence from provincial panel data in China. J. Clean. Prod. 2020, 283, 124558. [Google Scholar] [CrossRef]
- Mensah, C.N.; Long, X.; Boamah, K.B.; Bediako, I.A.; Dauda, L.; Salman, M. The effect of innovation on CO2 emissions of OCED countries from 1990 to 2014. Environ. Sci. Pollut. Res. 2018, 25, 29678–29698. [Google Scholar] [CrossRef] [PubMed]
- Fernández, Y.F.; López, M.F.; Blanco, B.O. Innovation for sustainability: The impact of R&D spending on CO2 emissions. J. Clean. Prod. 2018, 172, 3459–3467. [Google Scholar]
- Ahmed, A.; Uddin, G.S.; Sohag, K. Biomass energy, technological progress and the environmental Kuznets curve: Evidence from selected European countries. Biomass Bioenergy 2016, 90, 202–208. [Google Scholar] [CrossRef]
- Raihan, A.; Muhtasim, D.A.; Pavel, M.I.; Faruk, O.; Rahman, M. An econometric analysis of the potential emission reduction components in Indonesia. Clean. Prod. Lett. 2022, 3, 100008. [Google Scholar] [CrossRef]
- Hicks, J. The Theory of Wages; Springer: Cham, Switzerland, 1963. [Google Scholar]
- Acemoglu, D. Directed technical change. Rev. Econ. Stud. 2002, 69, 781–809. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; See, K.F.; Chi, J. Water resources and water pollution emissions in China’s industrial sector: A green-biased technological progress analysis. J. Clean. Prod. 2019, 229, 1412–1426. [Google Scholar] [CrossRef]
- Yang, G.; Zha, D. How does biased technological progress affect haze pollution? Evidence from APEC economies. Environ. Sci. Pollut. Res. 2022, 29, 54543–54560. [Google Scholar] [CrossRef] [PubMed]
- Zha, D.; Kavuri, A.S.; Si, S. Energy-biased technical change in the Chinese industrial sector with CES production functions. Energy 2018, 148, 896–903. [Google Scholar] [CrossRef]
- Du, J.; Sun, Y. The nonlinear impact of fiscal decentralization on carbon emissions: From the perspective of biased technological progress. Environ. Sci. Pollut. Res. 2021, 28, 29890–29899. [Google Scholar] [CrossRef]
- Er, A.; Mol, A.; van Koppen, C.K. Ecological modernization in selected Malaysian industrial sectors: Political modernization and sector variations. J. Clean. Prod. 2012, 24, 66–75. [Google Scholar] [CrossRef]
- Tibebu, T.B.; Hittinger, E.; Miao, Q.; Williams, E. Roles of diffusion patterns, technological progress, and environmental benefits in determining optimal renewable subsidies in the US. Technol. Forecast. Soc. Chang. 2022, 182, 121840. [Google Scholar] [CrossRef]
- Liu, M.; Tan, R.; Zhang, B. The costs of “blue sky”: Environmental regulation, technology upgrading, and labor demand in China. J. Dev. Econ. 2021, 150, 102610. [Google Scholar] [CrossRef]
- Chishti, M.Z.; Sinha, A. Do the shocks in technological and financial innovation influence the environmental quality? Evidence from BRICS economies. Technol. Soc. 2022, 68, 101828. [Google Scholar] [CrossRef]
- Liu, W.; Du, M. Is Technological Progress Selective for Multiple Pollutant Emissions? Int. J. Environ. Res. Public Health 2021, 18, 9286. [Google Scholar] [CrossRef]
- Pradhan, B.K.; Ghosh, J. A computable general equilibrium (CGE) assessment of technological progress and carbon pricing in India’s green energy transition via furthering its renewable capacity. Energy Econ. 2022, 106, 105788. [Google Scholar] [CrossRef]
- Santhakumar, S.; Meerman, H.; Faaij, A. Improving the analytical framework for quantifying technological progress in energy technologies. Renew. Sustain. Energy Rev. 2021, 145, 111084. [Google Scholar] [CrossRef]
