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Abstract: Link prediction, which is used to identify the potential relationship between nodes, is
an important issue in network science. In existing studies, the traditional methods based on the
structural similarity of nodes make it challenging to complete the task of link prediction in large-scale
or sparse networks. Although emerging methods based on deep learning can solve this problem, most
of the work mainly completes the link prediction through the similarity of the representation vector of
network structure information. Many empirical studies show that link formation is affected by node
attributes, and similarity is not the only criterion for the formation of links in reality. Accordingly,
this paper proposed a two-stage deep-learning model for link prediction (i.e, TDLP), where the node
representation vector of the network structure and attributes was obtained in the first stage, while
link prediction was realized through supervised learning in the second stage. The empirical results
on real networks showed that our model significantly outperforms the traditional methods (e.g., CN
and RA), as well as newly proposed deep-learning methods (e.g., GCN and VGAE). This study not
only proposed a deep-learning framework for link prediction from the perspective of structure and
attribute fusion and link distribution capture, but also lays a methodological foundation for practical
applications based on link prediction.
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1. Introduction

Network models are often used to describe real systems in different domains, such
as biology, social science, and transport systems [1-3]. Unlike random networks, these
networks exhibit non-trivial structures (e.g., small world and community structures),
and the formation of these structures is inseparable from the links that represent the
interaction between individuals [4]. Correspondingly, predicting the future links between
nodes in networks (i.e., link prediction) has become a hotspot in network science. At
present, the link prediction method is widely used in practical tasks such as friend system
recommendations [5,6] and knowledge graph construction [7].

For link prediction, the most widely used traditional methods are based on structural
similarity, which consider that nodes with higher structural similarity are more likely to
form links. For example, Zhou et al. [8] and Newman [9] used resource allocation (RA)
and common neighbors (CN), respectively, to measure the similarity between nodes, which
can capture potential links in the network. Traditional methods are simple and effective in
some real networks, but in other cases (e.g., sparse networks) their performance is poor,
and they find it especially difficult to handle high nonlinearity [10]. Fortunately, emergent
graph representation learning methods provide a new opportunity to solve this problem.
These methods convert the complex structure information into low-dimensional vectors to
ensure that nodes with similar characteristics are closely connected, and the corresponding
link prediction effect is improved [11,12].

However, the link prediction method based on deep learning is still worth further
exploration. On the one hand, the existing methods mainly focus on the global or local
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structural information of the network. Many empirical studies show that link formation
in networks is closely related to the attribute information of nodes [13-15]. For example,
Wang et al. found that the similarity of individual attributes (i.e., the concept of homophily
in social science) can explain 65% of the formation of links in the scientific collaboration
network [14]. Therefore, the node attribute information should not be ignored in link
prediction. Although some scholars have begun to explore link prediction methods that
integrate network structure and node attributes, work in this area is still relatively insuffi-
cient [16-19]. On the other hand, most of the existing deep learning-based methods achieve
link prediction through the similarity of representation vectors. Besides this similarity,
there are many other factors, such as heterophily [20-24], that affect the link formation in
real works. Accordingly, the similarity is not enough to capture the distribution of links in
real networks.

Based on the above facts, in this study, we proposed a two-stage deep-learning model
for link prediction, named TDLP. In the first stage, the representation vector of structural
and attribute information for each node was obtained by early fusion. Then, the deep
learning model was introduced in the second stage to capture the link distribution and
realize the link prediction. The empirical results of real networks show that our model
significantly outperformed traditional methods and newly proposed deep learning meth-
ods. This work’s contribution can be summarized as follows. Theoretically, we proposed
a deep-learning framework for link prediction from the perspective of structural and at-
tributive information fusion and link distribution capture, which is not only a supplement
to mainstream methods based on the similarity between structure representation vectors,
but also the enrichment of methods considering node attributes. In addition, our work has
also laid a foundation for practical applications based on link prediction, such as system
recommendation and technology forecasting.

2. Related Work
2.1. Traditional Methods

In existing studies, similarity-based methods are widely used in traditional methods,
including local similarity indices and global similarity indices [25-28]. For local similarity
indices, Newman proposed the common neighbor (CN) index, emphasizing that the
probability of link formation between two nodes depends on the number of common
neighbors [9]. Zhou et al. improved the CN index and proposed the resource allocation
(CA) index, which can suppress the influence of high-degree nodes on link prediction [8].
Subsequently, based on the idea of common neighbors, many local similarity indices have
been proposed, such as Adamic/Adar Index [29], CAR-based Common Neighbor Index
(CAR) [30], Node Clustering Coefficient (CCLP) [27], etc.

