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Abstract: Short-term traffic flow prediction is the basis of and ensures intelligent traffic control. How-
ever, the conventional models cannot make accurate predictions due to the strong nonlinearity and
randomness in short-term traffic flow data. To this end, the authors of this paper developed a novel
hybrid model based on extreme learning machine (ELM), adaptive kernel density estimation (AKDE),
and conditional kernel density estimation (CKDE). Specifically, the ELM model was employed for
nonlinear prediction. Then, AKDE was established to estimate the bandwidth of CKDE (i.e., AKDE-
CKDE), which predicted the training residuals obtained by ELM. Finally, the predicted results of
the two models were superimposed to derive the final prediction of the hybrid model. Two case
studies based on measured data were conducted to evaluate the performance of the proposed method.
The experimental results indicate that the proposed method can realize a significant improvement
in terms of forecasting accuracy in comparison with the other concerned models. For instance, it
performed better than the single ELM model, with an improvement in the evaluation criterion of a
mean relative percentage error of 7.46%.

Keywords: short-term traffic flow prediction; hybrid model; ELM; AKDE-CKDE

1. Introduction

With the acceleration of urbanization and the rapid increase in car ownership, traffic
congestion in urban areas is becoming more and more serious, leading to a series of
social problems, such as traffic accidents, air pollution, energy waste, and so on. These
problems have greatly decreased the living standard of human beings. The emergence of
the intelligent transportation system (ITS) has effectively alleviated traffic congestion and
traffic accidents, thereby improving the efficiency of urban traffic operations and reducing
environmental pollution [1].

Short-term traffic flow prediction is one of the crucial tasks of ITS. It aims to forecast
the variation in traffic flow soon from a few seconds to a few hours based on historical traffic
data. The accuracy and efficiency of prediction play a decisive role in the performance of
path guidance and transportation management [2]. In recent decades, to enhance prediction
accuracy, domestic and foreign scholars have put forward a wide variety of approaches.
Generally, research on traffic flow prediction falls into the following three categories:
statistical theoretical models, intelligent models, and hybrid models.

The commonly used statistical models include time-series models (e.g., autoregressive
integrated moving average (ARIMA), seasonal ARIMA (SARIMA), etc.) [3-6], the Kalman
filtering model [7,8], the hidden Markov model [9], etc. All of them can obtain linear
characteristics hidden in traffic flow data by selecting appropriate parameters. In general,
the statistical theoretical models may be more suitable for short-term forecasting and widely
utilized in practice due to the simpler model structure and the lower requirement for
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data [10]. However, related studies have clarified that these models ignore the interferences
of random factors in traffic flow and cannot explain the short-term traffic flow data with
strong nonstationarity and high nonlinearity [11-13].

Due to the rapid development of computer technology, a considerable number of
prediction technologies based on intelligent models have been developed to achieve high-
precision predictions for traffic series with nonlinear and nonstationary characteristics.
Commonly used intelligent prediction models in short-term traffic flow prediction include
the wavelet neural network (WNN) [14,15], support vector machine (SVM) [16,17], least
square SVM (LSSVM) [11], long short-term memory (LSTM) [18,19], and so on. These
models can cope with the nonlinear component of the input signal effectively and achieve
more accurate prediction results than statistical theoretical models. In addition, it is worth
mentioning the ELM model. Huang et al. [20] proposed a new learning algorithm called
extreme learning machine (ELM), which exhibits a good generalization performance for
feedforward neural networks. This method is different from the previous feedforward
neural network parameter adjustment method, which does not need to adjust parameters
iteratively, and has the advantages of low complexity and fast convergence. However,
the over-fitting problem cannot be addressed completely in ELM, which could affect the
model’s prediction accuracy [21]. For this reason, many scholars have proposed a variety of
improved ELM applications, which have achieved satisfactory performance. For example,
Cai et al. [22] and Cui et al. [23] proposed a new PSO-ELM model based on particle swarm
optimization, an extreme learning machine (GSA-ELM) optimized by the gravity search
algorithm to predict short-term traffic flow. The prediction results indicated that both
models mentioned above could effectively improve the prediction accuracy compared
to the standalone basic ELM model. Obviously, the aforementioned single models have
advantages and high adaptability to nonlinear data. Nevertheless, it is hard to obtain
satisfactory predictions using only a single prediction model to predict traffic flow with
nonlinear, nonstationary, and random characteristics. At the same time, the standalone
basic ELM has certain limitations in practice, which require further research.

Considering the defects of single models, hybrid models based on probabilistic char-
acteristics have been developed and have become increasingly popular in recent years
because they can explain the random components of short-term traffic flow data. Recently,
numerous scholars have combined the deterministic prediction model with the probabilistic
prediction model to establish hybrid prediction models, which capture the nonlinear and
random characteristics embedded in the traffic flow time series, respectively. At the same
time, the hybrid models can give full play to the strengths of each model to provide more
satisfactory predictions. So, a variety of probability estimation approaches for predicting
have been proposed. The typical representative of the probabilistic model is Gaussian
process regression (GPR), widely used for short-term traffic flow prediction. For example,
hybrid models based on the GPR model were established to forecast short-term traffic flow
and gained satisfactory prediction performance in Refs. [24,25]. In addition, kernel density
estimation (KDE) as a nonparametric model can also provide a probabilistic prediction. The
most striking feature of KDE is that it can directly use sample data without any parameter
assumptions to estimate the target object. Zhou et al. [26] combined the k-means LSTM
network model and nonparametric KDE method with bandwidth optimization for wind
energy prediction. The results showed that the proposed model had higher prediction
accuracy. Jeon et al. [27] used conditional KDE (CKDE) and Monte Carlo simulation of a
statistical model for wind power density forecasting and generated satisfactory prediction
results. To the best of our knowledge, the related research of the KDE model is rarely
involved in the field of traffic flow prediction.