- Ahmad, M.; Wu, Y. Natural resources, technological progress, and ecological efficiency: Does financial deepening matter for G-20 economies? Resour. Policy 2022, 77, 102770. [Google Scholar] [CrossRef]
- Su, Y.; Fan, Q.-m. Renewable energy technology innovation, industrial structure upgrading and green development from the perspective of China’s provinces. Technol. Forecast. Soc. Chang. 2022, 180, 121727. [Google Scholar] [CrossRef]
- Ngai, L.R.; Pissarides, C.A. Structural change in a multisector model of growth. Am. Econ. Rev. 2007, 97, 429–443. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Wang, N. Impact of Biased Technological Change on High-Quality Economic Development of China’s Forestry: Based on Mediating Effect of Industrial Structure Upgrading. Sustainability 2022, 14, 10348. [Google Scholar] [CrossRef]
- Tanaka, K.; Managi, S. Industrial agglomeration effect for energy efficiency in Japanese production plants. Energy Policy 2021, 156, 112442. [Google Scholar] [CrossRef]
- Zhou, X.; Pan, Z.; Shahbaz, M.; Song, M. Directed technological progress driven by diversified industrial structural change. Struct. Change Econ. Dyn. 2020, 54, 112–129. [Google Scholar] [CrossRef]
- Feng, Y.; Zhong, S.; Li, Q.; Zhao, X.; Dong, X. Ecological well-being performance growth in China (1994–2014): From perspectives of industrial structure green adjustment and green total factor productivity. J. Clean. Prod. 2019, 236, 117556. [Google Scholar] [CrossRef]
- Sinton, J.E.; Levine, M. Changing energy intensity in Chinese industry: The relatively importance of structural shift and intensity change. Energy Policy 1994, 22, 239–255. [Google Scholar] [CrossRef]
- Feder, C. A measure of total factor productivity with biased technological change. Econ. Innov. New Technol. 2018, 27, 243–253. [Google Scholar] [CrossRef]
- Adom, P.K.; Agradi, M.; Vezzulli, A. Energy efficiency-economic growth nexus: What is the role of income inequality? J. Clean. Prod. 2021, 310, 127382. [Google Scholar] [CrossRef]
- Agradi, M.; Adom, P.K.; Vezzulli, A. Towards sustainability: Does energy efficiency reduce unemployment in African societies? Sustain. Cities Soc. 2022, 79, 103683. [Google Scholar] [CrossRef]
- Yang, Z.; Shao, S.; Yang, L.; Liu, J. Differentiated effects of diversified technological sources on energy-saving technological progress: Empirical evidence from China’s industrial sectors. Renew. Sustain. Energy Rev. 2017, 72, 1379–1388. [Google Scholar] [CrossRef]
- Zhen, W.; Xin-gang, Z.; Ying, Z. Biased technological progress and total factor productivity growth: From the perspective of China’s renewable energy industry. Renew. Sustain. Energy Rev. 2021, 146, 111136. [Google Scholar] [CrossRef]
- Haslberger, M. Routine-biased technological change does not always lead to polarisation: Evidence from 10 OECD countries, 1995–2013. Res. Soc. Stratif. Mobil. 2021, 74, 100623. [Google Scholar] [CrossRef]
- Acemoglu, D.; Aghion, P.; Bursztyn, L.; Hemous, D. The environment and directed technical change. Am. Econ. Rev. 2012, 102, 131–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.T. US Elasticities of Substitution and Factor-Augmentation at the Industry Level. Macroecon. Dyn. 2013, 17, 861–897. [Google Scholar] [CrossRef]
- Acemoglu, D. Labor-and capital-augmenting technical change. J. Eur. Econ. Assoc. 2003, 1, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Vu, K.M. Structural change and economic growth: Empirical evidence and policy insights from Asian economies. Struct. Change Econ. Dyn. 2017, 41, 64–77. [Google Scholar] [CrossRef]