The global similarity indices often use the topological information of an entire network
to complete the prediction task. Correspondingly, these methods have high computational
complexity and are not feasible for large networks [17]. For example, the SimRank index,
proposed by Jeh et al., argues that two nodes are similar if they are related to similar nodes;
then, two nodes with high similarity are more likely to form a connection [31]. Tong et al.
proposed a method named random walk with restart (RWR), which iteratively explores the
overall structure of the network to estimate the similarity between two nodes [32].

In addition to the similarity approaches, many approaches have been developed to
complete link prediction tasks, including the probabilistic and maximum likelihood ap-
proaches, matrix decomposition approaches, and clustering approaches. The probabilistic
and maximum likelihood approaches optimize an object function based on existing link
information, then use conditional probability to estimate the link probability between
nodes [33-36]. The matrix decomposition approaches complete the link prediction by
extracting the latent features of nodes and measuring latent features” similarity [37-39].
The clustering approaches employ the quantified models to capture the node-clustering
pattern that affects the probability of the links” occurrence [40,41].
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In short, the traditional method is widely used due to its simplicity, and is also more
effective in some real networks, such as the musician collaboration network [17], the USAir
network [8], the football games network, etc. These networks often have high average
degree and network density. For example, the musician collaboration network contains
198 nodes and 2742 links, whose average degree and network density are 27.7 and 0.14,
respectively. Correspondingly, the traditional method is more suitable for dense networks
because its link prediction is based on a pairwise comparison of node structure information.
In large-scale or sparse networks, the computational complexity of the traditional method
will exponentially increase, and its accuracy will be reduced.

2.2. Deep Learning Methods

The deep learning method maps nodes of the network from a high-dimensional space
to a low-dimensional vector space; the two nodes are more likely to be linked if they are
closer in the low-dimensional space. The widely used methods include methods based on
random walk (e.g., DeepWalk [42] and Node2vec [43]) and the methods based on graph
embedding (e.g., LINE [44], SDNE [45], GNN [12]). These methods mainly focus on the
global or local structure information of networks. For example, Seongjun et al. proposed the
neighborhood overlap-aware graph neural networks (Neo-GNNs) approach to complete
link prediction through capturing the structure information of nodes [46]. Zhang and Chen
proposed a novel graph neural networks (GNN) method that can learn the local subgraph
information around each target link; the experimental results identify their method has an
unprecedented performance regarding classical datasets of link prediction [47].

Besides the structural information, the attribute information of nodes also has a signif-
icant impact on the formation of links between nodes [14,20,21]. Therefore, some scholars
began to explore the deep learning model, incorporating attribute information in link
prediction tasks. Zhou et al. proposed a novel network embedding algorithm (NEADEF-LP)
to realize the combination of structure and attribute information, and this method performs
better than mainstream baseline models on the CiteSeer and Cora datasets [18]. A modified
deep walk-method, proposed by Kamal et al., shows stronger link prediction capability
after adding information on node attributes [16]. Kipf and Welling proposed variational
graph auto-encoders (VGAE) for link prediction, and the experimental results also showed
that the performance of the method improved after considering the attribute information
of nodes [48]. Gao et al. use graph convolution networks (GCN) to integrate the structure
and attribute information and implement link prediction on matching networks [19].

In reality, network nodes are often identified as having attributes besides structural
information. However, most existing studies only consider the structural information, while
neglecting the attribute information of nodes [16]. Furthermore, in the methods considering
node attributes, the probability of link formation is often measured by the similarity of
representation vectors, which is not enough to reflect the complexity of the formation of
real relationships, such as diversity and heterophily [13,20,24]. Based on a realization of
network structure embedding representation and attribute information fusion, the TDLP
method in the present study captures the link formation rules in the network through
supervised learning and then completes link prediction, which is not only a supplement to
the mainstream methods based on the similarity of structure representation vectors, but
also enriches the methods considering node attributes. Nevertheless, our method has some
shortcomings. First, the node representation vectors obtained through early fusion methods
may cause data redundancy, which correspondingly requires dimension reduction methods
to reduce the redundancy, and this increases the complexity of the method. Second, the
link prediction obtained through supervised learning in the model needs enough data to
ensure that it can perform, and its accuracy may decline in cases with less data.