Generally, as an improvement of KDE, CKDE can fully use prior information. Mean-
while, the determination of the kernel bandwidth is a crucial step in the KDE method [28].
Nevertheless, the overall optimal bandwidth of CKDE cannot adjust according to the local
interval’s data density, resulting in poor local adaptability. In order to tackle this problem,
the adaptive KDE (AKDE) method was employed to improve the CKDE method and
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enhance its local adaptability [29]. Furthermore, the high complexity of traffic systems
leads to significant randomness of traffic flow, and considering stochastic factors ensures
accurate traffic flow prediction. Probabilistic density estimation can effectively quantify
the uncertainty of traffic flow and provide more comprehensive information for traffic
flow prediction. In light of the above, it is essential to develop a novel effective prediction
method further to improve the accuracy of short-term traffic flow prediction. The authors of
this paper developed an innovative hybrid short-term traffic flow forecasting model based
on the ELM, AKDE, and CKDE. Specifically, the ELM model was adopted to predict the
original traffic flow sequence, and the training residuals were obtained. Secondly, AKDE
was utilized to estimate the variance in each dimension of the reconstructed samples. Then,
the variance was used to replace the relevant parameters of CKDE, and the AKDE-CKDE
model was established to forecast the residuals. Thirdly, the final prediction results were
obtained by summing up the prediction values of the ELM and AKDE-CKDE model. Fi-
nally, the proposed model was analyzed based on two groups of traffic flow data. In order
to better exhibit the performance of the proposed model, the authors selected the ARIMA,
LSSVM, ELM-CKDE, ELM, and CKDE methods for comparison. Some conclusions are
drawn in the end.
The main contributions of the proposed model are:

e  Anovel hybrid predictor based on the ELM, AKDE, and CKDE is proposed for short-
term traffic flow prediction. The main characteristic of the predictor is that it considers
the nonlinearity and randomness characteristics of traffic flow data, making it more
suitable for the actual situation;

e  The corresponding parameters of CKDE are replaced by the variance in the recon-
structed residual samples estimated by AKDE, which improves the model’s adapt-
ability. In addition, AKDE-CKDE can directly use the sample data for distribution
estimation without any parameter assumptions;

e  Through extensive experiments on two real-world datasets at the intersection of the
main road in the main urban area of Chongqing, the results show that the proposed
hybrid model can increase the precision of urban road traffic flow prediction.

The remainder of this article is organized as follows. The basic principles of the
methods and the hybrid forecasting model are briefly introduced in Section 2. Two case
studies were conducted based on actual traffic flow data, and the corresponding results and
analysis are given in Section 3. Finally, Section 4 summarizes some of the main conclusions.

2. Materials and Methods

The ELM, as a single hidden layer feedforward neural network, can randomly initialize
the weights and thresholds of the input layer and hidden layer and get the corresponding
output weights. It has the advantages of fewer training parameters, faster learning speed,
as well as better generalization performance [30]. On the other hand, the combination of
AKDE and CKDE can effectively and quickly obtain the probability density function (PDF)
of the target variable. The authors of this paper combined the merits of these two models
and constructed a new hybrid prediction model, i.e., the ELM-AKDE-CKDE.

2.1. Extreme Learning Machine (ELM)

As an improved single hidden layer feedforward neural network, the ELM has the
capacity of training samples without resetting the cost and threshold value, and the optimal
connection and bias parameters can be obtained by solving the matrix equation [20]. A
typical single hidden layer feedforward neural network is shown in Figure 1.

Suppose there are n arbitrary training samples {x;,y;}, x; = [xi1, X0, -+, xin]TG R",
Vi = Wi Y, - ,yim]T € R". w;(i =1,---,n,j=1,---,1) is the connection weight
between the input layer and the hidden layer; By (j =1,---,I, k=1, - ,m) denotes the
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connection weight between the hidden layer and the output layer; by(k =1, - - - ,1) is the
hidden layer bias value. Then, the ELM model can be formulated as:

1
ti:Zﬁjg(wjxi+bj),i:1,~--,n 1)
j=1
where g(x) is the activation function; B = [ﬁjl,ﬁjz,- . ,ﬁjm]T, wj = [wjl,wjz, e ,wjn]T.
0,
Input layer Output layer
Hidden layer
Figure 1. ELM architecture.
Its matrix form is:
HB=T 2)

where H is the output matrix of the hidden layer; 8 is the matrix of the output weights; T is
the output vector.

g(wix1 +b1) glwax1+by) -+ glwxy +by)
b g(wlx‘Z‘Fbl) g(wzxfrbz) g(wlx.Z‘i‘bl) @
(w1xn +b1)  g(waxy +b2) -+ glwixn+by)],,
p= [:B{ ‘Bg :BlT]lxm @)
T= [t{ t% e tz;l]nxm ®)

The goal of network learning is to minimize the output error of the neural network, i.e.,
n