- Mallick, D. The role of the elasticity of substitution in economic growth: A cross-country investigation. Labour Econ. 2012, 19, 682–694. [Google Scholar] [CrossRef]
- Antonelli, C. Technological congruence and the economic complexity of technological change. Struct. Change Econ. Dyn. 2016, 38, 15–24. [Google Scholar] [CrossRef]
- Andersson, M.; Johansson, B.; Karlsson, C.; Lööf, H. Innovation and Growth: From R&D Strategies of Innovating Firms to Economy-Wide Technological Change; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Amri, F.; Zaied, Y.B.; Lahouel, B.B. ICT, total factor productivity, and carbon dioxide emissions in Tunisia. Technol. Forecast. Soc. Change 2019, 146, 212–217. [Google Scholar] [CrossRef]
- Acheampong, A.O. Economic growth, CO2 emissions and energy consumption: What causes what and where? Energy Econ. 2018, 74, 677–692. [Google Scholar] [CrossRef]
- Kenter, J.O.; O’Brien, L.; Hockley, N.; Ravenscroft, N.; Fazey, I.; Irvine, K.N.; Reed, M.S.; Christie, M.; Brady, E.; Bryce, R. What are shared and social values of ecosystems? Ecol. Econ. 2015, 111, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Lorek, S.; Spangenberg, J.H. Sustainable consumption within a sustainable economy—Beyond green growth and green economies. J. Clean. Prod. 2014, 63, 33–44. [Google Scholar] [CrossRef]
- Song, M.; Wang, S. Measuring environment-biased technological progress considering energy saving and emission reduction. Process Saf. Environ. Prot. 2018, 116, 745–753. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q. Research on the impact of green finance on the upgrading of China’s regional industrial structure from the perspective of sustainable development. Resour. Policy 2021, 74, 102436. [Google Scholar] [CrossRef]
- Blum-Kusterer, M.; Hussain, S.S. Innovation and corporate sustainability: An investigation into the process of change in the pharmaceuticals industry. Bus. Strategy Environ. 2001, 10, 300–316. [Google Scholar] [CrossRef]
- Stiroh, K.J. What Drives Productivity growth? Econ. Policy Rev. 2001, 7. Available online: https://ssrn.com/abstract=844244 (accessed on 1 November 2022).
- Adom, P.K.; Amakye, K.; Abrokwa, K.K.; Quaidoo, C. Estimate of transient and persistent energy efficiency in Africa: A stochastic frontier approach. Energy Convers. Manag. 2018, 166, 556–568. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Bank, W. Inclusive Green Growth: The Pathway to Sustainable Development; The World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Jha, S.; Sandhu, S.C.; Wachirapunyanont, R. Inclusive Green Growth Index: A New Benchmark for Quality of Growth; Asian Development Bank: Mandaluyong, Philippines, 2018. [Google Scholar]
- Zhou, X.; Zhang, J.; Li, J. Industrial structural transformation and carbon dioxide emissions in China. Energy Policy 2013, 57, 43–51. [Google Scholar] [CrossRef]
- Ellison, G.; Glaeser, E.L. Geographic concentration in US manufacturing industries: A dartboard approach. J. Political Econ. 1997, 105, 889–927. [Google Scholar] [CrossRef] [Green Version]
- Michaels, G.; Rauch, F.; Redding, S.J. Urbanization and structural transformation. Q. J. Econ. 2012, 127, 535–586. [Google Scholar] [CrossRef]