3. Methodology

As shown in Figure 1, the framework of TDLP contains two stages. In the first stage,
the representation vector of node structure and attribute features is obtained by early fusion,
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and then any pair of representation vectors is labeled according to whether there is a link
between the corresponding nodes. In the second stage, a deep neural network (DNN)
model used for link prediction is trained and tested by the labeled vector pairs.
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Figure 1. The framework of TDLP.

3.1. Obtaining Representation Vector of Nodes

The representation vector of nodes is obtained through the following four steps.
(1) Representation vector of structure information

For the embedded representation of structure information, the TDLP uses the Node2vec
model, which is a widely used baseline network structure embedding method. The
Node2vec method obtains the representation vector through random walk, and contains
four main parameters, i.e., hyper-parameter p and g (which are used to control the strategy
of random walk), walk length I and number of walks 7. Then the matrix formed by the
representation vector of structure information of all nodes is denoted as X**/, where k
represents the number of nodes, and i represents the dimension of the representation vector.

(2) Representation vector of attribute information

For each node, the representation vector of attribute information is obtained through
the following sub-steps. First, the attributes involved in all network nodes are extracted.
Second, we count the attribute status of each node and build the attribute matrix of all
nodes (denoted as AI;X] , where j represents the dimensions of representation vectors).
Finally, the matrix formed by the representation vector of the attribute information of all

nodes (XfX] ) is obtained through the standardization of A];Xj . The standardization process
is shown in Formula (1), where x;"" represents the normalized value of attribute n for node
m, and a:”'” refers to the value that has not been standardized.

xf = (af"" — min(Alf'n))/(max(Af'”) - min(Alt{’”)) 1<m<k1<n<j (1

(3) Early fusion of representation vectors
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Since the structure and attribute information of nodes have been vectorized, the early-
fusion method is adopted to construct the node characteristic matrix (denoted as X** (i+)),
as shown in Figure 2. Based on the matrix X¥* and XfX] , the structure representation
vector and the attribute representation vector are spliced at the node level. For example,
the structure and attribute representation vectors of node n1 are x;nl and xi/nl, respectively.
Then, these two vectors are directly concatenated to form the characteristic vector of node
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Figure 2. Illustration of early fusion.

(4) Data labeling

After obtaining the node characteristic matrix (X* (1)), we label any pair of repre-
sentation vectors according to whether there is a link between the corresponding nodes. If
there is link between the corresponding nodes, the label of the vector pair is 1; otherwise,
the label is 0 if there is no link between the corresponding nodes. Correspondingly, the
link prediction can be transformed into a binary classification task based on supervised
learning. Then, we select all positive samples (i.e., data labeled 1) and randomly select
negative samples (i.e., data labeled 0) with 5 times of the number of positive samples to
construct the dataset.

3.2. Link Prediction Based on Deep Learning

This section describes the stage of link prediction in TDLP, which includes model
construction, training, and testing, and measuring model performance.

(1) Model construction

In the TDLP, we employed the Deep Neural Network (DNN) model to realize link
prediction. The DNN model generally consists of three parts, i.e., an input layer, hidden
layer, and output layer. Its prediction ability is realized by constantly updating the weight
parameters between different layers with training data. As shown in Formula (2), during
the training process, the output vector z"* of layer & depends on the input vector of layer
(h — 1) and its own weight matrix (W"), where b" is the bias vector.

" = a(thh_l + bh) ()

In addition, since the TDLP transforms the link prediction into a binary classification
between representation vector pairs, the number of neurons in the input layer is twice that
of the representation vector dimension, and the number of neurons in the output layer was
fixed at 2. For the hidden layer, we observed the model performance when the number of
layers and neurons gradually increased, and the parameter setting was adopted when the
model performance tended to be stable.
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(2) Training and testing

For the dataset constructed in the first stage, we randomly selected 80% positive and
negative samples as the training dataset and used the rest as the testing dataset. The general
scale ratio of training dataset to testing dataset was 8 to 2.

(3) Measuring performance for the model

We used three metrics to evaluate the performance of the model. The first metric,
precision (P), reflects the proportion of actual positive samples in all the predicted positive
samples, as shown in Formula (3), where TP represents the number of positive samples
correctly predicted as positive samples, while FP represents the number of negative samples
incorrectly predicted as positive samples. The second metric, recall (R), refers to the
proportion of correctly predicted positive samples in all true positive samples, as shown
in Formula (4), where FN is the number of positive samples incorrectly predicted as
negative samples. The third metric (F1) is the harmonic mean of precision and recall, which
comprehensively reflects the model performance, as shown in Formula (5).

