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Abstract: Nowadays, it is crucial to have effective road traffic signal timing, especially in an ideal
traffic light cycle. This problem can be resolved with modern technologies such as artificial intelli-
gence, cloud and crowd computing. We hereby present a functional model named Cloud–Crowd
Computing-based Intelligent Transportation System (CCCITS). This model aims to organize traffic
by changing the phase of traffic lights in real-time based on road conditions and incidental crowd-
sourcing sentiment. Crowd computing is responsible for fine-tuning the system with feedback. In
contrast, the cloud is responsible for the computation, which can use AI to secure efficient and
effective paths for users. As a result of its installation, traffic management becomes more efficient,
and traffic lights change dynamically depending on the traffic volume at the junction. The cloud
medium collects updates about mishaps through the crowd computing system and incorporates
updates to refine the model. It is observed that nature-inspired algorithms are very useful in solving
complex transportation problems and can deal with NP-hard situations efficiently. To establish the
feasibility of CCCITS, the SUMO simulation environment was used with nature-inspired algorithms
(NIA), namely, Particle Swarm Optimization (PSO), Ant Colony Optimization and Genetic Algorithm
(GA), and found satisfactory results.

Keywords: cloud computing; crowd computing; traffic signal control; nature-inspired algorithm

1. Introduction

The smart city concept, which is about making intelligent decisions following a com-
prehensive calculation, has taken off in today’s widely digitized world. Moreover, such a
framework is also marked with a collection of information mechanisms and communica-
tion technologies everywhere, and ITS (Intelligent Transportation System) has been one of
the technologies used to control traffic [1]. An increase in the number of vehicles causes
numerous problems, which are thus flattened by specific policies and rules identified under
ITS. Congestion is a major road concern, which branches out into other issues such as fuel
consumption and air pollution. This factor also makes it hard to implement public safety
schemes in transportation [2] smoothly. In addition to these factors, the chances of road
accidents are always high amid such chaotic situations, and the lives of those driving along
(bikers, motorists and even pedestrians) are always at risk [3].

An urban traffic signal control system is needed to prevent driving delays caused by
trunk line congestion, exhaust emissions from frequent vehicle starts and stops, and fuel
waste from long idling times. Traffic control research has always focused on maximizing
intersection capacity and reducing vehicle delay.

The problem can be solved by optimizing techniques, crowd and cloud computing.
As regards verifying safety, the cloud platform provides accessible and timely information.
For example, vehicle drivers get quick alerts about the road conditions and find out if
such are clear or if some unpleasant event has taken place somewhere, due to which they
need to opt for some safer route to reach their destination safely. Another solution may
be using fog computing, through which authorities are informed about an accident or any
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emergency and rescue efforts, such as ambulances and firefighters, are needed desperately.
However, in the case of crowd computing, as mobile devices have become popular and
are seen everywhere, such communication equipment can be turned into a mobile sensor
which can help unlock real-time information concerning the vehicle’s travel time, speed
and usual traffic conditions. Such methodology is already in place in navigation systems
such as Google’s, which utilizes raw inputs gathered from users, providing real-time
traffic information (crisp and reliable) to those desperately looking for traffic updates.
This category of data is called “crowdsourced data”, which are used to decipher mobility
behaviour [4] and degree of congestion. Further, such type of data, sourced from the
crowd, is pretty accurate and is available to users efficiently and at a pretty economical
cost. Comparatively, physical sensors still depend upon traffic data and involve huge
installation and maintenance costs. Even though tremendous advancements have been
made in data availability, recent work about queue length information still shows a great
leaning towards adaptive signal control.

Currently, research efforts being undertaken in the area of autonomous traffic signals
control are concentrated in two primary areas. Firstly, automatic signal control adaptation
models are designed to modify signal cycle program duration during the peak hour when
vehicles in line demand it. The functioning of these technologies is strongly linked to the
sensor system and the computation of real-time traffic flow [5]. Although these techniques
have proven effective in several ci, real-time traffic network management has a very high
functioning cost. Traffic flow patterns in the real world tend to repeat themselves (peak
hours, holidays, etc.) [6].