Yo llti—yill =0 (6)
j=1

By training the single hidden layer neural network to obtain optimal f, which is
calculated as:
1Hp = Tl = min|[HB — T| @)

The elimination of j gives
B=H'T 8)

where H™ is the generalized inverse of matrix H.
The ELM algorithm can be summarized as follows:
Given a training set {(x;,y;)|x; € R",y; € R",i=1,2,--- ,n}:
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1.  Determine the specific structure of the ELM network, such as the hidden neuron node
number ! and the hidden layer activation function g(x);

2. Randomly determine the input weight wij(i =1---,nj=1,---,]) and bias
by(k=1,---,1) of the hidden neuron;

3. Calculate the hidden layer output matrix H in Equation (3);

4. Calculate the output weight B in Equation (8).

2.2. Adaptive Kernel Density Estimation and Conditional KDE (AKDE-CKDE)

As a matter of fact, the choice of bandwidth matrix has a great effect on the estimation
results, while the selection of the kernel function may have a minor effect [10]. Therefore,
the authors adopted the AKDE method selected by plug-in bandwidth, which can effec-
tively and quickly obtain the probability density estimation function [29]. After that, the
coefficients of CKDE were estimated by the variance obtained from the probability density
of the sample data in the AKDE method. The detailed illustration of AKDE-CKDE in traffic
flow prediction is shown as follows:

Assume that a set of discrete time series of traffic flow after data processing is
{x1,x2,...,x,}. For one-step ahead prediction, N d-dimensional explanatory variables
xp = [x(t),x(t+1), -, x(t+d—1)] and N target variables y; = [x(t+d)], t =1,2,--- ,N
can be constructed by the following equation:

x1 x(1) --- x(d) 1 x(d+1)
=] =] ©)
XN x(N) -+ x(n—-1) YN x(n)

where N = n — d. Then, the sets of x; and y;(t = 1,2, -- ,N) can be regarded as indepen-
dent samples of random vector x(x € RY) and random variable y(y € R), respectively.
Combine x and y, a random vector z = (x,y) € R¥*! with the sample {z; = (x;,y;)} can
be constructed.

Then, the multi-dimensional kernel function of the random vector z is shown as

f(2) = f(x,y) = NlB‘deH[B 1z — z)]
., N ) (10)
= g 5y B = 0] KBy - w0
Similarly, the multi-dimensional kernel density estimation for x is given by
flx N|Bx ZKd[ x—xt)} (11)

where K, (-) denotes Gaussian kernel density function. The Gaussian kernel function is
often used as the kernel function due to its advantages of simplicity of use. Its expression

is shown as i g
1 + +1
Kia(u) = (m) Hexp<—>
1

u= (”1/ Up, =+, ud—i—l)T (12)

On the other hand, B, represents a symmetric and positive definite kernel bandwidth
matrix. For simplicity, the diagonal matrix is used as the kernel bandwidth matrix in this
paper, and its expression is
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Bz = . (13)

bai1

where by, by, - - - , by are the bandwidth parameters corresponding to each dimension of
the independent variable x, b, is the bandwidth parameter of y. by, by, -+ ,by and b,
determine the smoothness in the x—direction and y—direction, respectively.

Then, in this study, adaptive kernel density estimation via diffusion was utilized to
obtain the mean and variance of the grid points [29], which are shown as

A
Ei(x) = )Py~ x; (9
j=1
7 = E() — (Ei(x)% i=12 - ,d+1 (15)

where j = 1,2,--- ,A denotes the number of discrete grid points, which is large enough.
In this study, normal reference criterion (NRC) was employed to determine the value of
bandwidth parameter b;(i = 1,2, - - ,d + 1) [31]. Both of them can be calculated by:

4 (1/d+4)

e

%7 (121/2/ /d)

4 (1/d-+4)
=G mn—a)
where 0;(i = 1,2,- -+ ,d + 1) is the standard deviation of the grid point probability density.

Based on the above results, the distribution of target variable y under the condition of
explanatory variable x can be expressed as

f(z) N 1 _
7x) _t_zl{wt(x) B 'K[Byl(y_yt)}}

oy, (y=d+1) (16)

flylx) =

wn(x) = Ky [By ! (x — x;)]

= 17)
gj K, {B;l(x — xt)}
=1

The conditional expectation and variance of y can be calculated by utilizing Equation (17),
which are shown as

N
= /yf(yIX)dy =) wi(x) -y (18)
t=1
2 2 7 2 N 2 2
= [ (y—w’ flylx)dy = |B* + L wi(x) -y — (19)
t=1
In this way, the one-step ahead forecasting results can be produced by
N
fn4+1)=pn+1) =Y wi(xn1) - ye (20)
t=1
5 N
o*(n+1) = [By|” + Y wi(xnsr) - yi® — 12 (21)
t=1

M=

fn+1)=

{m&mﬂw%yK@f@%ﬁ} (22)

t=1
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where £(n+1),0%(n+1) and f(n + 1) denote the one-step-ahead predicted value, variance
and PDF at the time 1 + 1, respectively.