P =TP/(TP+ FP) ®)
R =TP/(TP + FN) (4)
F1=2PR/(P+R) ®)

4. Experiments

We performed experiments on four real networks and compared our TDLP method
with relevant methods to validate its effectiveness.

4.1. Datasets

All the experimental networks were social interaction networks from different social
groups, including developers, scholars, inventors, and college football teams. Accordingly,
the means of social interaction differed, and included emailing, face-to-face contact, and so
on. Detailed descriptions of these datasets are listed below.

Developer Collaboration Network (DCN): This dataset was collected from the Angular
OSS community and contained 250,423 commitment records during June 2013~August 2019.
Each record contained the email address of the developer, the project to which the code
submission belonged, and the documents involved in this commitment. Since the software
is released in the form of versions, each version can be regarded as a knowledge product
completed by all developers in the version cycle. Therefore, the developer’s email address
was treated as the node. There was a relationship between two developers if they submitted
commitments for the same file in the same version cycle, and the corresponding relationship
was abstracted as a link. On this basis, we counted each developer’s submissions to different
projects to construct their attribute vectors.

Inventor Collaboration Network (ICN): this dataset contains 5000 patent records
(2015~2021) in the field of “digital information transmission” (IPC classification number is
HO04L) through the incoPat database. The inventors of each patent are abstracted as nodes,
and the co-inventors are regarded as cooperative relations and abstracted as edges to build
an inventor cooperation network. Based upon the above argument, the authors counted the
number of patents invented by each inventor in the 14 subfields (IPC Main Group) under
the “digital information transmission” field, and then constructed a numerical vector to
describe the attribute characteristics of the inventor.

Scientific Collaboration Network (SCN): The authors of this study selected the re-
search dataset of the literature [49]. This dataset is the scientific collaboration network
in the research field of “cooperative evolution”, which not only contains the cooperative
relationship between scholars, but also the keywords used by each scholar to publish
his/her research articles. For all the keywords, the authors of this study carried out a
unified treatment (that is, unifying the keywords of different forms). Therefore, the authors
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of this study clustered the keywords of all the papers and expressed each scholar’s attribute
characteristics by calculating the number of research articles published by each scholar on
different clustered topics.

College Football Network (CFN): The CFN dataset is a real network dataset created
by to the American College Football League. The network consists of 115 nodes and 616
links. The nodes in the network represent the football teams, and the link represents a
game between the two football teams. The 115 football teams were divided into 12 leagues,
and each league can be expressed as the attribute characteristics of the football team.

The basic information of the above four networks is shown in Table 1, including the
number of nodes, the number of links, the network density and attribute dimensions of
each node. It can be seen that the three networks (i.e., DCN, ICN, and SCN) are sparse
(the network density is no more than 0.07), and the CFN has relative density. In addition,
these networks have obvious differences in network size (i.e., the number of nodes) and
attribute dimensions. The characteristics of the above data can more comprehensively test
the performance of our method. On the one hand, we can examine whether TDLP performs
well in networks with different densities. On the other hand, we can analyze the stability
of TDLP performance in scenarios of varying network sizes and attribute dimensions.

Table 1. The basic information of experimental networks.

Network Node Link Density Dimension
DCN 1439 5165 0.005 6
ICN 923 2069 0.007 14
SCN 1127 3011 0.005 30
CEN 115 613 0.094 12

4.2. Parameter Setting

The TDLP method consists of the Node2vec model in the first stage and the DNN
model in the second stage; the parameters of these two models may influence the TDLP
performance. Therefore, we examined the performance of TDLP under different parameter
settings.

(1) Parameter settings of Node2vec model

For the Node2vec model, there were five parameters, including hyper-parameter p
and g, walk length I, number of walks 7, and embedding dimensions d. Table 2 shows
the TDLP performance when the hyper-parameters change and the other parameters
remain consistent, where the strategy of random walk is breadth-first sampling when
(p =05, g = 1), and depth-first sampling when (p = 0.5, q = 2). It can be seen that the
model performance metrics did not significantly change when (p, q) takes two different
sets of values. This indicates that the strategy of random walk in the Node2vec model has
little effect on the TDLP performance. Thus, in the subsequent parameter-setting test, we
fixed the value of (p, q) at (0.5, 2).

Table 2. Parameter p and g of Node2vec.