- Twum, F.A.; Long, X.; Salman, M.; Mensah, C.N.; Kankam, W.A.; Tachie, A.K. The influence of technological innovation and human capital on environmental efficiency among different regions in Asia-Pacific. Environ. Sci. Pollut. Res. 2021, 28, 17119–17131. [Google Scholar] [CrossRef] [PubMed]
- Olabi, A.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Fracasso, A.; Marzetti, G.V. International trade and R&D spillovers. J. Int. Econ. 2015, 96, 138–149. [Google Scholar]
- Chen, M.; Gong, Y.; Li, Y.; Lu, D.; Zhang, H. Population distribution and urbanization on both sides of the Hu Huanyong Line: Answering the Premier’s question. J. Geogr. Sci. 2016, 26, 1593–1610. [Google Scholar] [CrossRef]
- Herrero, C.; Pineda, J.; Villar, A.; Zambrano, E. Tracking progress towards accessible, green and efficient energy: The Inclusive Green Energy index. Appl. Energy 2020, 279, 115691. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nguyen, H.S.; Chi, M.H.; Vo, D.H. The convergence of financial inclusion across provinces in Vietnam: A novel approach. PLoS ONE 2021, 16, e0256524. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, C.; Quan, Y.; Wu, G.; Zhao, J. Urban sustainable development efficiency towards the balance between nature and human well-being: Connotation, measurement, and assessment. J. Clean. Prod. 2018, 178, 67–75. [Google Scholar] [CrossRef]
- Diamond, P.A. Disembodied technical change in a two-sector model. Rev. Econ. Stud. 1965, 32, 161–168. [Google Scholar] [CrossRef]
- Ahmed, Z.; Ahmad, M.; Murshed, M.; Shah, M.I.; Mahmood, H.; Abbas, S. How do green energy technology investments, technological innovation, and trade globalization enhance green energy supply and stimulate environmental sustainability in the G7 countries? Gondwana Res. 2022, 112, 105–115. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Li, A.; Liu, X. Exploring sources of China’s CO2 emission: Decomposition analysis under different technology changes. Eur. J. Oper. Res. 2019, 279, 984–995. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M. Effects of technological innovation on energy efficiency in China: Evidence from dynamic panel of 284 cities. Sci. Total Environ. 2020, 709, 136172. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Cai, Z.; Tan, K.H.; Zhang, L.; Du, J.; Song, M. Technological innovation and structural change for economic development in China as an emerging market. Technol. Forecast. Soc. Change 2021, 167, 120671. [Google Scholar] [CrossRef]
- Hao, Y.; Gao, S.; Guo, Y.; Gai, Z.; Wu, H. Measuring the nexus between economic development and environmental quality based on environmental Kuznets curve: A comparative study between China and Germany for the period of 2000–2017. Environ. Dev. Sustain. 2021, 23, 16848–16873. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Ren, S.; Ran, Q. Can the new energy demonstration city policy reduce environmental pollution? Evidence from a quasi-natural experiment in China. J. Clean. Prod. 2021, 287, 125015. [Google Scholar] [CrossRef]
- Sochirca, E.; Afonso, Ó.; Gil, P.M. Technological-knowledge bias and the industrial structure under costly investment and complementarities. Econ. Model. 2013, 32, 440–451. [Google Scholar] [CrossRef]
- Kumar, P. Innovative tools and new metrics for inclusive green economy. Curr. Opin. Environ. Sustain. 2017, 24, 47–51. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, H.-q.; Liu, S.-s.; Zhang, H.-b. Technological innovation, environmental regulation, and green total factor efficiency of industrial water resources. J. Clean. Prod. 2019, 211, 61–69. [Google Scholar] [CrossRef]