2.3. Hybrid Forecasting Model

Through the above brief review, a novel hybrid model-ELM-AKDE-CKDE was em-
ployed to enhance prediction accuracy. The ELM model was applied to predict the short-
term traffic flow and the training residuals were obtained. Then, the variance of each
dimension of the reconstructed sample estimated by AKDE was used to substitute the
corresponding parameters of the CKDE model and obtain a one-step-ahead estimation. At
the final forecasting task, the prediction result was obtained by the superposition of the
two models’ predicted values. The specific flowchart of the ELM-AKDE-CKDE model is
shown in Figure 2, and the complete steps are shown as follows:

1. Divide original data into two parts, including the training part {x(1),---,x(n)} and
the forecasting part {x(n+1),--- ,x(n+ N)};

2.  Establish the ELM network, and set the hidden node number [ and hidden node
output function g(x), by which the prediction results {#'(n +1),--- ,%'(n + N)} and
training residuals {r(1),--- ,r(n)} can be obtained;

3. Replace the corresponding parameters of CKDE with the variance in the reconstructed
residual samples estimated by AKDE, then implement one-step-ahead estimation for
the residual sequences {r(1),- - - ,#(n)}, by which the predictive value of the n + 1th
residual data #(n + 1) can be estimated by AKDE-CKDE;

4. Update the training part to {x(2),---,x(n + 1)} and repeat steps 2-3, and the cor-
responding residual forecasting result #(n 4 2) can be obtained. Continue one-step
ahead prediction until the overall forecasting part is predicted, and the predicted
values of the training residuals {#(n+1),--- ,#(n + N)} can be obtained;

5. Summarize the predicted result of ELM £’ (n + 1) and the predicted result of AKDE-
CKDE #(n + 1) and gain the ultimate prediction results £(n + 1), i.e,, 2(n +1) =
£'(n+1)+#(n+1). By analogy, the final forecasting results {£(n + 1), --- ,£(n+ N)}
can be obtained;

6.  Analyze the forecasting results and evaluate the performance of the proposed model
via comparing it with the involved models.

‘ Original Traftic Data ‘

‘ Data Preprocessing ‘
N Build
} ELM-AKDE-CKDE Model
I T
| v v
I | ELM Deterministic Prediction Obtain the Training Residual r-r————7"7"7""7""™""" 1
} for Original Traffic Volume Sequences : Construct Explanatory and :
} ¥ 12 || Target Variables of CKDE ||
} Build ELM Model and Training Build AKDE-CKDE Model for ||, : ¢ :
| ara 'S sidual S ces ~ .. .
! Parameters Residual Sequences | Optimize Bandwidth |
} v I'|Parameters of CKDE by AKDE :
I Obtain Predictive PDFs of Target : |
} Variables | T T T T T T T T T T T T T
I
| v
} Obtain One-step Ahead Predictive
} Values of Residual Sequences
I J
! v
I X N
| Sum up Forecasting Result of
| Each Subseries
I
| ¥
e Update Training Part Using
Actual Data
Results Analysis and Model
Evaluation

Figure 2. Flowchart of the proposed model.
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3. Case Study
3.1. Data Description

To better present the performance of the proposed model, two groups of collected data
were utilized for prediction. Dataset 1 and dataset 2 came from the A and B intersections
of the main road in the main urban area of Chongqing, respectively, as shown in Figure 3.
The collection lasted for a week with a statistical interval of 5 min. A total of 2016 sample
data were contained in each dataset.

Figure 3. Location of the intersection in Chongqing.

In this section, the predictive performance of the proposed model based on dataset 1 is
presented first. For the sake of making the prediction results more convincing, two-thirds of
the data were used to construct and train the model, and the rest were utilized to evaluate
the performance [32]. The statistical results of dataset 1 are shown in Figure 4 and Table 1.
It should be noted that skewness = 0 and kurtosis = 3 mean that these data overall obey
Gaussian distribution, and a value farther away from the target value indicates a stronger
non-Gaussianity characteristic. In Table 1, it can be seen that dataset 1 fluctuates severely
and has strong nonstationarity and non-Gaussianity.

200 T T

Training Part Forecasting Part

160}

—_
[
S
T

>0
(=3
T
Il

Traffic Volume(pcu/5 min)

o
=
T

0 504 1008 1512 2016
Time Series (5 min)

Figure 4. Traffic volume time series (dataset 1).

Table 1. The statistical information of the dataset 1.

Data Source Mean Std. Maximum  Minimum Skewness Kurtosis

Dataset 1 57.9851 38.5088 168 1 —0.007 —-1.172
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3.2. Evaluation Criteria

In order to quantitatively evaluate the performance of the proposed model for short-
term traffic flow, the following four frequently used indicators were selected in this study:
mean absolute error (MAE), mean relative percentage error (MRPE), root mean square
error (RMSE), and root mean square relative error (RMSRE). Their specific mathematical
expressions are displayed as follows:

The MAE represents the mean of the absolute error between the predicted and mea-
sured value:

18
MAE = 2} lyi = 9il (23)
i=1

The MRPE was used to measure the relative errors between the average predicted
value and real value on the test set:
1 n
MRPE = —
ik

Yi — 7

24
m (24)

The average differences between the measurements and the predictive values of the
method were measured by RMSE:

18
RMSE = [} (y; = 9)° (25)
i=1

The RMSRE represents the standard deviation in the relative error of the prediction:

T YA
RMSRE = \l n2<) (26)

i=1 Yi

where y; and #; represent the measured value and predicted value, respectively. It is
obviously seen in Equations (23)—(26) that the smaller the values of MAE, MRPE, RMSE,
and RMSRE, the higher the prediction accuracy.