Network P 9 p R F1
05,1 0.702 0.735 0.718
DCN 05,2 0.702 0.735 0.718
N 05,1 0.741 0.762 0.751
05,2 0.741 0.762 0.751
05,1 0.862 0912 0.886
SCN 05,2 0.862 0.912 0.886
N 05,1 0.904 0.667 0.768

05,2 0.904 0.667 0.768
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Drawing on the suggestions of Ref. [26], we conducted two different groups of tests
on the values of parameter / and r according to the network size. In the first group of
tests, the value of parameter r is fixed and the value of parameter / changes, as shown in
Table 3. In the experimental networks, with the increase in I value, the model performance
metrics first increase and then decrease, indicating that there is a (I, ) combination with
the optimal TDLP performance. For example, in the DCN dataset, the values of metric P,
R, and F1 under (I = 60, r = 10) are higher than those of other values of (I, r). Table 4
shows the performance of TDLP under fixed I and varying r. The model achieved optimal
performance under a specific combination of (I, r). According to the above results, in the
four networks (i.e., DCN, ICN, SCN, and CFN), the optimal (I, r) combinations are (60, 15),
(50, 10), (60, 10), and (15, 10).

Table 3. Parameter [ and r of Node2vec (fixed r, varying I).

Network (7 P R F1

40,10 0.672 0.702 0.687

50, 10 0.695 0.721 0.708

DCN 60, 10 0.704 0.732 0.718
70,10 0.702 0.693 0.697

80, 10 0.682 0.665 0.673

40,10 0.752 0.745 0.748

50,10 0.757 0.772 0.764

ICN 60, 10 0.732 0.761 0.746
70,10 0.701 0.722 0.711

80,10 0.685 0.712 0.698

40,10 0.912 0.914 0.913

50, 10 0.915 0.935 0.925

SCN 60, 10 0.918 0.935 0.926
70, 10 0.902 0.934 0.918

80,10 0.906 0.935 0.920

5,5 0.852 0.605 0.708

10,5 0.872 0.653 0.747

CEN 15,5 0.883 0.672 0.763
20,5 0.865 0.631 0.730

25,5 0.862 0.615 0.718

Table 4. Parameter [ and r of Node2vec (fixed /, varying 7).

Network ((%7) P R F1
60,5 0.701 0.722 0.711
60, 10 0.704 0.732 0.718
DCN 60, 15 0.706 0.732 0.719
60, 20 0.697 0.721 0.709
60, 25 0.672 0.715 0.693
50,5 0.702 0.734 0.718
50, 10 0.751 0.773 0.762
ICN 50,15 0.732 0.755 0.743
50, 20 0.735 0.727 0.731
50, 25 0.668 0.714 0.690
60,5 0.902 0.906 0.904
60, 10 0.918 0.932 0.925
SCN 60, 15 0.907 0.934 0.920
60, 20 0.903 0.921 0.912
60, 25 0.874 0.912 0.893
15,5 0.883 0.674 0.764
15,10 0.904 0.665 0.766
CFN 15,15 0.893 0.625 0.735
15,20 0.835 0.621 0.712
15,25 0.821 0.637 0.717

For the last parameter d, we gradually increased its value from 2 to 10, and observed
the change in TDLP performance, as shown in Table 5. The model showed an optimal
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performance in the experimental networks when d = 4. This indicates that the network
structure information is well expressed.

Table 5. Parameter d of Node2vec.

Network d P R F1
2 0.703 0.712 0.707
4 0.703 0.736 0.719
DCN 6 0.692 0.724 0.708
8 0.705 0.683 0.694
10 0.696 0.662 0.679
2 0.735 0.762 0.748
4 0.752 0.775 0.763
ICN 6 0.756 0.727 0.741
8 0.734 0.747 0.740
10 0.723 0.734 0.728
2 0.907 0.916 0911
4 0.913 0.936 0.924
SCN 6 0.904 0916 0.910
8 0.902 0.924 0.913
10 0.894 0.906 0.900
2 0.835 0.662 0.739
4 0.903 0.664 0.765
CEN 6 0.862 0.627 0.726
8 0.874 0.615 0.722
10 0.822 0.635 0.716

(2) Parameter setting of DNN model

In the DNN model, the number of hidden layers () and the number of neurons in
each hidden layer (n) directly affect TDLP’s learning ability. Thus, we further analyzed
the TDLP performance under different values of (m, n), where the set of values for m
and n were {1, 2} and {4, 8, 16}, respectively. As shown in Table 6, the model showed a
better prediction performance when the number of hidden layers was two, and there are
differences in the number of hidden layer neurons for different experimental networks.

Table 6. Parameter m and n of DNN.