In this paper, we have proposed nature-inspired algorithms, such as Genetic Algorithm
(GA), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), to provide
a better flow of the vehicle on the road. A traffic signal cycle pattern will be found using
SUMO, a traffic simulator. SUMO provides traffic cycle functionality for the instance’s
traffic signals. In this study, we have considered the road traffic network of Ranchi,
Jharkhand (India). The current studies worldwide consider the following points to develop
the CCCITS model.

• We offer an NIA method for generating efficient cycle schedules in a realistic urban
environment (SUMO simulation network).

• Data from such a simulated network are stored in the cloud.
• Crowdsourcing and social media streams help update the cloud data.
• In case of any major event (accident, fire, etc.) that disrupts traffic flow, crowd data are

provided, and updated information is stored in the cloud.
• Those about to take this affected route may change their direction after getting useful

updates and can take another regular route to their destination.

In Figure 1, CCCITS model is presented. In this model, we have offered an NIA
method for generating efficient cycle schedules in a realistic urban environment. First,
we have coded and implemented nature-inspired algorithms (GA, PSO, ACO) on the
SUMO simulation environment as a real-time road dataset. Secondly, the cloud and crowd
computing frameworks are combined to dynamically update the network information for
choosing an optimal path. Initially, the road network is stored on the cloud. In the cloud
framework, road-related data are used to identify the best route with the help of crowd
data. As the crowd gains access to cloud-based data, people can update this information in
the cloud regarding any mishappening, road accidents, etc. Thus, the users of a particular
road will be warned to pick a clear and safer route.

The following is a description of how this research work is structured. A survey of
research work in the literature is discussed in Section 2—problem formulation and technol-
ogy in Section 3. The optimization methodology is given in Section 4. The experimental
approach and findings are presented in Section 5, and Section 6 contains the conclusions
and recommendations for future work.
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2. Literature Survey

The development of intelligent transportation systems (ITS) has led to the development
of a wide range of implementations for safer and more convenient travel, owing to the
creation of smart vehicles. On the other hand, the growing number of automobiles on
roadways causes more and more congestion. Given this situation, a lot of research has
concentrated on finding solutions or ways to reduce this problem. Congested cities are at
crossroads. Signals are a systematic method for managing traffic at intersections to prioritize
traffic movements and maintain an effective and safe flow of traffic. The pursuit of phase
duration, cycle duration, and green times that would reduce interruption and optimize
data has been pushed by growing congestion since traffic signals were first introduced to
control conflicts at traffic junctions.

Congested traffic, characterized by frequent speed fluctuations and stops at signalized
intersections, consumes most fuel on urban arterials. Traffic control strategies have been
suggested to reduce urban fuel consumption and emissions, including the combination of
an ecology-based performance index and an evolutionary method for optimizing traffic
signal settings. Finding the best traffic light control parameters on a street network is an
optimization problem [7]. As smart cities develop, the traffic signal must be improved to
overcome the congestion on the traffic signal. Despite relentless efforts to improve traffic
flow, road traffic is controlled by very old traffic signals (3-color signals). Traditional traffic
signals have many problems, including inefficient time management at intersections and
no way to prioritize emergency vehicles. New technologies, such as Vehicular Ad-hoc
Networks (VANET) and the Internet of Vehicles (IoV), enable wireless vehicle commu-
nication [8] and are able to control traffic. Unlike previously, no such model and design
could detect road traffic and provide smart solutions. Standard layout lacks the dynamic
time intervals, learning, emergency priority management, and intelligent functionality of
modern designs [9].

Traffic signal coordination is a multi-objective optimization problem. This research
strategy can optimize a new traffic trunk coordinated control system, average delay, queue
length, and total delay at intersections [10]. A predictive control model controls inlet traffic
flows via network gates and traffic lights to control traffic congestion. Centralized and
decentralized schemes are compared [11]. In a centralized system, one unit controls the
network. This scheme is optimal, but it may not meet real-time computation needs in large
networks. In a decentralized system, each intersection has its control unit that sends local
data to an aggregator. The aggregator receives local information from all network control
units, and the emergency vehicle augments it and shares it with the control units. Since
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decision-making in a decentralized scheme is local and the aggregator must complete the
above tasks during a traffic cycle, the decentralized system is suitable for large networks
despite providing a suboptimal solution. In the future, the investigation can be expanded
from different aspects, including the energy consumption and emission of vehicles, taking
into account the publications [12–14].