3.3. Performance Evaluation

For the sake of reflecting the superiority of the proposed model, five other models,
including the ARIMA model, LSSVM model, ELM-CKDE model, ELM model, and CKDE
model, were employed for comparisons. In fact, different parameters may have great
impacts on the performance of the prediction method. The ARIMA model, as a statistical
model most commonly used for time-series forecasting, can well capture the linear relation-
ships in short-duration traffic volume data [3]. Here, we used the ARIMA (1,1,1) model to
predict the traffic flow. As for the ELM method, we set 30 neuron nodes for the hidden layer
and generated randomly input weight and bias. For the CKDE nonparametric method,
the sample data can be used directly to estimate the distribution without any parameter
assumptions. It should be noted that, all experiments were run with the aid of MATLAB
2019a software on a 2.40 GHz PC with I5-1135G7 and 16 GB RAM. In addition, each method
was run 10 times independently to mitigate the influence of randomness. On this basis,
short-term traffic flow prediction was implemented, and the corresponding forecasting
results are given below.

3.4. Traffic Flow Prediction

Taking the case study based on dataset 1 as an example, the prediction process of
the proposed method is briefly explained below. In this study, the sigmoid function was
chosen as the hidden layer activation function of the ELM network, and its mathematical
expression is shown as

(27)
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According to the above parameter settings, the ELM-AKDE-CKDE model was con-
structed for experiments. We manually adjusted the parameter value that denotes the input
vector dimension of the ELM model mentioned above and compared the MRPEs of the
prediction results under different dimensional values, as shown in Figure 5. When the
dimension of the input vector was 9, the prediction result achieved the best MRPE. This
means that each input vector of the prediction model was composed of nine consecutive
data values in the original traffic flow data, and the corresponding output value is the pre-
dicted value of the tenth data point after the initial nine. Finally, we select the 9-dimensional
input vector for the experiments to obtain the training residuals of the ELM network.

One-step ahead traffic flow prediction was adopted to illustrate the performance of
the proposed method. After subseries reconstruction was achieved, the matrix B, in CKDE
was determined by employing the AKDE and NRC methods. Finally, the estimated proba-
bility distribution of traffic flow for the ELM-AKDE-CKDE model prediction results was
obtained. Analogously, the probabilistic prediction results could be obtained by applying
other probabilistic estimation models, and the final one-step-ahead results, including the
predictive PDF and single-value prediction, were generated and are shown in Figure 6.
The above procedure was executed for the other training data, and the corresponding
prediction results are provided.

0.45 T T T T T T T T

0.33 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20

Dimension of Input Vector

Figure 5. The MRPEs of the prediction results by different dimensions of input vector (dataset 1).

T T 0.05 T T T
— - —AKDE Proposed —----CKDE ELM-CKDE — - —AKDE Proposed =-=--CKDE ELM-CKDE
e Actual value A Predicted value of CKDE e Actual value A Predicted value of CKDE
#Predicted value of the proposed model #Predicted value of the proposed model
Predicted value of ELM-CKDE i 0.041 Predicted value of ELM-CKDE i

r 0.03 -
a9

I =

! [

I .
'i | 0.02 -
o\

I\

S 0.01 -
| \.

- 0.00
51 102 153 0 42 84 o126 168
Traffic Volume (pcu/5 min) Traffic Volume (pcu/5 min)

(a) (b)

Figure 6. Predictive PDFs, predictive values and actual values of the 14th (a) and the 560th (b) data
points in the test part of dataset 1.
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3.5. Prediction Results and Analysis

After obtaining the measured data and predicted data, the evaluation index values
of the five models involved were calculated, as shown in Table 2. Compared to the other
models, the decreased percentage of the proposed model in this paper is shown in Table 3.
For the simplicity of the description, the proposed model is abbreviated as proposed. The
results can be seen in Tables 2 and 3.

Table 2. Result comparisons of different models (dataset 1).

Model MAE MRPE RMSE RMSRE
Proposed 9.174 0.335 13.534 1.210%
ARIMA 9.359 0.345 13.751 1.289%
ELM-CKDE 9.890 0.370 14.774 1.248%
ELM 9.274 0.362 13.664 1.273%
CKDE 9.583 0.389 14.175 1.311%
LSSVM 9.395 0.342 13.700 1.257%

Table 3. Improved percentages of the other models by the proposed method (dataset 1).

MAE (%) MRPE (%) RMSE (%) RMSRE (%)

ARIMA vs. proposed 1.98 2.90 1.58 6.13
ELM-CKDE vs. proposed 7.24 9.46 8.39 3.04
ELM vs. proposed 1.08 7.46 0.95 4.95
CKDE vs. proposed 427 13.88 4.52 7.70
LSSVM vs. proposed 2.35 2.05 1.21 3.74

In terms of the single models, two nonlinear models, including ELM and LSSVM,
achieved better prediction than the other models. The reason could be that the nonlinear
information in dataset 1 is more significant than the linear information. In other words,
the ELM and LSSVM models focus on addressing the problem of nonlinear classification
and prediction, and they thus outperformed the traditional statistical method ARIMA,
but the accuracy was still low. Although CKDE takes the stochastic characteristics of the
data into account, it performed the worst overall, and the reason could be that the linear
and nonlinear components of the data were ignored when the individual CKDE model
predicted traffic flow.