Network (m, n) P R F1
m=1n=4 0.684 0.625 0.653
m=1,n=8 0.674 0.685 0.679
m=1,n=16 0.695 0.716 0.705
DCN m=2,n= (16 8) 0.694 0.72 0.707
m=2,n=(16,4) 0.706 0.732 0.719
m=2n=(8 4) 0.621 0.736 0.674
m=1,n=4 0.673 0.655 0.664
m=1,n=8 0.723 0.694 0.708
m=1,n=16 0.726 0.734 0.730
ICN m=2,n=(16,8) 0.752 0.763 0.757
m=2,n=(16, 4) 0.692 0.734 0.712
m=2,n=8, 4) 0.723 0.691 0.707
m=1,n=4 0.882 0.925 0.903
m=1,n=8 0.875 0.934 0.904
m=1,n=16 0.914 0.917 0.915
SCN m=2,n=(16, 8) 0.912 0.924 0.918
m=2,n=(16, 4) 0.914 0.932 0.923
m=2,n=8, 4) 0.872 0.934 0.902
m=1,n=4 0.773 0.456 0.574
m=1,n=8 0.875 0.594 0.708
m=1,n=16 0.883 0.665 0.759
CEN m=2,n= (16 8) 0.902 0.668 0.768
m=2,n=/16 4) 0.894 0.635 0.743

m=2,n= (8 4) 0.795 0.653 0.717
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Based on the above analysis, Table 7 summarizes the parameter settings when the
TDLP has the optimal prediction performance for different experimental networks.

Table 7. Parameters of TDLP.

Node2vec DNN
Network
p q 1 r d m
DCN 0.5 2 60 15 4 2 16,4
ICN 0.5 2 50 10 4 2 16,8
SCN 0.5 2 60 10 4 2 16,4
CFN 0.5 2 15 10 4 2 16,8

4.3. Baseline Methods

To validate the effectiveness of our TDLP method, we compared it with five widely
used baseline methods, including the traditional methods (i.e., CN and RA), the deep-
learning methods only considering structure information (i.e., DeepWalk and Node2Vec),
and the deep learning methods that can fuse attribute information (i.e., VGAE and GCN).
These methods are introduced as follows.

CN [9]: As a way of measuring the structural similarity between nodes, this uses the
number of common neighbors between two nodes to measure the possibility of a link being
formed between them. The more common neighbors between two nodes, the higher the
probability of link formation.

RA [8]: This method is also based on structural similarity. Differing from the CN method,
it takes second-order neighbors of the node into consideration. In addition, the RA method adds
a penalty coefficient to restrain the effect of height nodes on the probability of link formation.

DeepWalk [42]: As a graph-embedding method, this obtains the representation vector
of each node through random walk, and then uses the vector similarity to measure the
possibility of link formation between nodes.

Node2vec [43]: This method is similar to the DeepWalk method, but has different
random walk strategies, which are controlled by hyper-parameter p and 4. The strategy of
random walk under (p =1, g = 1) is the same as that of DeepWalk.

GCN [50]: As a representative method of network representation learning, the GCN
method uses the idea of graph convolution to realize the fusion of network topology and
node attribute information and converts it to low-dimensional embedding vectors. On this
basis, the link prediction is achieved through vector similarity.

VGAE [48]: The VGAE method, which is another representative method of graph
representation learning, combines auto-encoder with GCN to obtain the representation
vector of network topology and node attribute information, and also realizes link prediction
through vector similarity. The advantage of VGAE is that the over-smoothing problem of
GCN can be effectively solved by the auto-encoder.

The parameter settings for the baseline methods are summarized in Table 8. For CN
and RA, considering the sparsity of the experimental network, we set the threshold of link
formation to 0. For DeepWalk and Node2vec, we used the same parameter settings as
TDLP. For GCN and VGAE, there were two hidden layers (the number of neurons in the
two hidden layers s 16 and 8, respectively) and the learning rate was 0.01.

Table 8. Parameters of baseline methods.

Method Parameter
CN threshold of link formation: 0
RA threshold of link formation: 0
DeepWalk the same to TDLP (see Table 7)
Node2vec the same to TDLP (see Table 7)
GCN learning rate: 0.01, hidden layer: (16, 8)

VGAE the same to GCN
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5. Experimental Results and Discussion
5.1. Experimental Results

The experimental results are divided into two parts. In the first part, the prediction
performance of the baseline method and TDLP is compared under the scenario, considering
only the network structure information. In the second part, we compared TDLP and two
representative graph representation learning methods (i.e., GCN and VGAE), considering
both structure and attribute information.