The methods of controlling a traffic light in real-time are those that modify the signal
to the current conditions on the road. In [15], the authors proposed a PSO-based traffic
light cycle program to solve the traffic control problem. Real-world traffic data from
Argentina and Spain are used to test the proposed approaches. Performance is evaluated
in real-time using the SUMO traffic simulator. Compared to data from real-world traffic
measurements, the proposed methods increase vehicle departures and journey duration.
For the traffic signal intersection control problem, PSO with a linearly decreasing weight
technique has been applied [16]. This study aims to develop a finite interval model that
minimizes spoilage time. SUMO traffic simulator’s traffic simulation was framed by a
real-time simulation of Dalian, China. At intersections, a multi-objective-based PSO was
developed [17] to maximize the amount of delay and emissions experienced by each
individual while simultaneously increasing capacity. Every individual particle carries
both the signal cycle and the green times. In Jinzhou, China, a four-way junction served
as the testing ground for the program. The created Pareto-front solutions had a higher
degree of uniformity and diversity compared to their counterparts that NSGAII produced.
Furthermore, the proposed approach beat NSGA-II in terms of computing time while
running on the same hardware.

To effectively schedule the phases of each isolated traffic light, an intelligent traffic
light controlling algorithm (ITLC) [18] utilizes VANET communication to obtain real-time
data. The real-time traffic aspects of every flow that crosses the road connection, including
the number of moving vehicles, the speed of the traffic, and the volume of each traffic flow.
In addition to ITLC, the authors considered arterial traffic lights (ATL), which manage
traffic light signaling to control traffic at junctions. This algorithm finds nearby traffic lights
as well as real-time road traffic aspects to design and implement in red-green light phases.
an optimal traffic signal configuration schedule maximizes network traffic flow. The signal
timing control problem involves determining optimal phase sequences and durations. To
solve the traffic problem, geometric information describing target network intersections,
traffic information, including traffic demand and vehicle turning movements, and traffic
signal component limits are considered [19].

In [20], the paper proposed an intelligent context-aware negotiation protocol (ICANP)
where vehicles can reduce speed with the traffic light to enter the assigned green phase.
ICANP uses a genetic algorithm (GA) to reduce the crossing time. The ICAPP considers the
vehicle. When a priority vehicle approaches a signalized intersection, the ICAPP suspends
the green-light period for negotiating vehicles, allowing the first concerned vehicle to
proceed without waiting time. In [21], Younes introduced a context-aware traffic light
scheduling (CATLS) algorithm. By taking into account the traffic flow’s characteristics,
CATLS schedules each traffic light’s phases. The green phase of the traffic light can be
interrupted at any time so that emergency vehicles can cross the intersection. Due to the
high cost and limited availability of delay data, most adaptive traffic signal systems have
historically relied on volume and queue length data. SCOOT [22], SCATS [23], OPAC [24],
and RHODES [25] are notable examples of this kind of system. These adaptive traffic
signal systems (ATSS) and other commonly used ones use physical sensors such as loop
detectors, radar sensors, or nearly real-time traffic videos. The queue length and volume
count employed for adaptive signal systems at the network level by more modern and
innovative algorithms, such as max-pressure [26], also depend on physical sensors. In the
past, it was considerably more affordable to collect volume and queue data at intersections
than delay data. Because of this, traffic signals have not produced or used delay data;
however, it is randomly taken in most optimization algorithms implementations. In [27],
research introduces an adaptive traffic signaling scheme based on road traffic density to
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improve traffic signal control and management. Live video has been fed into a deep Q
network to generate adaptive phase timings and introduced per car unit (PCU) as a novel
input to represent each vehicle type’s traffic effect. Real-time data prove that the proposed
scheme increases traffic speed by 5.597 km/h. The proposed scheme increases mean speed
by 175.71% compared to static methods.