Compared to the single models, the results show that the proposed model produced
overall improvements in the experiment, and the reason could be attributed to the fact that
the combination of the ELM and AKDE-CKDE could not only extract multiple characteris-
tics embedded in the data but also utilize the strengths of the individual models.

Based on the comparisons between the ELM-AKDE-CKDE and ELM-CKDE models,
the improvements by the proposed method in terms of MAE, RMSE, MRPE, and RMSRE
were 7.24%, 9.46%, 8.39%, and 3.04%, respectively. In addition, a similar comparison
was conducted between the ELM and the proposed model. The results indicate that the
AKDE-CKDE method surpassed CKDE in boosting forecasting accuracy; the reason may
be that AKDE-CKDE is more effective in dealing with the data randomness of the residuals
obtained by ELM. Because AKDE usually has the obvious advantages of being more
adaptive, and the overall optimal bandwidth can be adjusted according to the sample
density of the characteristic variable data.

In order to more intuitively compare the prediction results of the proposed model
with other involved models, Figure 7 exhibits a comparison of the prediction performance
of the proposed model and the other models on the forecasting data-set.
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Figure 7. The prediction results of different models (dataset 1).
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As shown in Figure 7, the predicted values of the proposed model are closer to the
true value than other models in the local interval, which indicates the superiority of the

proposed model.

3.6. Additional Case

To further verify the applicability of the proposed model, another set of data with
different periods and fluctuations (dataset 2) was used to prove that the ELM-AKDE-CKDE
model can provide superior short-term forecasts of traffic flows. Analogously, the statistical
results of dataset 2 are depicted in Figure 8 and Table 4.

80 T T

Training Part

N\

[oN)
(=
T

Traffic Volume(pcu/5 min)
S
T

Forecasting Part

\ _

20 |
!
0 i i ! 1
0 504 1008 1512 2016
Time Series (5 min)
Figure 8. Traffic volume time series (dataset 2).
Table 4. The statistical information of the dataset 2.
Data Source Mean Std. Maximum  Minimum  Skewness Kurtosis
Dataset 2 20.1518 14.4026 66 0.25 —0.302 —0.693

In comparing dataset 1 and dataset 2, we can intuitively observe from Figures 4 and 8
that they have similar trends and show strong cyclical characteristics. Still, the average
traffic flow of dataset 2 is slightly low, implying slightly less volatility. Analogously, the
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same experiment was conducted on dataset 2, and the performance is shown in Table 5.
In order to visualize the difference between the test performances of different methods,
we constructed a bar graph according to Table 5, as shown in Figure 9. The intuitive
comparative results are exhibited in Figure 10.

Table 5. Result comparisons of different models (dataset 2).

Model MAE MRPE RMSE RMSRE
Proposed 4.451 0.387 6.245 0.756%
ARIMA 4.554 0.394 6.391 0.748%
ELM-CKDE 4.595 0.417 6.396 0.826%
ELM 4.507 0.413 6.294 0.817%
CKDE 4.609 0.489 6.401 0.996%
LSSVM 4.492 0.397 6.314 0.781%
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Figure 9. Performance comparison bar chart (dataset 2).
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Figure 10. The prediction results of different models (dataset 2).
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In Tables 2 and 5, it can be seen that the MAE, RMSE, and RMSRE of the proposed
method of dataset 2 are smaller than the proposed method of dataset 1, but the MRPE is
greater. This may have been due to the existence of different data characteristics in the two
datasets, such as the smaller average traffic flow in dataset 2. It is worth noting that the
MRPE of the ARIMA model is higher than that of the ELM-AKDE-CKDE model, but the
RMSRE is lower than that of the proposed model. The reason could be attributed to the
RMSRE indicator being more sensitive to outliers.

From the results presented in Table 5 and Figures 9 and 10, the conclusions are similar
to the results of dataset 1. Namely, the proposed method outperformed the other five
methods in the overall performance of the prediction task. Firstly, the AKDE-CKDE
was better than CKDE in facilitating the prediction of stochastic traffic flow data. In
addition, the hybrid model was superior to individual models because it could integrate
the advantages of each model component. At the same time, the proposed model can well
explain the nonlinear features and random features hidden in traffic flow data and has
excellent adaptability.

To sum up, our ELM-AKDE-CKDE method performed the best for both datasets in
terms of all metrics. This proves that the capabilities of the proposed method for modeling
nonlinear and complex characteristic data are superior. The proposed model considered
nonlinearity, nonstationarity, and randomness simultaneously, and thus achieved better
prediction results than the single model that considered only linear or nonlinear. Our model
thus further reduced the prediction errors and can be applied to predict short-term traffic
flow accurately.

4. Conclusions

Since actual traffic flow sequences are affected by random factors, obtaining accurate
traffic flow prediction results is often a significant challenge. In order to cope with these
challenges, a novel hybrid prediction method based on ELM, AKDE, and CKDE was
proposed and investigated in this study. It offers a way to improve the CKDE method by
using the adaptive bandwidth method. To the best of our knowledge, the method was
first applied to the field of short-term traffic flow prediction. The results prove that the
AKDE-CKDE model has a more positive effect than CKDE in terms of improving prediction
accuracy. Moreover, case studies based on the measured data illustrate that its performance
was better than other models, including ARIMA, LSSVM, ELM-CKDE, ELM, and CKDE.