(1) Comparison of results based on the network structure information

Table 9 shows the performance metrics of each method without considering node
attribute information. In the four experimental networks, we can observe that the predictive
ability of the deep-learning-based methods is much higher than that of the traditional
methods. Taking SCN as an example, for CN, the values of each performance metrics (i.e.,
P, R, and F1) are 0.100, 0.012 and 0.021, respectively. For node2vec, the values of these
metrics are 0.726, 0.781 and 0.752, respectively. This indicates that, compared with common
neighbors, the node structure information can better describe the formation characteristics
of links in the network. Furthermore, by comparing the results of deep-learning methods,
the performance of TDLP model is shown to be the best in experimental networks. This is
especially true for the CFN, which has a higher network density. Even for the best, most
comprehensive VGAE of the three methods, the F1 value does not exceed 0.5, while the
F1 value of TDLP is 0.661. This result indicates that the supervised learning in the second
stage of TDLP can better capture the rule of link formation than the vector similarity.

Table 9. Comparison of prediction results without attribute information.

Metrics Method SCN ICN DCN CFN
CN 0.100 0.112 0.106 0.135

RA 0.153 0.115 0.108 0.152

DeepWalk 0.613 0.457 0.435 0.368

p Node2vec 0.726 0.532 0.468 0.391
GCN 0.621 0.591 0.621 0.503

VGAE 0.657 0.585 0.641 0.487

TDLP 0.862 0.710 0.698 0.712

CN 0.012 0.016 0.014 0.026

RA 0.018 0.022 0.014 0.028

DeepWalk 0.664 0.472 0.421 0.325

R Node2vec 0.781 0.568 0.485 0.371
GCN 0.607 0.552 0.603 0.436

VGAE 0.632 0.569 0.615 0.453

TDLP 0.914 0.725 0.677 0.616

CN 0.021 0.028 0.025 0.044

RA 0.032 0.037 0.025 0.047

DeepWalk 0.637 0.464 0.428 0.345

F1 Node2vec 0.752 0.549 0.476 0.381
GCN 0.614 0.571 0.612 0.467

VGAE 0.644 0.577 0.628 0.469

TDLP 0.887 0.717 0.687 0.661

(2) Comparison of results based on the network structure and node attribute information

Table 10 shows the performance metrics of the methods that can integrate the network
structure and node attribute information of the experimental networks. One significant
change is that the performance of all methods is significantly improved after adding
the node attribute information. For example, without considering the node attribute
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information, the F1 values of VGAE in experimental networks are 0.644, 0.577, 0.628, and
0.469, respectively. After introducing the node attribute information, the F1 values of
VGAE rise to 0.756, 0.715, 0.689, and 0.508, respectively. In addition, when considering
both structure and attribute information, the TDLP method also outperforms the GCN
and VGAE methods. These results indicate that the two-stage link prediction in TDLP can
further enhance the deep learning model’s ability to capture the distribution of links in the
network. It also shows that the node attribute information cannot be ignored when link
prediction is conducted, at least in the present experimental networks.

Table 10. Comparison of prediction results considering attribute information.

Metrics Method SCN ICN DCN CFN
GCN 0.621 0.591 0.621 0.503

GCN * 0.723 0.625 0.627 0515

VGAE 0.657 0.585 0.641 0.487

p VGAE * 0.762 0.726 0.686 0.526
TDLP 0.862 0.710 0.698 0.712

TDLP * 0.902 0.751 0.705 0.897

GCN 0.607 0.552 0.603 0.436

GCN * 0.701 0.613 0.651 0.471

R VGAE 0.632 0.569 0.615 0.453
VGAE * 0.751 0.704 0.693 0.492

TDLP 0914 0.725 0.677 0.616

TDLP * 0.931 0.776 0.732 0.665

GCN 0.614 0.571 0.612 0.467

GCN * 0.712 0.619 0.639 0.492

1 VGAE 0.644 0577 0.628 0.469
VGAE * 0.756 0.715 0.689 0.508

TDLP 0.887 0.717 0.687 0.661

TDLP * 0916 0.763 0.718 0.764

Note: * means that the represent vector of the corresponding method contains node attribute information.

5.2. Discussion

According to the concept of model construction, the existing work can be divided
into two categories. The core idea of the first work category is to transform the structural
information into the measurement of linking probability between nodes using various
indices or representation vectors, such as CN in traditional methods and DeepWalk in
deep learning-based methods. The second category of work emphasizes the role that node
attributes play in link prediction, which focuses on the effective integration of network
structure and node attribute information, while the link prediction method is relatively
simple (e.g., the similarity of representation vectors in GCN and VGAE).