- Chen, M.; Sinha, A.; Hu, K.; Shah, M.I. Impact of technological innovation on energy efficiency in industry 4.0 era: Moderation of shadow economy in sustainable development. Technol. Forecast. Soc. Chang. 2021, 164, 120521. [Google Scholar] [CrossRef]
Variable | Obs | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|
IGG | 480 | 0.3251 | 0.0891 | 0.2069 | 0.6656 |
EBT | 480 | −0.1254 | 0.1985 | −0.6146 | 0.4164 |
ISA | 480 | 1.1085 | 0.6390 | 0.4971 | 5.2969 |
ISC | 480 | 0.0612 | 0.1370 | 0 | 1 |
PD | 480 | 0.0276 | 0.0126 | 0.0019 | 0.0631 |
PC | 480 | 0.9863 | 0.6211 | 0.0195 | 3.8922 |
OP | 480 | 0.2993 | 0.3600 | 0.0076 | 1.7215 |
Parameters | Coefficient | T-Value | Parameters | Coefficient | T-Value |
---|---|---|---|---|---|
5.956 *** | 5.832 | −0.185 *** | −2.718 | ||
0.160 *** | 5.348 | −0.041 | −0.372 | ||
−0.002 *** | −2.613 | 0.037 | 0.319 | ||
1.713 *** | 5.548 | −0.103 ** | −1.960 | ||
−0.006 | −0.022 | 0.086 | 1.399 | ||
−1.057 *** | −3.245 | 0.140 * | 1.794 | ||
0.021 *** | 4.932 | 0.179 *** | 24.390 | ||
−0.009 | −1.412 | 0.993 *** | 1595.620 | ||
−0.017 *** | −2.886 | 0.844 *** | 13.646 | ||
Log-likelihood function | 774.714 | ||||
LR test value | 1216.550 |
Variable | IGG | ||
---|---|---|---|
(1) | (2) | (3) | |
EBT | −0.0125 * | −0.0167 ** | −0.0158 ** |
(−1.86) | (−2.46) | (−2.22) | |
PD | 0.0337 | 0.0768 | |
(0.21) | (0.46) | ||
PC | 0.0176 *** | 0.0126 *** | |
(4.15) | (2.92) | ||
OP | 0.0038 | 0.0223 *** | |
(0.45) | (2.60) | ||
Constant | 0.3235 *** | 0.3036 *** | 0.3019 *** |
(20.15) | (48.21) | (25.49) | |
Model | OLS | FE | RE |
Observations | 480 | 480 | 480 |
R-squared | 0.0334 | 0.0772 | 0.1297 |
Time Heterogeneity | Geographical Heterogeneity | IGG Heterogeneity | |||||
---|---|---|---|---|---|---|---|
Variable | 2005–2011 (1) | 2012–2020 (2) | Southeast (3) | Northwest (4) | Frontrunners (5) | Followers (6) | Pursuers (7) |
EBT | 0.0119 | −0.0278 *** | −0.0201 ** | −0.0115 | −0.0424 ** | −0.0159 * | 0.0039 |
(1.02) | (−3.24) | (−2.42) | (−0.90) | (−2.26) | (−1.77) | (0.32) | |
Constant | 0.3221 *** | 0.2865 *** | 0.3084 *** | 0.3054 *** | 0.4559 *** | 0.2891 *** | 0.2084 *** |
(33.62) | (33.66) | (39.28) | (20.48) | (23.26) | (33.92) | (14.59) | |
Control | YES | YES | YES | YES | YES | YES | YES |
Observations | 210 | 270 | 400 | 80 | 96 | 224 | 160 |
R-squared | 0.062 | 0.070 | 0.030 | 0.208 | 0.070 | 0.070 | 0.098 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
ISA | IGG | ISC | IGG | |
EBT | −0.1735 ** | −0.0124 * | −0.1658 *** | −0.0127 * |
(−2.05) | (−1.91) | (−5.83) | (−1.82) | |
ISA | 0.0248 *** | |||
(6.87) | ||||
ISC | 0.0236 ** | |||
(2.10) | ||||
PD | 5.2081 *** | −0.0954 | 1.6601 ** | −0.0055 |
(2.60) | (−0.62) | (2.47) | (−0.03) | |
PC | −0.0918 * | 0.0199 *** | −0.0679 *** | 0.0192 *** |
(−1.73) | (4.90) | (−3.80) | (4.47) | |
OP | −1.3066 *** | 0.0362 *** | −0.5192 *** | 0.0161 |
(−12.28) | (3.86) | (−14.51) | (1.56) | |
Constant | 1.4248 *** | 0.2683 *** | 0.2170 *** | 0.2985 *** |
(18.11) | (33.97) | (8.20) | (44.35) | |
Observations | 480 | 480 | 480 | 480 |
R-squared | 0.307 | 0.140 | 0.427 | 0.058 |
Time Heterogeneity | Geographical Heterogeneity | IGG Heterogeneity | |||||
---|---|---|---|---|---|---|---|
Variable | 2005–2011 (1) | 2012–2020 (2) | Southeast (3) | Northwest (4) | Frontrunners (5) | Followers (6) | Pursuers (7) |
EBT | 0.1653 | −0.2449 ** | −0.3649 *** | 0.0739 | −0.0702 | −0.2009 * | −0.1350 |