The novelty of this article is that the hybrid method can take into account nonlinear
and stochastic characteristics embedded in traffic flow data and exhibit a satisfactory
performance. Similar to other prediction methods, the proposed method also needs further
improvement. It is worth noting that the method established in this paper does not
decompose the traffic flow, and the short-term traffic flow prediction after decomposition
is worth studying further. In addition, the characteristics of traffic flow data should be
analyzed to provide a basis for selecting prediction models.

Author Contributions: Conceptualization, L.Z. and Y.B.; methodology, Y.B. and Y.W.; software, L.Z.
and S.Z; validation, L.Z., Y.B., YYW. and S.Z.; formal analysis, investigation resources, and data
curation, L.Z. and Y.B.; writing—original draft preparation, Y.B.; writing—review and editing, L.Z.,
Y.W. and S.Z.; visualization, Y.B., W.Z. and ].K,; supervision, W.Z.; project administration, ] K.; funding
acquisition, L.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Joint Training Base Construction Project for Graduate
Students in Chongging (No. JDLHPY]D2021016), the Group Building Scientific Innovation Project for
Universities in Chongqing (No. CXQT21021), the Technology Research Project Fund of Chongging
Education Commission (No. KJQN202100712).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Sustainability 2022, 14, 16361 15 of 16

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Han, L.; Huang, Y. Short-term traffic flow prediction of road network based on deep learning. IET Intell. Transp. Syst. 2020, 14,
495-503. [CrossRef]

2. Li],; Guo, E; Sivakumar, A.; Dong, Y.; Krishnan, R. Transferability improvement in short-term traffic prediction using stacked
LSTM network. Transp. Res. Part C Emerg. Technol. 2021, 124, 102977. [CrossRef]

3.  Ma, T,; Antoniou, C.; Toledo, T. Hybrid machine learning algorithm and statistical time series model for network-wide traffic
forecast. Transp. Res. Part C Emerg. Technol. 2020, 111, 352-372. [CrossRef]

4. Zhang, H.; Wang, X,; Cao, ]J.; Tang, M.; Guo, Y. A multivariate short-term traffic flow forecasting method based on wavelet
analysis and seasonal time series. Appl. Intell. 2018, 48, 3827-3838. [CrossRef]

5. Luo, X.; Niu, L.; Zhang, S. An algorithm for traffic flow prediction based on improved SARIMA and GA. KSCE . Civ. Eng. 2018,
22,4107-4115. [CrossRef]

6.  Shi, G; Guo, J.; Huang, W.; Williams, B.M. Modeling seasonal heteroscedasticity in vehicular traffic condition series using a
seasonal adjustment approach. J. Transp. Eng. 2014, 140, 1053-1058. [CrossRef]

7. Guo, J.; Huang, W.; Williams, B.M. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and
uncertainty quantification. Transp. Res. Part C Emerg. Technol. 2014, 43, 50-64. [CrossRef]

8. Cai, L; Zhang, Z,; Yang, J.; Yu, Y.; Zhou, T,; Qin, J. A noise-immune Kalman filter for short-term traffic flow forecasting. Phys. Stat.
Mech. Appl. 2019, 536, 122601. [CrossRef]

9. Qi Y,;Ishak, S. A Hidden Markov Model for short term prediction of traffic conditions on freeways. Transp. Res. Part C Emerg.
Technol. 2014, 43, 95-111. [CrossRef]

10. Jiang, Y.; Huang, G.; Yang, Q.; Yan, Z.; Zhang, C. A novel probabilistic wind speed prediction approach using real time refined
variational model decomposition and conditional kernel density estimation. Energy Convers. Manag. 2019, 185, 758-773. [CrossRef]

11. Wang, Y.; Zhao, L.; Li, S.; Wen, X,; Xiong, Y. Short term traffic flow prediction of urban road using time varying filtering based
empirical mode decomposition. Appl. Sci. 2020, 10, 2038. [CrossRef]

12. Ryu, U,; Wang, J.; Kim, T.; Kwak, S.; Juhyok, U. Construction of traffic state vector using mutual information for short-term traffic
flow prediction. Transp. Res. Part C Emerg. Technol. 2018, 96, 55-71. [CrossRef]

13. Jiang, Y.; Zhao, N.; Peng, L.; Xin, J.; Liu, S. Fast simulation of fully non-stationary wind fields using a new matrix factorization
assisted interpolation method. Mech. Syst. Signal Process. 2022, 172, 108973. [CrossRef]

14. Chen, Q.; Song, Y.; Zhao, J. Short-term traffic flow prediction based on improved wavelet neural network. Neural. Comput. Appl.
2021, 33, 8181-8190. [CrossRef]

15.  Yang, H.J.; Hu, X. Wavelet neural network with improved genetic algorithm for traffic flow time series prediction. Optik 2016, 127,
8103-8110. [CrossRef]

16. Wang, Q.M.; Fan, A.W.,; Shi, H.S. Network traffic prediction based on improved support vector machine. Int. |. Syst. Assur. Eng.
Manag. 2017, 8, 1976-1980. [CrossRef]

17. Wu, CH,; Ho, J.M,; Lee, D.T. Travel time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 2004, 5,
276-281. [CrossRef]

18. Ma, X;; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote
microwave sensor data. Transp. Res. Part C Emerg. Technol. 2015, 54, 187-197. [CrossRef]

19. Zheng, Z.; Chen, W,; Wu, X.; Chen, P; Liu, J]. LSTM network: A deep learning approach for short-term traffic forecast. IET Intell.
Transp. Syst. 2017, 11, 68-75.