The model in this paper is essentially different from the above two categories of meth-
ods in terms of modeling concept. We believe that the node attributes and the capturing of
link formation rules in the network are equally important in link prediction. Correspond-
ingly, the prediction task in our model is disaggregated into two stages. The representation
vectors of the network structure and node attributes are obtained in the first stage, which
lays the foundation for the second stage. In the second stage, the model captures the rules
of link formation through supervised learning, and then completes the link prediction.

Table 11 shows the change of TDLP comprehensive performance (i.e., the metric F1)
on the experimental networks compared with the baseline methods. Compared with the
first category of baseline methods, the prediction performance of TDLP on the experimental
networks shows different degrees of improvement. On the SCN network, for example, the
performance increase of TDLP over the four baseline methods (i.e., CN, RA, DeepWalk,
and Node2vec) is 0.866, 0.855, 0.250, and 0.135, respectively, when only the structure
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information is considered. In addition, when TDLP introduces attributes, the prediction
performance will be further improved. This further illustrates that the important role of
node attributes in link prediction should not be ignored. Meanwhile, TDLP implements
node attribute fusion based on the embedded representation of network structure, which is
a complement to the prediction method that only considers the structural representation
of networks. On the other hand, the performance of TDLP is also better than that of
the second category of baseline methods (i.e., GCN and VGAE) which can fuse node
attributes. For example, compared with GCN, the performance improvement of TDLP
on four experimental networks is 0.204, 0.144, 0.079, and 0.272, respectively. This reflects
that in the link prediction, besides node attributes, the link formation rule in the network
is another important factor that affects the prediction result, and a more detailed method
design is needed to capture it. In short, the TDLP method not only supplements and
enriches the existing work, but also provides a new research perspective for link prediction
based on deep learning.

Table 11. The change of TDLP comprehensive performance compared with the baseline methods.

First Category Second Category
Traditional Methods Deep Learning Methods Deep Learning Methods
CN RA DeepWalk  Node2vec GCN VGAE
+0.866 +0.855 +0.250 +0.135
SCN (+0.895)  (+0.884)  (+0279)  (+0.164) +0.204 +0.160
+0.689 +0.680 +0.253 +0.168
ICN (+0.735) (+0.726) (+0.299) (+0.214) +0.144 +0.048
+0.662 +0.662 +0.259 +0.211
DEN (+0.693) (+0.693) (+0.290) (+0.242) +0.079 +0.029
CFN +0.617 +0.614 +0.316 +0.280 40272 +0.256

(+0.720) (+0.717) (+0.419) (+0.383)

Note: The values in brackets of the first category are the performance improvement of TDLP after introducing
node attributes.

6. Conclusions

In this paper, we proposed a deep learning model for link prediction (named TDLP),
which divides the link prediction task into two stages. Specifically, the representation
vector of network structure information and node attribute information is obtained in the
first stage, while link prediction is realized through the supervised learning that takes
place in the second stage. Extensive experiments on four real networks showed that the
method outperforms the baseline methods, including the state-of-the-art methods. The
main findings are summarized as follows.

First, based on the embedded representation of node characteristics, the TDLP method
transforms the link prediction into the supervised classification task, which can more
effectively capture the link distribution in the network. Its performance (accuracy, recall,
and F1) is significantly better than that of traditional methods (e.g., CN and RA) and
deep-learning-based methods (e.g., DeepWalk and Node2vec).

Second, through many experiments, we found that, compared with the results obtained
when only considering the network structure information, the performance of the TDLP and
two baseline methods (i.e., GCN and VGAE) was significantly improved after introducing
the node attribute information. The performance metric values of the TDLP were the
highest. This not only indicates that the use of attribute information can help improve
the accuracy of link prediction, but also further illustrates that the TDLP method has an
increased ability to capture link formation rules.

Generally, from the perspective of attribute and structure fusion and link distribution
capture, we proposed a deep-learning framework for link prediction, which can be used
when only considering the structure information and when considering both the structure
and attribute information. Accordingly, this framework is a supplement, enriching existing
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research work. In addition, our work lays a methodological foundation for practical
applications based on link prediction, such as system recommendations and technology
forecasting. For example, accurate friend recommendation can enhance the stability of
online dating community users, which is crucial to the development of the community.

In future work, we will focus on reducing the computational complexity of the TDLP
method to make it more suitable for scenarios with a large number of attributes. We
also aim to study link prediction considering the structural and attribute information on
dynamic networks.
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