(1.10) | (−2.47) | (−3.55) | (0.69) | (−0.28) | (−1.80) | (−1.10) | |
Constant | 1.6675 *** | 1.1333 *** | 1.7175 *** | 1.1511 *** | 3.1578 *** | 0.9209 *** | 0.5465 *** |
(13.51) | (11.55) | (17.63) | (9.26) | (12.21) | (8.68) | (3.83) | |
Control | YES | YES | YES | YES | YES | YES | YES |
Observations | 210 | 270 | 400 | 80 | 96 | 224 | 160 |
R-squared | 0.529 | 0.073 | 0.413 | 0.401 | 0.631 | 0.170 | 0.096 |
Variable | Time Heterogeneity | Geographical Heterogeneity | IGG Heterogeneity | ||||
---|---|---|---|---|---|---|---|
2005–2011 (1) | 2012–2020 (2) | Southeast (3) | Northwest (4) | Frontrunners (5) | Followers (6) | Pursuers (7) | |
EBT | −0.3555 *** | −0.0555 *** | −0.2856 *** | 0.0057 | −0.6045 *** | −0.0408 ** | −0.0686 ** |
(−5.66) | (−2.77) | (−7.92) | (0.71) | (−5.34) | (−2.02) | (−2.59) | |
Constant | 0.4055 *** | 0.0555 *** | 0.3404 *** | 0.0044 | 0.7319 *** | 0.0831 *** | −0.0486 |
(7.86) | (2.80) | (9.97) | (0.46) | (6.20) | (4.32) | (−1.58) | |
Control | YES | YES | YES | YES | YES | YES | YES |
Observations | 210 | 210 | 400 | 80 | 96 | 224 | 160 |
R-squared | 0.566 | 0.125 | 0.526 | 0.425 | 0.663 | 0.309 | 0.136 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
IGG | IGG2 | IGG | IGG | |
EBT | −0.4347 *** | −0.0146 ** | −0.0153 ** | |
(−4.24) | (−2.06) | (−2.25) | ||
EKD | −0.0177 *** | |||
(−2.63) | ||||
PD | 0.0300 | 9.8770 *** | −0.0063 | 0.0085 |
(0.19) | (4.07) | (−0.04) | (0.05) | |
PC | 0.0176 *** | 0.4379 *** | 0.0177 *** | 0.0143 *** |
(4.16) | (6.81) | (3.84) | (2.93) | |
OP | 0.0039 | −1.2738 *** | 0.0017 | 0.0039 |
(0.46) | (−9.87) | (0.19) | (0.46) | |
Constant | 0.3041 *** | −0.3774 *** | 0.3069 *** | 0.3139 *** |
(48.63) | (−3.96) | (45.44) | (47.11) | |
Observations | 480 | 480 | 420 | 448 |
R-squared | 0.050 | 0.312 | 0.045 | 0.030 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
ISA | ISC | ISA | ISC | ISA | ISC | |
EBT | −0.1593 * | −0.1593 *** | −0.1518 * | −0.1583 *** | ||
(−1.71) | (−5.31) | (−1.78) | (−5.52) | |||
EKT | −0.1818 ** | −0.1661 *** | ||||
(−2.16) | (−5.86) | |||||
PD | 5.1780 *** | 1.6544 ** | 5.0447 ** | 1.3925 * | 5.0499 ** | 1.6884 ** |
(2.59) | (2.46) | (2.30) | (1.92) | (2.49) | (2.48) | |
PC | −0.0916 * | −0.0683 *** | −0.1589 *** | −0.0621 *** | −0.1324 ** | −0.0806 *** |
(−1.73) | (−3.83) | (−2.81) | (−3.18) | (−2.17) | (−3.93) | |
OP | −1.3060 *** | −0.5193 *** | −0.9923 *** | −0.5384 *** | −1.3141 *** | −0.5198 *** |
(−12.28) | (−14.52) | (−8.84) | (−13.74) | (−12.24) | (−14.39) | |
Constant | 1.4306 *** | 0.2234 *** | 1.4268 *** | 0.2295 *** | 1.5115 *** | 0.2348 *** |
(18.31) | (8.50) | (11.16) | (8.02) | (18.18) | (8.39) | |
Observations | 480 | 480 | 420 | 420 | 448 | 448 |
R-squared | 0.308 | 0.427 | 0.296 | 0.426 | 0.324 | 0.444 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Ji, R. Impact of Energy-Biased Technological Progress on Inclusive Green Growth. Sustainability 2022, 14, 16151. https://doi.org/10.3390/su142316151
Qian J, Ji R. Impact of Energy-Biased Technological Progress on Inclusive Green Growth. Sustainability. 2022; 14(23):16151. https://doi.org/10.3390/su142316151
Chicago/Turabian StyleQian, Juan, and Ruibing Ji. 2022. "Impact of Energy-Biased Technological Progress on Inclusive Green Growth" Sustainability 14, no. 23: 16151. https://doi.org/10.3390/su142316151
APA StyleQian, J., & Ji, R. (2022). Impact of Energy-Biased Technological Progress on Inclusive Green Growth. Sustainability, 14(23), 16151. https://doi.org/10.3390/su142316151