20. Huang, G.B.; Zhu, Q.Y,; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489-501.
[CrossRef]

21. Adnan, RM.; Mostafa, RR.; Kisi, O.; Yaseen, Z.M.; Shahid, S.; Zounemat-Kermani, M. Improving streamflow prediction using a
new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowl. Based. Syst. 2021,
230, 107379. [CrossRef]

22. Cai, W,; Yang, J.; Yu, Y.;; Qin, J]. PSO-ELM: A hybrid learning model for short-term traffic flow forecasting. IEEE Access 2020, 8,
6505-6514. [CrossRef]

23. Cui, Z.; Huang, B.; Dou, H.; Tan, G.; Zheng, S.; Zhou, T. A hybrid learning model for short-term traffic flow forecasting. IET Intell.
Transp. Syst. 2021, 16, 41-52. [CrossRef]

24. Diao, Z.; Zhang, D.; Wang, X,; Xie, K.; He, S.; Lu, X,; Li, W. A hybrid model for short-term traffic volume prediction in massive
transportation systems. IEEE Trans. Intell. Transp. Syst. 2019, 20, 935-946. [CrossRef]

25. Guo, Z.; Zhao, X,; Chen, Y.; Wu, W.; Yang, ]. Short-term passenger flow forecast of urban rail transit based on GPR and KRR. IET
Intell. Transp. Syst. 2019, 13, 1374-1382. [CrossRef]

26. Zhou, B.; Ma, X,; Luo, Y;; Yang, D. Wind power prediction based on LSTM networks and nonparametric kernel density estimation.
IEEE Access 2019, 7, 165279-165292. [CrossRef]

27.  Jeon, ].; Taylor, J.W. Using conditional kernel density estimation for wind power density forecasting. J. Am. Stat. Assoc. 2012, 107,

66-79. [CrossRef]


http://doi.org/10.1049/iet-its.2019.0133
http://doi.org/10.1016/j.trc.2021.102977
http://doi.org/10.1016/j.trc.2019.12.022
http://doi.org/10.1007/s10489-018-1181-7
http://doi.org/10.1007/s12205-018-0429-4
http://doi.org/10.1061/(ASCE)TE.1943-5436.0000656
http://doi.org/10.1016/j.trc.2014.02.006
http://doi.org/10.1016/j.physa.2019.122601
http://doi.org/10.1016/j.trc.2014.02.007
http://doi.org/10.1016/j.enconman.2019.02.028
http://doi.org/10.3390/app10062038
http://doi.org/10.1016/j.trc.2018.09.015
http://doi.org/10.1016/j.ymssp.2022.108973
http://doi.org/10.1007/s00521-020-04932-5
http://doi.org/10.1016/j.ijleo.2016.06.017
http://doi.org/10.1007/s13198-016-0412-8
http://doi.org/10.1109/TITS.2004.837813
http://doi.org/10.1016/j.trc.2015.03.014
http://doi.org/10.1016/j.neucom.2005.12.126
http://doi.org/10.1016/j.knosys.2021.107379
http://doi.org/10.1109/ACCESS.2019.2963784
http://doi.org/10.1049/itr2.12127
http://doi.org/10.1109/TITS.2018.2841800
http://doi.org/10.1049/iet-its.2018.5530
http://doi.org/10.1109/ACCESS.2019.2952555
http://doi.org/10.1080/01621459.2011.643745

Sustainability 2022, 14, 16361 16 of 16

28.

29.
30.

31.
32.

Bessa, R.J.; Miranda, V.; Botterud, A.; Wang, J.; Constantinescu, E.M. Time adaptive conditional kernel density estimation for
wind power forecasting. IEEE Trans. Sustain. Energy 2012, 3, 660-669. [CrossRef]

Botev, Z.1.; Grotowski, J.F.; Kroese, D.P. Kernel density estimation via diffusion. Ann. Stat. 2010, 38, 2916-2957. [CrossRef]

Cao, J.; Lin, Z.; Huang, G.B. Composite function wavelet neural networks with extreme learning machine. Neurocomputing 2010,
73,1405-1416. [CrossRef]

Zambom, A.Z.; Dias, R. A Review of Kernel Density Estimation with Applications to Econometrics. arXiv 2012, arXiv:1212.2812.
Zhao, L.; Wen, X.; Wang, Y.; Shao, Y. A novel hybrid model of ARIMA-MCC and CKDE-GARCH for urban short-term traffic flow
prediction. IET Intell. Transp. Syst. 2022, 16, 206-217. [CrossRef]


http://doi.org/10.1109/TSTE.2012.2200302
http://doi.org/10.1214/10-AOS799
http://doi.org/10.1016/j.neucom.2009.12.007
http://doi.org/10.1049/itr2.12138

	Introduction 
	Materials and Methods 
	Extreme Learning Machine (ELM) 
	Adaptive Kernel Density Estimation and Conditional KDE (AKDE-CKDE) 
	Hybrid Forecasting Model 

	Case Study 
	Data Description 
	Evaluation Criteria 
	Performance Evaluation 
	Traffic Flow Prediction 
	Prediction Results and Analysis 
	Additional Case 

	Conclusions 
	References