Current work on ATSS has mainly relied on queue length knowledge despite improve-
ments in data availability. Changing network back-pressure control [28] and controlling
network back-pressure [29] has been a recent research focus. Despite the decentralized
control approach, Max-pressure management has maximum analytical stability. A traffic
network with stochastic demand and a specific signal control policy is stable unless the
average vehicle number remains fixed over time. An unstable network suggests that there
needs to be more capacity to meet the moderate demand, which is partly driven by the
timing of the signals: limited queue buffers and dynamic method out-performs. Except [30],
prior work only used queue length information to control movements [31].

3. Problem Formulation and Technology

This section provides an overview of the problem formation and technology used
to control Road Traffic Signal Control (RTSC) with the help of the microscopic traffic
simulator SUMO.

3.1. Nature-Inspired Algorithm (NIA)

Evolutionary Algorithm (EA) and Swarm Intelligence (SI) are the two types of nature-
inspired algorithms, as indicated in the introduction. Both forms of algorithms, however,
share a similar structure for solving a problem. Initially, the population is seeded with
random or simple greedy heuristics, such as dispatch rules, to get things started. This means
that the values of all the decision variables must fall within their designated search ranges
or domains. The problem’s objective function is used to evaluate the first solutions. Once
this iterative procedure is complete, a new set of keys can be generated. EA uses techniques
including selection, crossover, and mutation, all of which are influenced by Darwin’s theory
of evolution [32]. Such mechanisms are, nevertheless, derived from the motion equations
of the living organism that inspired the algorithm in SI. The PSO and ACO pheromone
updated rules use the ideas of locations and velocities. The new population members are
examined to replace the old ones with established rules. Additionally, the population’s
objective values are also updated. Various local search or randomization tactics can be
applied during the search to encourage exploitation or exploratory behaviour. A stopping
requirement must be met before the iterative procedure may be completed (for example,
a set number of iterations, a set number of function evaluations, a set acceptable error
threshold, a set time limit, etc.). Finally, the method returns the optimal solutions along
with their objective values. Figure 2 illustrates a flowchart for a nature-inspired algorithm.

3.2. SUMO Simulation

An open-source, highly portable and microscopic traffic simulation problem for ex-
tensive traffic networks is provided by SUMO [33]. SUMO requires several input files
containing data on the traffic to be simulated. A network (.network.XML) includes infor-
mation on the map’s structure, such as nodes, connections, edges and nodes. A sequence of
scripts included in the SUMO package may be used to import the network from well-known
digital maps, such as OpenStreetMap [34], and transform it into a SUMO network.

This section explains our proposed optimization solution for the best cycle of a traffic
signal generation program. It is responsible for encoding the key, performing the fitness
function, and minimizing departed vehicle timing.
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3.3. Traffic Simulations and Their Solution

Each vehicle indicates a phase duration of one state of the traffic lights involved in a
given intersection following the pattern of programming cycles utilized by SUMO. This
information is then used to record the condition of the traffic lights in a real scenario. This
is accomplished with the assistance of a traffic sensor. Following one another, the phase
durations of the TL-logic components are inserted into the solution vector. This results in a
straightforward array of numbers that maps the traffic light staging, as seen in Figure 3.
The explanations are as follows: first, with integer values, the SUMO simulator depicts the
discrete sequence of time steps (seconds) that composes the entire simulation technique.
This sequence is what makes up the simulation. The presentation of information about
the most effective traffic signals makes use of integer numbers, which is also a function of
fitness. The optimization strategy for the Traffic light cycle program describes in Figure 4.
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3.4. Fitness Function

The fitness function is defined as a function that takes a candidate solution to the
problem as input and gives as output how to fit it for the problem. When analyzing
each solution, the information is incorporated into the explanation, which generates the
cycle program of the traffic light based on the occurrences that took place throughout the
simulation by applying the formula below:

Fitness =

(
∑A

a=0 Ov +
(

∑A+C
a=0 Wv

)
+ C · St

)
A2 + Cr

(1)

The main goal is to increase the number of vehicles arriving at their destination (A)
and simulation time (St) while decreasing the number of vehicles that do not arrive and
continue to circulate (C). Another goal is to reduce the overall duration of the vehicle’s
journey (Ov), and Wv is the stop and waiting time of the vehicle. During the simulation,
it is evident that the overall duration refers to how long it takes for the various vehicles
to reach their final road destinations. Vehicles with unfinished journeys (Cr), time spent
in the simulation time (St), and vehicles that arrive at their destination (A2). The number
of vehicles that arrive at their destination is included in this formulation. To obtain the
usually required color lights in phase length, states with more green lights on high-traffic
roads should be preferred over states with more red signals on low-traffic streets. In each
tl-logic stage state, the color calculation is done. Traffic signals light in green (G) and red
(R) in phase state h and tl-logic are counted in Glm and Rlm, respectively.

Cr =

(
∑tl

l=0

(
∑

ph
m=0 Slm

)
Rlm

)
Glm

(2)

4. Methodology

In this research, we have used two layered frameworks based on a nature-inspired
algorithm and cloud and crowd computing. In layer 1, out of the NIA, we have imple-
mented GA, PSO, and ACO for real-time road datasets using the SUMO environment.
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Figure 5 describes the Two-layered architecture based on cloud-crowd based intelligent
transportation system.
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In layer 2, the combination of cloud and crowd computing framework is used. The
real road network data are mounted on the cloud to initialize the road network. The SUMO
simulation model predicts the tentative route for the source–destination pair based on
the road network data. The users upload crowd-based information to update the route
information, and finally, a decision is taken to refine the route with the combination of
cloud and crowd computing. People in the crowd can update the information in the
cloud regarding any mishappening or road accidents. Other users using that road or
who would use that road network will be alerted beforehand to opt for a different, clear
and safer route. Actual traffic data are used to build a network simulation model, and
refinement is done through crowd-based information (through GPS). The intelligent NIA-
based algorithm predicts the suitable path for the users with the synergy of cloud and
crowd-based computational architecture.

5. Experimental Approach

The experimental approach used to evaluate the performance of our optimization
problem is described in this section. First, we will go over the traffic light scenarios created
expressly for this research work. The details of the implementation and parameters are
discussed below.

5.1. Dataset

We created one scenario by extracting information from a real digital map of Ranchi,
Jharkhand, India, as we are interested in constructing an optimization solver capable of
coping with close-to-reality and generic metropolitan environments, such as traffic rules,
traffic lights, road directions, streets, intersections.

5.2. Experimental Setup

A framework based on Python is employed to apply the nature-based method to
the traffic optimization problem (GA, PSO, ACO). Executing the traffic simulator SUMO
version 1.12 for Windows brings the simulation process to a successful conclusion. We
carried out 30 separate iterations of our model for each unique case instance. The population
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size was determined to be 100 particles, and there were 30 iteration steps in each run and
instance. As a consequence, 30 different solutions were examined.

5.3. Results and Analysis

NIA such as GA, ACO and PSO algorithms have been used in traffic signal opti-
mization techniques for creating successful traffic light programs for an area in Ranchi,
Jharkhand (India). A simulation run on the same scenario using a conventional algorithm
(Dijkstra) has been done to evaluate the performance comparison with NIA algorithms.
In addition, an instance is taken from real road traffic to compare the performance of the
considered NIA algorithms with real-time road traffic scenarios. Depending on the number
of vehicles on the road junction and the number of traffic signals operational, a total of
30 distinct numerical iterations have been generated. Several analyses have been carried
out from various perspectives on road junctions. It is observed that a 24% improvement
in the flow of vehicles can be achieved using the proposed PSO, and 22% and 17% of
improvements in the flow of vehicles have been achieved using ACO and GA, respectively.
The performance measure considered here is the traffic flow determined on the same con-
sidered path. It indicates the improvements in congestion and waiting time. Performance
and analysis at each iteration have been described in Figure 6, flow of vehicle, fitness and
simulation values are described in Figures 7 and 8, respectively.
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Iteration values are listed below in Table 1 concerning the simulation time (ST), vehicle
count (VC), and fitness value (FV). The comparative results show that the PSO algorithm
outperforms the ACO and GA algorithms. An increase in the vehicle route denotes a more
significant number of vehicle inflow, which is intended for efficient transportation. PSO
reaches its maximum vehicle count at the 19th iteration, whereas ACO and GA reach a
maximum of 590 and 544 until the maximum iteration is considered the 30th iteration.
Fitness value indicates how fit the system is in terms of flow at any instance, and the value
is expected to be lower. The fitness value is improved in all three cases, and PSO and ACO
exhibit comparative FV. It is also observed that PSO is better in terms of consumption than
ACO and GA.
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Table 1. Comparison of various listed NIA algorithms.

Iteration
PSO ACO GA

ST VC FV ST VC FT ST VC FV

1 39 53 1480.99 46 10 1320.92 59 32 1220.99
2 101 61 1410.07 66 18 1210.17 101 62 1010.07
3 119 105 1029.05 89 23 959.05 119 88 929.05
4 189 106 910.12 143 36 810.11 189 118 710.12
5 262 185 735.17 187 39 605.17 262 137 635.14
6 385 209 635.01 214 50 495.12 285 175 435.02
7 355 263 525.11 275 59 385.19 375 193 325.11
8 365 273 425.18 305 77 224.82 405 208 325.13
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Table 1. Cont.

Iteration
PSO ACO GA

ST VC FV ST VC FT ST VC FV

9 382 299 324.72 332 109 282.14 432 228 324.72
10 404 328 282.11 466 149 185.95 456 250 222,11
11 410 364 195.45 515 172 178.34 510 277 115.45
12 430 407 188.34 545 183 112.28 530 310 118.34
13 449 447 170.88 549 231 108.08 569 326 110.88
14 462 535 160.87 588 298 73.89 582 340 110.07
15 483 581 89.69 596 334 76.17 583 407 83.69
16 503 591 71.17 613 341 75.03 643 422 77.37
17 523 595 65.03 629 375 69.98 654 426 75.03
18 654 598 58.78 664 412 59.77 674 427 68.78
19 584 600 49.08 684 466 49.18 724 431 59.02
20 624 600 35.28 714 471 38.69 768 442 45.78
21 668 600 31.11 778 496 26.72 774 471 33.59
22 710 600 17.05 819 528 17.49 810 474 16.02
23 802 600 15.39 922 549 11.03 902 485 19.69
24 814 600 11.08 924 571 10.48 914 492 4.03
25 854 600 12.78 959 573 9.58 954 497 15.48
26 881 600 11.78 966 580 8.62 981 499 10.98
27 883 600 10.92 983 581 7.54 983 509 10.02
28 889 600 9.64 984 583 8.68 989 518 13.24
29 901 600 8.68 987 588 6.38 1011 535 15.48
30 919 600 6.57 989 590 5.78 1045 544 10.98

6. Conclusions

This paper presents an optimization strategy for developing a traffic light program
based on the nature-inspired algorithm. We investigated the flow of traffic in Ranchi,
Jharkhand (India). The road traffic data are mounted in the CCCITS model depending
on the number of vehicles that are present at a road junction as well as the number of
traffic signals that are currently active. In order to transport the active vehicle in the
considered network most effectively, a model that is based on cloud and crowd computing
is combined with CCCITS. The paper’s novelty is the consideration of NIA for routing
purposes and feedback using crowd computing through the interface with the cloud.
Several different junctions of the road have been analyzed from a variety of perspectives
in order to carry out a number of calculations to determine the vehicle counts and fitness
values. It has been observed that PSO can achieve approximately 24% of improvement,
ACO can achieve approximately 22% of improvement, and GA can achieve approximately
17% of improvement. Our proposed CCCITS model is well-suited for urban areas and
metropolitan cities to ensure the efficient flow of vehicles and transportation.
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